blob: 575ec49fb58842cb29690a6cb3167098345a3bf4 [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/effects/SkEmbossMaskFilter.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkBlurTypes.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkImageFilter.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPoint.h"
#include "include/core/SkPoint3.h"
#include "include/core/SkShader.h"
#include "include/core/SkTypes.h"
#include "include/effects/SkImageFilters.h"
#include "include/private/base/SkFloatingPoint.h"
#include "src/core/SkBlurMask.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkWriteBuffer.h"
#include "src/effects/SkEmbossMask.h"
#if defined(SK_SUPPORT_LEGACY_EMBOSSMASKFILTER)
#include "include/effects/SkBlurMaskFilter.h"
#endif
#include <cstring>
sk_sp<SkMaskFilter> SkEmbossMaskFilter::Make(SkScalar blurSigma, const Light& light) {
if (!SkIsFinite(blurSigma) || blurSigma <= 0) {
return nullptr;
}
SkPoint3 lightDir{light.fDirection[0], light.fDirection[1], light.fDirection[2]};
if (!lightDir.normalize()) {
return nullptr;
}
Light newLight = light;
newLight.fDirection[0] = lightDir.x();
newLight.fDirection[1] = lightDir.y();
newLight.fDirection[2] = lightDir.z();
return sk_sp<SkMaskFilter>(new SkEmbossMaskFilter(blurSigma, newLight));
}
#ifdef SK_SUPPORT_LEGACY_EMBOSSMASKFILTER
sk_sp<SkMaskFilter> SkBlurMaskFilter::MakeEmboss(SkScalar blurSigma, const SkScalar direction[3],
SkScalar ambient, SkScalar specular) {
if (direction == nullptr) {
return nullptr;
}
SkEmbossMaskFilter::Light light;
memcpy(light.fDirection, direction, sizeof(light.fDirection));
// ambient should be 0...1 as a scalar
light.fAmbient = SkUnitScalarClampToByte(ambient);
// specular should be 0..15.99 as a scalar
static const SkScalar kSpecularMultiplier = SkIntToScalar(255) / 16;
light.fSpecular = static_cast<U8CPU>(SkTPin(specular, 0.0f, 16.0f) * kSpecularMultiplier + 0.5);
return SkEmbossMaskFilter::Make(blurSigma, light);
}
#endif
///////////////////////////////////////////////////////////////////////////////
SkEmbossMaskFilter::SkEmbossMaskFilter(SkScalar blurSigma, const Light& light)
: fLight(light), fBlurSigma(blurSigma)
{
SkASSERT(fBlurSigma > 0);
SkASSERT(SkIsFinite(fLight.fDirection, 3));
}
SkMask::Format SkEmbossMaskFilter::getFormat() const {
return SkMask::k3D_Format;
}
bool SkEmbossMaskFilter::filterMask(SkMaskBuilder* dst, const SkMask& src,
const SkMatrix& matrix, SkIPoint* margin) const {
if (src.fFormat != SkMask::kA8_Format) {
return false;
}
SkScalar sigma = matrix.mapRadius(fBlurSigma);
if (!SkBlurMask::BoxBlur(dst, src, sigma, kInner_SkBlurStyle)) {
return false;
}
dst->format() = SkMask::k3D_Format;
if (margin) {
margin->set(SkScalarCeilToInt(3*sigma), SkScalarCeilToInt(3*sigma));
}
if (src.fImage == nullptr) {
return true;
}
// create a larger buffer for the other two channels (should force fBlur to do this for us)
{
uint8_t* alphaPlane = dst->image();
size_t totalSize = dst->computeTotalImageSize();
if (totalSize == 0) {
return false; // too big to allocate, abort
}
size_t planeSize = dst->computeImageSize();
SkASSERT(planeSize != 0); // if totalSize didn't overflow, this can't either
dst->image() = SkMaskBuilder::AllocImage(totalSize);
memcpy(dst->image(), alphaPlane, planeSize);
SkMaskBuilder::FreeImage(alphaPlane);
}
// run the light direction through the matrix...
Light light = fLight;
matrix.mapVectors({(SkVector*)(void*)light.fDirection, 1},
{(SkVector*)(void*)fLight.fDirection, 1});
// now restore the length of the XY component
// cast to SkVector so we can call setLength (this double cast silences alias warnings)
SkVector* vec = (SkVector*)(void*)light.fDirection;
vec->setLength(light.fDirection[0],
light.fDirection[1],
SkPoint::Length(fLight.fDirection[0], fLight.fDirection[1]));
SkEmbossMask::Emboss(dst, light);
// restore original alpha
memcpy(dst->image(), src.fImage, src.computeImageSize());
return true;
}
sk_sp<SkFlattenable> SkEmbossMaskFilter::CreateProc(SkReadBuffer& buffer) {
Light light;
if (buffer.readByteArray(&light, sizeof(Light))) {
light.fPad = 0; // for the font-cache lookup to be clean
const SkScalar sigma = buffer.readScalar();
return Make(sigma, light);
}
return nullptr;
}
void SkEmbossMaskFilter::flatten(SkWriteBuffer& buffer) const {
Light tmpLight = fLight;
tmpLight.fPad = 0; // for the font-cache lookup to be clean
buffer.writeByteArray(&tmpLight, sizeof(tmpLight));
buffer.writeScalar(fBlurSigma);
}
// This image filter uses coverage masks for operations but affects shading properties
// of a draw using the paint parameter, and returning true to indicate appliesShading.
std::pair<sk_sp<SkImageFilter>, bool> SkEmbossMaskFilter::asImageFilter(
const SkMatrix& ctm, const SkPaint& paint) const {
// Here the original bitmap we are operating on (nullptr for imageFilters) should be
// our coverage mask, as a white RGBA8 image where the alpha corresponds to the coverage.
sk_sp<SkImageFilter> coverageBlurred = SkImageFilters::Blur(fBlurSigma, fBlurSigma, nullptr);
// The paint should have the original shading properties that we want to apply.
sk_sp<SkShader> srcShader = SkShaders::Color(paint.getColor4f(), /*cs=*/nullptr);
if (paint.getShader()) {
srcShader = SkShaders::Blend(SkBlendMode::kDstIn, paint.refShader(), std::move(srcShader));
}
srcShader = srcShader->makeWithColorFilter(paint.refColorFilter());
sk_sp<SkImageFilter> srcColor = SkImageFilters::Shader(
std::move(srcShader), paint.isDither() ? SkImageFilters::Dither::kYes
: SkImageFilters::Dither::kNo);
// ka = fLight.fAmbient
float ambientf = fLight.fAmbient / 255.f;
SkColor4f ambientColor = {ambientf, ambientf, ambientf, 1};
sk_sp<SkImageFilter> ambient = SkImageFilters::Shader(SkShaders::Color(ambientColor, nullptr));
// L = fLight.fDirection
SkPoint3 lightDirection = SkPoint3::Make(fLight.fDirection[0],
fLight.fDirection[1],
fLight.fDirection[2]);
// Amount to scale the alpha by to calculate N, set this way to mimic the legacy
// emboss mask filter implementation.
// Made negative to match functionality of legacy emboss mask filter which calculates
// the normal "into" the monitor, away from the user, whereas all other documentation
// points normals towards negative directions (towards user).
const float surfaceScale = -255.f/ 32.f;
// diffuse = kd * dot(L, N)
sk_sp<SkImageFilter> diffuseCF = SkImageFilters::DistantLitDiffuse(lightDirection,
SK_ColorWHITE,
surfaceScale,
1,
coverageBlurred);
// mul = ka + diffuse
sk_sp<SkImageFilter> ambientdiffuse = SkImageFilters::Blend(SkBlendMode::kPlus,
diffuseCF,
ambient);
// ambientdiffuseColor = srcColor * mul
sk_sp<SkImageFilter> ambientdiffuseBlend = SkImageFilters::Blend(
SkBlendMode::kModulate, srcColor, ambientdiffuse);
// fLight.fSpecular is in a fixed 4.4 format.
// This uses the legacy implementation for emboss which calculates the specular
// lighting differently than standard specular functions.
//
// specular = ks * pow((2 * (L * N) - L_z) * L_z), shininess)
float shininess = ((fLight.fSpecular >> 4) + 1);
sk_sp<SkImageFilter> specular = LegacySpecular(lightDirection,
SK_ColorWHITE,
surfaceScale,
1,
shininess,
coverageBlurred);
// dstColor = ambientdiffuseColor + specular
// = srcColor * (ka + kd * dot(L, N)) + ks * pow((2 * (L * N) - L_z) * L_z), shininess)
sk_sp<SkImageFilter> finalFilter = SkImageFilters::Blend(SkBlendMode::kPlus,
ambientdiffuseBlend,
specular);
// Mask by original coverage mask, it remains unchanged.
// Return true to indicate applies shading.
return {SkImageFilters::Blend(SkBlendMode::kDstIn, finalFilter, nullptr), true};
}