|  | /* | 
|  | * Copyright 2011 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "include/core/SkPath.h" | 
|  | #include "include/core/SkPoint.h" | 
|  | #include "include/core/SkScalar.h" | 
|  | #include "include/core/SkStream.h" | 
|  | #include "include/core/SkString.h" | 
|  | #include "include/core/SkTypes.h" | 
|  | #include "include/utils/SkParse.h" | 
|  | #include "include/utils/SkParsePath.h" | 
|  | #include "src/core/SkGeometry.h" | 
|  |  | 
|  | #include <cstdio> | 
|  |  | 
|  | enum class SkPathDirection; | 
|  |  | 
|  | static inline bool is_between(int c, int min, int max) { | 
|  | return (unsigned)(c - min) <= (unsigned)(max - min); | 
|  | } | 
|  |  | 
|  | static inline bool is_ws(int c) { | 
|  | return is_between(c, 1, 32); | 
|  | } | 
|  |  | 
|  | static inline bool is_digit(int c) { | 
|  | return is_between(c, '0', '9'); | 
|  | } | 
|  |  | 
|  | static inline bool is_sep(int c) { | 
|  | return is_ws(c) || c == ','; | 
|  | } | 
|  |  | 
|  | static inline bool is_lower(int c) { | 
|  | return is_between(c, 'a', 'z'); | 
|  | } | 
|  |  | 
|  | static inline int to_upper(int c) { | 
|  | return c - 'a' + 'A'; | 
|  | } | 
|  |  | 
|  | static const char* skip_ws(const char str[]) { | 
|  | SkASSERT(str); | 
|  | while (is_ws(*str)) | 
|  | str++; | 
|  | return str; | 
|  | } | 
|  |  | 
|  | static const char* skip_sep(const char str[]) { | 
|  | if (!str) { | 
|  | return nullptr; | 
|  | } | 
|  | while (is_sep(*str)) | 
|  | str++; | 
|  | return str; | 
|  | } | 
|  |  | 
|  | // If unable to read count points from str into value, this will return nullptr | 
|  | // to signal the failure. Otherwise, it will return the next offset to read from. | 
|  | static const char* find_points(const char str[], SkPoint value[], int count, | 
|  | bool isRelative, SkPoint* relative) { | 
|  | str = SkParse::FindScalars(str, &value[0].fX, count * 2); | 
|  | if (isRelative) { | 
|  | for (int index = 0; index < count; index++) { | 
|  | value[index].fX += relative->fX; | 
|  | value[index].fY += relative->fY; | 
|  | } | 
|  | } | 
|  | return str; | 
|  | } | 
|  |  | 
|  | // If unable to read a scalar from str into value, this will return nullptr | 
|  | // to signal the failure. Otherwise, it will return the next offset to read from. | 
|  | static const char* find_scalar(const char str[], SkScalar* value, | 
|  | bool isRelative, SkScalar relative) { | 
|  | str = SkParse::FindScalar(str, value); | 
|  | if (!str) { | 
|  | return nullptr; | 
|  | } | 
|  | if (isRelative) { | 
|  | *value += relative; | 
|  | } | 
|  | str = skip_sep(str); | 
|  | return str; | 
|  | } | 
|  |  | 
|  | // https://www.w3.org/TR/SVG11/paths.html#PathDataBNF | 
|  | // | 
|  | // flag: | 
|  | //    "0" | "1" | 
|  | static const char* find_flag(const char str[], bool* value) { | 
|  | if (!str) { | 
|  | return nullptr; | 
|  | } | 
|  | if (str[0] != '1' && str[0] != '0') { | 
|  | return nullptr; | 
|  | } | 
|  | *value = str[0] != '0'; | 
|  | str = skip_sep(str + 1); | 
|  | return str; | 
|  | } | 
|  |  | 
|  | bool SkParsePath::FromSVGString(const char data[], SkPath* result) { | 
|  | // We will write all data to this local path and only write it | 
|  | // to result if the whole parsing succeeds. | 
|  | SkPath path; | 
|  | SkPoint first = {0, 0}; | 
|  | SkPoint c = {0, 0}; | 
|  | SkPoint lastc = {0, 0}; | 
|  | // We will use find_points and find_scalar to read into these. | 
|  | // There might not be enough data to fill them, so to avoid | 
|  | // MSAN warnings about using uninitialized bytes, we initialize | 
|  | // them there. | 
|  | SkPoint points[3] = {}; | 
|  | SkScalar scratch = 0; | 
|  | char op = '\0'; | 
|  | char previousOp = '\0'; | 
|  | bool relative = false; | 
|  | for (;;) { | 
|  | if (!data) { | 
|  | // Truncated data | 
|  | return false; | 
|  | } | 
|  | data = skip_ws(data); | 
|  | if (data[0] == '\0') { | 
|  | break; | 
|  | } | 
|  | char ch = data[0]; | 
|  | if (is_digit(ch) || ch == '-' || ch == '+' || ch == '.') { | 
|  | if (op == '\0' || op == 'Z') { | 
|  | return false; | 
|  | } | 
|  | } else if (is_sep(ch)) { | 
|  | data = skip_sep(data); | 
|  | } else { | 
|  | op = ch; | 
|  | relative = false; | 
|  | if (is_lower(op)) { | 
|  | op = (char) to_upper(op); | 
|  | relative = true; | 
|  | } | 
|  | data++; | 
|  | data = skip_sep(data); | 
|  | } | 
|  | switch (op) { | 
|  | case 'M':  // Move | 
|  | data = find_points(data, points, 1, relative, &c); | 
|  | // find_points might have failed, so this might be the | 
|  | // previous point. However, data will be set to nullptr | 
|  | // if it failed, so we will check this at the top of the loop. | 
|  | path.moveTo(points[0]); | 
|  | previousOp = '\0'; | 
|  | op = 'L'; | 
|  | c = points[0]; | 
|  | break; | 
|  | case 'L':  // Line | 
|  | data = find_points(data, points, 1, relative, &c); | 
|  | path.lineTo(points[0]); | 
|  | c = points[0]; | 
|  | break; | 
|  | case 'H':  // Horizontal Line | 
|  | data = find_scalar(data, &scratch, relative, c.fX); | 
|  | // Similarly, if there wasn't a scalar to read, data will | 
|  | // be set to nullptr and this lineTo is bogus but will | 
|  | // be ultimately ignored when the next time through the loop | 
|  | // detects that and bails out. | 
|  | path.lineTo(scratch, c.fY); | 
|  | c.fX = scratch; | 
|  | break; | 
|  | case 'V':  // Vertical Line | 
|  | data = find_scalar(data, &scratch, relative, c.fY); | 
|  | path.lineTo(c.fX, scratch); | 
|  | c.fY = scratch; | 
|  | break; | 
|  | case 'C':  // Cubic Bezier Curve | 
|  | data = find_points(data, points, 3, relative, &c); | 
|  | goto cubicCommon; | 
|  | case 'S':  // Continued "Smooth" Cubic Bezier Curve | 
|  | data = find_points(data, &points[1], 2, relative, &c); | 
|  | points[0] = c; | 
|  | if (previousOp == 'C' || previousOp == 'S') { | 
|  | points[0].fX -= lastc.fX - c.fX; | 
|  | points[0].fY -= lastc.fY - c.fY; | 
|  | } | 
|  | cubicCommon: | 
|  | path.cubicTo(points[0], points[1], points[2]); | 
|  | lastc = points[1]; | 
|  | c = points[2]; | 
|  | break; | 
|  | case 'Q':  // Quadratic Bezier Curve | 
|  | data = find_points(data, points, 2, relative, &c); | 
|  | goto quadraticCommon; | 
|  | case 'T':  // Continued Quadratic Bezier Curve | 
|  | data = find_points(data, &points[1], 1, relative, &c); | 
|  | points[0] = c; | 
|  | if (previousOp == 'Q' || previousOp == 'T') { | 
|  | points[0].fX -= lastc.fX - c.fX; | 
|  | points[0].fY -= lastc.fY - c.fY; | 
|  | } | 
|  | quadraticCommon: | 
|  | path.quadTo(points[0], points[1]); | 
|  | lastc = points[0]; | 
|  | c = points[1]; | 
|  | break; | 
|  | case 'A': {  // Arc (Elliptical) | 
|  | SkPoint radii; | 
|  | SkScalar angle; | 
|  | bool largeArc, sweep; | 
|  | if ((data = find_points(data, &radii, 1, false, nullptr)) | 
|  | && (data = skip_sep(data)) | 
|  | && (data = find_scalar(data, &angle, false, 0)) | 
|  | && (data = skip_sep(data)) | 
|  | && (data = find_flag(data, &largeArc)) | 
|  | && (data = skip_sep(data)) | 
|  | && (data = find_flag(data, &sweep)) | 
|  | && (data = skip_sep(data)) | 
|  | && (data = find_points(data, &points[0], 1, relative, &c))) { | 
|  | path.arcTo(radii, angle, (SkPath::ArcSize) largeArc, | 
|  | (SkPathDirection) !sweep, points[0]); | 
|  | path.getLastPt(&c); | 
|  | } | 
|  | } break; | 
|  | case 'Z':  // Close Path | 
|  | path.close(); | 
|  | c = first; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | if (previousOp == 0) { | 
|  | first = c; | 
|  | } | 
|  | previousOp = op; | 
|  | } | 
|  | // we're good, go ahead and swap in the result | 
|  | result->swap(path); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | SkString SkParsePath::ToSVGString(const SkPath& path, PathEncoding encoding) { | 
|  | SkDynamicMemoryWStream  stream; | 
|  |  | 
|  | SkPoint current_point{0,0}; | 
|  | const auto rel_selector = encoding == PathEncoding::Relative; | 
|  |  | 
|  | const auto append_command = [&](char cmd, const SkPoint pts[], size_t count) { | 
|  | // Use lower case cmds for relative encoding. | 
|  | cmd += 32 * rel_selector; | 
|  | stream.write(&cmd, 1); | 
|  |  | 
|  | for (size_t i = 0; i < count; ++i) { | 
|  | const auto pt = pts[i] - current_point; | 
|  | if (i > 0) { | 
|  | stream.write(" ", 1); | 
|  | } | 
|  | stream.writeScalarAsText(pt.fX); | 
|  | stream.write(" ", 1); | 
|  | stream.writeScalarAsText(pt.fY); | 
|  | } | 
|  |  | 
|  | SkASSERT(count > 0); | 
|  | // For relative encoding, track the current point (otherwise == origin). | 
|  | current_point = pts[count - 1] * rel_selector; | 
|  | }; | 
|  |  | 
|  | SkPath::Iter    iter(path, false); | 
|  | SkPoint         pts[4]; | 
|  |  | 
|  | for (;;) { | 
|  | switch (iter.next(pts)) { | 
|  | case SkPath::kConic_Verb: { | 
|  | const SkScalar tol = SK_Scalar1 / 1024; // how close to a quad | 
|  | SkAutoConicToQuads quadder; | 
|  | const SkPoint* quadPts = quadder.computeQuads(pts, iter.conicWeight(), tol); | 
|  | for (int i = 0; i < quadder.countQuads(); ++i) { | 
|  | append_command('Q', &quadPts[i*2 + 1], 2); | 
|  | } | 
|  | } break; | 
|  | case SkPath::kMove_Verb: | 
|  | append_command('M', &pts[0], 1); | 
|  | break; | 
|  | case SkPath::kLine_Verb: | 
|  | append_command('L', &pts[1], 1); | 
|  | break; | 
|  | case SkPath::kQuad_Verb: | 
|  | append_command('Q', &pts[1], 2); | 
|  | break; | 
|  | case SkPath::kCubic_Verb: | 
|  | append_command('C', &pts[1], 3); | 
|  | break; | 
|  | case SkPath::kClose_Verb: | 
|  | stream.write("Z", 1); | 
|  | break; | 
|  | case SkPath::kDone_Verb: { | 
|  | SkString str; | 
|  | str.resize(stream.bytesWritten()); | 
|  | stream.copyTo(str.data()); | 
|  | return str; | 
|  | } | 
|  | } | 
|  | } | 
|  | } |