|  | /* | 
|  | * Copyright 2006 The Android Open Source Project | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #ifndef SkScalar_DEFINED | 
|  | #define SkScalar_DEFINED | 
|  |  | 
|  | #include "include/private/SkFloatingPoint.h" | 
|  |  | 
|  | #undef SK_SCALAR_IS_FLOAT | 
|  | #define SK_SCALAR_IS_FLOAT  1 | 
|  |  | 
|  | typedef float SkScalar; | 
|  |  | 
|  | #define SK_Scalar1                  1.0f | 
|  | #define SK_ScalarHalf               0.5f | 
|  | #define SK_ScalarSqrt2              SK_FloatSqrt2 | 
|  | #define SK_ScalarPI                 SK_FloatPI | 
|  | #define SK_ScalarTanPIOver8         0.414213562f | 
|  | #define SK_ScalarRoot2Over2         0.707106781f | 
|  | #define SK_ScalarMax                3.402823466e+38f | 
|  | #define SK_ScalarMin                (-SK_ScalarMax) | 
|  | #define SK_ScalarInfinity           SK_FloatInfinity | 
|  | #define SK_ScalarNegativeInfinity   SK_FloatNegativeInfinity | 
|  | #define SK_ScalarNaN                SK_FloatNaN | 
|  |  | 
|  | #define SkScalarFloorToScalar(x)    sk_float_floor(x) | 
|  | #define SkScalarCeilToScalar(x)     sk_float_ceil(x) | 
|  | #define SkScalarRoundToScalar(x)    sk_float_round(x) | 
|  | #define SkScalarTruncToScalar(x)    sk_float_trunc(x) | 
|  |  | 
|  | #define SkScalarFloorToInt(x)       sk_float_floor2int(x) | 
|  | #define SkScalarCeilToInt(x)        sk_float_ceil2int(x) | 
|  | #define SkScalarRoundToInt(x)       sk_float_round2int(x) | 
|  |  | 
|  | #define SkScalarAbs(x)              sk_float_abs(x) | 
|  | #define SkScalarCopySign(x, y)      sk_float_copysign(x, y) | 
|  | #define SkScalarMod(x, y)           sk_float_mod(x,y) | 
|  | #define SkScalarSqrt(x)             sk_float_sqrt(x) | 
|  | #define SkScalarPow(b, e)           sk_float_pow(b, e) | 
|  |  | 
|  | #define SkScalarSin(radians)        (float)sk_float_sin(radians) | 
|  | #define SkScalarCos(radians)        (float)sk_float_cos(radians) | 
|  | #define SkScalarTan(radians)        (float)sk_float_tan(radians) | 
|  | #define SkScalarASin(val)           (float)sk_float_asin(val) | 
|  | #define SkScalarACos(val)           (float)sk_float_acos(val) | 
|  | #define SkScalarATan2(y, x)         (float)sk_float_atan2(y,x) | 
|  | #define SkScalarExp(x)              (float)sk_float_exp(x) | 
|  | #define SkScalarLog(x)              (float)sk_float_log(x) | 
|  | #define SkScalarLog2(x)             (float)sk_float_log2(x) | 
|  |  | 
|  | ////////////////////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | #define SkIntToScalar(x)        static_cast<SkScalar>(x) | 
|  | #define SkIntToFloat(x)         static_cast<float>(x) | 
|  | #define SkScalarTruncToInt(x)   sk_float_saturate2int(x) | 
|  |  | 
|  | #define SkScalarToFloat(x)      static_cast<float>(x) | 
|  | #define SkFloatToScalar(x)      static_cast<SkScalar>(x) | 
|  | #define SkScalarToDouble(x)     static_cast<double>(x) | 
|  | #define SkDoubleToScalar(x)     sk_double_to_float(x) | 
|  |  | 
|  | static inline bool SkScalarIsNaN(SkScalar x) { return x != x; } | 
|  |  | 
|  | /** Returns true if x is not NaN and not infinite | 
|  | */ | 
|  | static inline bool SkScalarIsFinite(SkScalar x) { return sk_float_isfinite(x); } | 
|  |  | 
|  | static inline bool SkScalarsAreFinite(SkScalar a, SkScalar b) { | 
|  | return sk_floats_are_finite(a, b); | 
|  | } | 
|  |  | 
|  | static inline bool SkScalarsAreFinite(const SkScalar array[], int count) { | 
|  | return sk_floats_are_finite(array, count); | 
|  | } | 
|  |  | 
|  | /** Returns the fractional part of the scalar. */ | 
|  | static inline SkScalar SkScalarFraction(SkScalar x) { | 
|  | return x - SkScalarTruncToScalar(x); | 
|  | } | 
|  |  | 
|  | static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } | 
|  |  | 
|  | #define SkScalarInvert(x)           sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(SK_Scalar1, (x)) | 
|  | #define SkScalarAve(a, b)           (((a) + (b)) * SK_ScalarHalf) | 
|  | #define SkScalarHalf(a)             ((a) * SK_ScalarHalf) | 
|  |  | 
|  | #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180)) | 
|  | #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI)) | 
|  |  | 
|  | static inline bool SkScalarIsInt(SkScalar x) { | 
|  | return x == SkScalarFloorToScalar(x); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Returns -1 || 0 || 1 depending on the sign of value: | 
|  | *  -1 if x < 0 | 
|  | *   0 if x == 0 | 
|  | *   1 if x > 0 | 
|  | */ | 
|  | static inline int SkScalarSignAsInt(SkScalar x) { | 
|  | return x < 0 ? -1 : (x > 0); | 
|  | } | 
|  |  | 
|  | // Scalar result version of above | 
|  | static inline SkScalar SkScalarSignAsScalar(SkScalar x) { | 
|  | return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0); | 
|  | } | 
|  |  | 
|  | #define SK_ScalarNearlyZero         (SK_Scalar1 / (1 << 12)) | 
|  |  | 
|  | static inline bool SkScalarNearlyZero(SkScalar x, | 
|  | SkScalar tolerance = SK_ScalarNearlyZero) { | 
|  | SkASSERT(tolerance >= 0); | 
|  | return SkScalarAbs(x) <= tolerance; | 
|  | } | 
|  |  | 
|  | static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y, | 
|  | SkScalar tolerance = SK_ScalarNearlyZero) { | 
|  | SkASSERT(tolerance >= 0); | 
|  | return SkScalarAbs(x-y) <= tolerance; | 
|  | } | 
|  |  | 
|  | #define SK_ScalarSinCosNearlyZero   (SK_Scalar1 / (1 << 16)) | 
|  |  | 
|  | static inline float SkScalarSinSnapToZero(SkScalar radians) { | 
|  | float v = SkScalarSin(radians); | 
|  | return SkScalarNearlyZero(v, SK_ScalarSinCosNearlyZero) ? 0.0f : v; | 
|  | } | 
|  |  | 
|  | static inline float SkScalarCosSnapToZero(SkScalar radians) { | 
|  | float v = SkScalarCos(radians); | 
|  | return SkScalarNearlyZero(v, SK_ScalarSinCosNearlyZero) ? 0.0f : v; | 
|  | } | 
|  |  | 
|  | /** Linearly interpolate between A and B, based on t. | 
|  | If t is 0, return A | 
|  | If t is 1, return B | 
|  | else interpolate. | 
|  | t must be [0..SK_Scalar1] | 
|  | */ | 
|  | static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) { | 
|  | SkASSERT(t >= 0 && t <= SK_Scalar1); | 
|  | return A + (B - A) * t; | 
|  | } | 
|  |  | 
|  | /** Interpolate along the function described by (keys[length], values[length]) | 
|  | for the passed searchKey. SearchKeys outside the range keys[0]-keys[Length] | 
|  | clamp to the min or max value. This function assumes the number of pairs | 
|  | (length) will be small and a linear search is used. | 
|  |  | 
|  | Repeated keys are allowed for discontinuous functions (so long as keys is | 
|  | monotonically increasing). If key is the value of a repeated scalar in | 
|  | keys the first one will be used. | 
|  | */ | 
|  | SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[], | 
|  | const SkScalar values[], int length); | 
|  |  | 
|  | /* | 
|  | *  Helper to compare an array of scalars. | 
|  | */ | 
|  | static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) { | 
|  | SkASSERT(n >= 0); | 
|  | for (int i = 0; i < n; ++i) { | 
|  | if (a[i] != b[i]) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #endif |