blob: 1daac2b5e1e6de639e7a69ec4c85d6298bad1488 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkottieAdapter.h"
#include "SkFont.h"
#include "SkMatrix.h"
#include "SkMatrix44.h"
#include "SkPath.h"
#include "SkRRect.h"
#include "SkSGColor.h"
#include "SkSGDraw.h"
#include "SkSGGradient.h"
#include "SkSGGroup.h"
#include "SkSGPath.h"
#include "SkSGRect.h"
#include "SkSGRenderEffect.h"
#include "SkSGText.h"
#include "SkSGTransform.h"
#include "SkSGTrimEffect.h"
#include "SkShaper.h"
#include "SkTextBlob.h"
#include "SkTextUtils.h"
#include "SkTo.h"
#include "SkUTF.h"
#include "SkottieValue.h"
#include <cmath>
#include <utility>
namespace skottie {
RRectAdapter::RRectAdapter(sk_sp<sksg::RRect> wrapped_node)
: fRRectNode(std::move(wrapped_node)) {}
RRectAdapter::~RRectAdapter() = default;
void RRectAdapter::apply() {
// BM "position" == "center position"
auto rr = SkRRect::MakeRectXY(SkRect::MakeXYWH(fPosition.x() - fSize.width() / 2,
fPosition.y() - fSize.height() / 2,
fSize.width(), fSize.height()),
fRadius.width(),
fRadius.height());
fRRectNode->setRRect(rr);
}
TransformAdapter2D::TransformAdapter2D(sk_sp<sksg::Matrix<SkMatrix>> matrix)
: fMatrixNode(std::move(matrix)) {}
TransformAdapter2D::~TransformAdapter2D() = default;
SkMatrix TransformAdapter2D::totalMatrix() const {
SkMatrix t = SkMatrix::MakeTrans(-fAnchorPoint.x(), -fAnchorPoint.y());
t.postScale(fScale.x() / 100, fScale.y() / 100); // 100% based
t.postRotate(fRotation);
t.postTranslate(fPosition.x(), fPosition.y());
// TODO: skew
return t;
}
void TransformAdapter2D::apply() {
fMatrixNode->setMatrix(this->totalMatrix());
}
TransformAdapter3D::Vec3::Vec3(const VectorValue& v) {
fX = v.size() > 0 ? v[0] : 0;
fY = v.size() > 1 ? v[1] : 0;
fZ = v.size() > 2 ? v[2] : 0;
}
TransformAdapter3D::TransformAdapter3D(sk_sp<sksg::Matrix<SkMatrix44>> matrix)
: fMatrixNode(std::move(matrix)) {}
TransformAdapter3D::~TransformAdapter3D() = default;
SkMatrix44 TransformAdapter3D::totalMatrix() const {
SkMatrix44 t;
t.setTranslate(-fAnchorPoint.fX, -fAnchorPoint.fY, -fAnchorPoint.fZ);
t.postScale(fScale.fX / 100, fScale.fY / 100, fScale.fZ / 100);
// TODO: SkMatrix44:postRotate()?
SkMatrix44 r;
r.setRotateDegreesAbout(1, 0, 0, fRotation.fX);
t.postConcat(r);
r.setRotateDegreesAbout(0, 1, 0, fRotation.fY);
t.postConcat(r);
r.setRotateDegreesAbout(0, 0, 1, fRotation.fZ);
t.postConcat(r);
t.postTranslate(fPosition.fX, fPosition.fY, fPosition.fZ);
return t;
}
void TransformAdapter3D::apply() {
fMatrixNode->setMatrix(this->totalMatrix());
}
RepeaterAdapter::RepeaterAdapter(sk_sp<sksg::RenderNode> repeater_node, Composite composite)
: fRepeaterNode(repeater_node)
, fComposite(composite)
, fRoot(sksg::Group::Make()) {}
RepeaterAdapter::~RepeaterAdapter() = default;
void RepeaterAdapter::apply() {
static constexpr SkScalar kMaxCount = 512;
const auto count = static_cast<size_t>(SkTPin(fCount, 0.0f, kMaxCount) + 0.5f);
const auto& compute_transform = [this] (size_t index) {
const auto t = fOffset + index;
// Position, scale & rotation are "scaled" by index/offset.
SkMatrix m = SkMatrix::MakeTrans(-fAnchorPoint.x(),
-fAnchorPoint.y());
m.postScale(std::pow(fScale.x() * .01f, fOffset),
std::pow(fScale.y() * .01f, fOffset));
m.postRotate(t * fRotation);
m.postTranslate(t * fPosition.x() + fAnchorPoint.x(),
t * fPosition.y() + fAnchorPoint.y());
return m;
};
// TODO: start/end opacity support.
// TODO: we can avoid rebuilding all the fragments in most cases.
fRoot->clear();
for (size_t i = 0; i < count; ++i) {
const auto insert_index = (fComposite == Composite::kAbove) ? i : count - i - 1;
fRoot->addChild(sksg::TransformEffect::Make(fRepeaterNode,
compute_transform(insert_index)));
}
}
PolyStarAdapter::PolyStarAdapter(sk_sp<sksg::Path> wrapped_node, Type t)
: fPathNode(std::move(wrapped_node))
, fType(t) {}
PolyStarAdapter::~PolyStarAdapter() = default;
void PolyStarAdapter::apply() {
static constexpr int kMaxPointCount = 100000;
const auto count = SkToUInt(SkTPin(SkScalarRoundToInt(fPointCount), 0, kMaxPointCount));
const auto arc = sk_ieee_float_divide(SK_ScalarPI * 2, count);
const auto pt_on_circle = [](const SkPoint& c, SkScalar r, SkScalar a) {
return SkPoint::Make(c.x() + r * std::cos(a),
c.y() + r * std::sin(a));
};
// TODO: inner/outer "roundness"?
SkPath poly;
auto angle = SkDegreesToRadians(fRotation - 90);
poly.moveTo(pt_on_circle(fPosition, fOuterRadius, angle));
poly.incReserve(fType == Type::kStar ? count * 2 : count);
for (unsigned i = 0; i < count; ++i) {
if (fType == Type::kStar) {
poly.lineTo(pt_on_circle(fPosition, fInnerRadius, angle + arc * 0.5f));
}
angle += arc;
poly.lineTo(pt_on_circle(fPosition, fOuterRadius, angle));
}
poly.close();
fPathNode->setPath(poly);
}
GradientAdapter::GradientAdapter(sk_sp<sksg::Gradient> grad, size_t stopCount)
: fGradient(std::move(grad))
, fStopCount(stopCount) {}
void GradientAdapter::apply() {
this->onApply();
// |fColorStops| holds |fStopCount| x [ pos, r, g, g ] + ? x [ pos, alpha ]
if (fColorStops.size() < fStopCount * 4 || ((fColorStops.size() - fStopCount * 4) % 2)) {
// apply() may get called before the stops are set, so only log when we have some stops.
if (!fColorStops.empty()) {
SkDebugf("!! Invalid gradient stop array size: %zu\n", fColorStops.size());
}
return;
}
std::vector<sksg::Gradient::ColorStop> stops;
// TODO: merge/lerp opacity stops
const auto csEnd = fColorStops.cbegin() + fStopCount * 4;
for (auto cs = fColorStops.cbegin(); cs != csEnd; cs += 4) {
const auto pos = cs[0];
const VectorValue rgb({ cs[1], cs[2], cs[3] });
stops.push_back({ pos, ValueTraits<VectorValue>::As<SkColor>(rgb) });
}
fGradient->setColorStops(std::move(stops));
}
LinearGradientAdapter::LinearGradientAdapter(sk_sp<sksg::LinearGradient> grad, size_t stopCount)
: INHERITED(std::move(grad), stopCount) {}
void LinearGradientAdapter::onApply() {
auto* grad = static_cast<sksg::LinearGradient*>(fGradient.get());
grad->setStartPoint(this->startPoint());
grad->setEndPoint(this->endPoint());
}
RadialGradientAdapter::RadialGradientAdapter(sk_sp<sksg::RadialGradient> grad, size_t stopCount)
: INHERITED(std::move(grad), stopCount) {}
void RadialGradientAdapter::onApply() {
auto* grad = static_cast<sksg::RadialGradient*>(fGradient.get());
grad->setStartCenter(this->startPoint());
grad->setEndCenter(this->startPoint());
grad->setStartRadius(0);
grad->setEndRadius(SkPoint::Distance(this->startPoint(), this->endPoint()));
}
TrimEffectAdapter::TrimEffectAdapter(sk_sp<sksg::TrimEffect> trimEffect)
: fTrimEffect(std::move(trimEffect)) {
SkASSERT(fTrimEffect);
}
TrimEffectAdapter::~TrimEffectAdapter() = default;
void TrimEffectAdapter::apply() {
// BM semantics: start/end are percentages, offset is "degrees" (?!).
const auto start = fStart / 100,
end = fEnd / 100,
offset = fOffset / 360;
auto startT = SkTMin(start, end) + offset,
stopT = SkTMax(start, end) + offset;
auto mode = SkTrimPathEffect::Mode::kNormal;
if (stopT - startT < 1) {
startT -= SkScalarFloorToScalar(startT);
stopT -= SkScalarFloorToScalar(stopT);
if (startT > stopT) {
using std::swap;
swap(startT, stopT);
mode = SkTrimPathEffect::Mode::kInverted;
}
} else {
startT = 0;
stopT = 1;
}
fTrimEffect->setStart(startT);
fTrimEffect->setStop(stopT);
fTrimEffect->setMode(mode);
}
DropShadowEffectAdapter::DropShadowEffectAdapter(sk_sp<sksg::DropShadowImageFilter> dropShadow)
: fDropShadow(std::move(dropShadow)) {
SkASSERT(fDropShadow);
}
DropShadowEffectAdapter::~DropShadowEffectAdapter() = default;
void DropShadowEffectAdapter::apply() {
// fColor -> RGB, fOpacity -> A
fDropShadow->setColor(SkColorSetA(fColor, SkTPin(SkScalarRoundToInt(fOpacity), 0, 255)));
// The offset is specified in terms of a bearing angle + distance.
SkScalar sinV, cosV;
sinV = SkScalarSinCos(SkDegreesToRadians(90 - fDirection), &cosV);
fDropShadow->setOffset(SkVector::Make(fDistance * cosV, -fDistance * sinV));
// Close enough to AE.
static constexpr SkScalar kSoftnessToSigmaFactor = 0.3f;
const auto sigma = fSoftness * kSoftnessToSigmaFactor;
fDropShadow->setSigma(SkVector::Make(sigma, sigma));
fDropShadow->setMode(fShadowOnly ? sksg::DropShadowImageFilter::Mode::kShadowOnly
: sksg::DropShadowImageFilter::Mode::kShadowAndForeground);
}
TextAdapter::TextAdapter(sk_sp<sksg::Group> root)
: fRoot(std::move(root))
, fTextNode(sksg::TextBlob::Make())
, fFillColor(sksg::Color::Make(SK_ColorTRANSPARENT))
, fStrokeColor(sksg::Color::Make(SK_ColorTRANSPARENT))
, fFillNode(sksg::Draw::Make(fTextNode, fFillColor))
, fStrokeNode(sksg::Draw::Make(fTextNode, fStrokeColor))
, fHadFill(false)
, fHadStroke(false) {
// Build a SG fragment with the following general format:
//
// [Group]
// [Draw]
// [FillPaint]
// [Text]*
// [Draw]
// [StrokePaint]
// [Text]*
//
// * where the text node is shared
fFillColor->setAntiAlias(true);
fStrokeColor->setAntiAlias(true);
fStrokeColor->setStyle(SkPaint::kStroke_Style);
}
TextAdapter::~TextAdapter() = default;
sk_sp<SkTextBlob> TextAdapter::makeBlob() const {
SkFont font(fText.fTypeface, fText.fTextSize);
font.setHinting(kNo_SkFontHinting);
font.setSubpixel(true);
font.setEdging(SkFont::Edging::kAntiAlias);
// Helper for interfacing with SkShaper: buffers shaper-fed runs and performs
// per-line position adjustments (for external line breaking, horizontal alignment, etc).
class BlobMaker final : public SkShaper::RunHandler {
public:
BlobMaker(SkTextUtils::Align align)
: fAlignFactor(AlignFactor(align)) {}
Buffer newRunBuffer(const RunInfo& info, const SkFont& font, int glyphCount,
int utf8textCount) override {
fPendingLineAdvance += info.fAdvance;
auto& run = fPendingLineRuns.emplace_back(font, info, glyphCount);
return {
run.fGlyphs .data(),
run.fPositions.data(),
nullptr,
nullptr,
};
}
void commitLine() override {
SkScalar line_spacing = 0;
for (const auto& run : fPendingLineRuns) {
const auto runSize = run.size();
const auto& blobBuffer = fBuilder.allocRunPos(run.fFont, SkToInt(runSize));
sk_careful_memcpy(blobBuffer.glyphs,
run.fGlyphs.data(),
runSize * sizeof(SkGlyphID));
// For each buffered line, perform the following position adjustments:
// 1) horizontal alignment
// 2) vertical advance (based on line number/offset)
// 3) baseline/ascent adjustment
const auto offset = SkVector::Make(fAlignFactor * fPendingLineAdvance.x(),
fPendingLineVOffset + run.fInfo.fAscent);
for (size_t i = 0; i < runSize; ++i) {
blobBuffer.points()[i] = run.fPositions[SkToInt(i)] + offset;
}
line_spacing = SkTMax(line_spacing,
run.fInfo.fDescent - run.fInfo.fAscent + run.fInfo.fLeading);
}
fPendingLineRuns.reset();
fPendingLineVOffset += line_spacing;
fPendingLineAdvance = { 0, 0 };
}
sk_sp<SkTextBlob> makeBlob() {
return fBuilder.make();
}
private:
static float AlignFactor(SkTextUtils::Align align) {
switch (align) {
case SkTextUtils::kLeft_Align: return 0.0f;
case SkTextUtils::kCenter_Align: return -0.5f;
case SkTextUtils::kRight_Align: return -1.0f;
}
return 0.0f; // go home, msvc...
}
struct Run {
SkFont fFont;
SkShaper::RunHandler::RunInfo fInfo;
SkSTArray<128, SkGlyphID, true> fGlyphs;
SkSTArray<128, SkPoint , true> fPositions;
Run(const SkFont& font, const SkShaper::RunHandler::RunInfo& info, int count)
: fFont(font)
, fInfo(info)
, fGlyphs (count)
, fPositions(count) {
fGlyphs .push_back_n(count);
fPositions.push_back_n(count);
}
size_t size() const {
SkASSERT(fGlyphs.size() == fPositions.size());
return fGlyphs.size();
}
};
const float fAlignFactor;
SkTextBlobBuilder fBuilder;
SkSTArray<2, Run, false> fPendingLineRuns;
SkScalar fPendingLineVOffset = 0;
SkVector fPendingLineAdvance = { 0, 0 };
};
BlobMaker blobMaker(fText.fAlign);
const auto& push_line = [&](const char* start, const char* end) {
SkShaper shaper(font.refTypeface());
if (!shaper.good()) {
return;
}
shaper.shape(&blobMaker, font, start, SkToSizeT(end - start), true, { 0, 0 }, SK_ScalarMax);
};
const auto& is_line_break = [](SkUnichar uch) {
// TODO: other explicit breaks?
return uch == '\r';
};
const char* ptr = fText.fText.c_str();
const char* line_start = ptr;
const char* end = ptr + fText.fText.size();
while (ptr < end) {
if (is_line_break(SkUTF::NextUTF8(&ptr, end))) {
push_line(line_start, ptr - 1);
line_start = ptr;
}
}
push_line(line_start, ptr);
return blobMaker.makeBlob();
}
void TextAdapter::apply() {
fTextNode->setBlob(this->makeBlob());
fFillColor->setColor(fText.fFillColor);
fStrokeColor->setColor(fText.fStrokeColor);
fStrokeColor->setStrokeWidth(fText.fStrokeWidth);
// Turn the state transition into a tri-state value:
// -1: detach node
// 0: no change
// 1: attach node
const auto fill_change = SkToInt(fText.fHasFill) - SkToInt(fHadFill);
const auto stroke_change = SkToInt(fText.fHasStroke) - SkToInt(fHadStroke);
// Sync SG topology.
if (fill_change || stroke_change) {
// This is trickier than it should be because sksg::Group only allows adding children
// in paint-order.
if (stroke_change < 0 || (fHadStroke && fill_change > 0)) {
fRoot->removeChild(fStrokeNode);
}
if (fill_change < 0) {
fRoot->removeChild(fFillNode);
} else if (fill_change > 0) {
fRoot->addChild(fFillNode);
}
if (stroke_change > 0 || (fHadStroke && fill_change > 0)) {
fRoot->addChild(fStrokeNode);
}
}
// Track current state.
fHadFill = fText.fHasFill;
fHadStroke = fText.fHasStroke;
}
} // namespace skottie