blob: d4540bd5af9ac1195271f449cb2d6c342e1ab974 [file] [log] [blame]
// Copyright 2023 Google LLC
// Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
#include "modules/bentleyottmann/include/Myers.h"
#include "src/base/SkRandom.h"
#include "tests/Test.h"
#include <chrono>
#include <cinttypes>
#include <cstdint>
namespace myers {
bool slope_s0_less_than_slope_s1(const Segment& s0, const Segment& s1);
bool segment_less_than_upper_to_insert(const Segment& segment, const Segment& to_insert);
bool s0_less_than_s1_at_y(const Segment& s0, const Segment& s1, int32_t y);
bool s0_intersects_s1(const Segment& s0, const Segment& s1);
} // namespace myers
using namespace myers;
static bool operator==(std::pair<const Point &, const Point &> l, std::tuple<Point, Point> r) {
return std::get<0>(l) == std::get<0>(r) && std::get<1>(l) == std::get<1>(r);
}
DEF_TEST(MFC_order_segment_points, r) {
{
Point p0 = {0, 0},
p1 = {1, 1};
REPORTER_ASSERT(r, std::minmax(p0, p1) == std::make_tuple(p0, p1));
REPORTER_ASSERT(r, std::minmax(p1, p0) == std::make_tuple(p0, p1));
}
{
Point p0 = {0, 0},
p1 = {-1, 1};
REPORTER_ASSERT(r, std::minmax(p0, p1) == std::make_tuple(p0, p1));
REPORTER_ASSERT(r, std::minmax(p1, p0) == std::make_tuple(p0, p1));
}
{
Point p0 = {0, 0},
p1 = {0, 1};
REPORTER_ASSERT(r, std::minmax(p0, p1) == std::make_tuple(p0, p1));
REPORTER_ASSERT(r, std::minmax(p1, p0) == std::make_tuple(p0, p1));
}
}
DEF_TEST(MFC_segment_ctor, r) {
{
Point p0 = {0, 0},
p1 = {1, 1};
Segment s = {p1, p0};
const auto [u, l] = s;
REPORTER_ASSERT(r, u == s.upper() && u == p0);
REPORTER_ASSERT(r, l == s.lower() && l == p1);
}
{
Point p0 = {0, 0},
p1 = {0, 1};
Segment s = {p1, p0};
const auto [u, l] = s;
REPORTER_ASSERT(r, u == s.upper() && u == p0);
REPORTER_ASSERT(r, l == s.lower() && l == p1);
}
}
DEF_TEST(MFC_slope_less_than, r) {
{
Segment s0 = {{0, 0}, {1, 1}},
s1 = {{0, 0}, {-1, 1}};
REPORTER_ASSERT(r, !slope_s0_less_than_slope_s1(s0, s1));
REPORTER_ASSERT(r, slope_s0_less_than_slope_s1(s1, s0));
REPORTER_ASSERT(r, !slope_s0_less_than_slope_s1(s0, s0));
}
{
Segment s = {{0, 0}, {0,1}};
REPORTER_ASSERT(r, !slope_s0_less_than_slope_s1(s, s));
}
{ // Check slopes for horizontals.
Segment s0 = {{-2, 0}, {1, 0}},
s1 = {{-1, 0}, {2, 0}};
REPORTER_ASSERT(r, !slope_s0_less_than_slope_s1(s0, s1));
REPORTER_ASSERT(r, !slope_s0_less_than_slope_s1(s1, s0));
}
{ // Check slopes for horizontals.
Segment s0 = {{-2, 0}, {1, 0}},
s1 = {{0, 0}, {1, 1}};
REPORTER_ASSERT(r, !slope_s0_less_than_slope_s1(s0, s1));
REPORTER_ASSERT(r, slope_s0_less_than_slope_s1(s1, s0));
}
}
DEF_TEST(MFC_segment_less_than_upper_to_insert, r) {
Segment s0 = {{-10, -10}, {10, 10}},
s1 = {{10, -10}, {-10, 10}},
to_insert = {{0, 0}, {0, 3}};
// Above y = 0, the sweepLine is {s0, s1}, but at y=0 s1 and s0 swap because of their slopes.
std::vector<Segment> sweepLine = {s1, s0};
auto insertionPoint = std::lower_bound(sweepLine.begin(), sweepLine.end(), to_insert,
segment_less_than_upper_to_insert);
// The insertion point is between s1 and s0.
REPORTER_ASSERT(r, *insertionPoint == s0);
REPORTER_ASSERT(r, *(insertionPoint-1) == s1);
}
DEF_TEST(MFC_less_than_at_y, r) {
{
Segment s0 = {{0, 0}, {2, 2}},
s1 = {{0, 0}, {-2, 2}};
REPORTER_ASSERT(r, !s0_less_than_s1_at_y(s0, s1, 1));
REPORTER_ASSERT(r, s0_less_than_s1_at_y(s1, s0, 1));
}
{ // cross at 0 use slope to break tie.
Segment s0 = {{-2, -2}, {2, 2}},
s1 = {{2, -2}, {-2, 2}};
REPORTER_ASSERT(r, s0_less_than_s1_at_y(s0, s1, -1));
REPORTER_ASSERT(r, !s0_less_than_s1_at_y(s1, s0, -1));
REPORTER_ASSERT(r, !s0_less_than_s1_at_y(s0, s1, 0));
REPORTER_ASSERT(r, s0_less_than_s1_at_y(s1, s0, 0));
REPORTER_ASSERT(r, !s0_less_than_s1_at_y(s0, s1, 1));
REPORTER_ASSERT(r, s0_less_than_s1_at_y(s1, s0, 1));
}
{
Segment s0 = {{-2, -100}, {-2, 89}},
s1 = {{6, -70}, {-2, 72}};
REPORTER_ASSERT(r, !s0_less_than_s1_at_y(s0, s1, 72));
}
}
static Segment swap_ends(const Segment& s) {
return {s.lower(), s.upper()};
}
DEF_TEST(MFC_has_inner_intersection, r) {
auto checkIntersection = [&](Segment s0, Segment s1) {
REPORTER_ASSERT(r, s0_intersects_s1(s0, s1));
REPORTER_ASSERT(r, s0_intersects_s1(s1, s0));
REPORTER_ASSERT(r, s0_intersects_s1(swap_ends(s0), swap_ends(s1)));
REPORTER_ASSERT(r, s0_intersects_s1(swap_ends(s1), swap_ends(s0)));
};
{
Segment s0 = {{-1, 0}, {1, 0}},
s1 = {{ 0, 1}, {0, -1}};
checkIntersection(s0, s1);
}
{
Segment s0 = {{-1, 0}, {5, 0}},
s1 = {{ 0, 1}, {0, -1}};
checkIntersection(s0, s1);
}
{
Segment s0 = {{5, 0}, {-1, 0}},
s1 = {{ 0, -1}, {0, 1}};
checkIntersection(s0, s1);
}
{
Segment s0 = {{-5, -5}, {5, 5}},
s1 = {{-5, 5}, {5, -5}};
checkIntersection(s0, s1);
}
// Test very close segments (x0, 0) -> (x1, 1) & (x2, 0) -> (x3, 1)
for (int32_t x0 = -10; x0 <= 10; x0++) {
for (int32_t x1 = -10; x1 <= 10; x1++) {
for (int32_t x2 = -10; x2 <= 10; x2++) {
for (int32_t x3 = -10; x3 <= 10; x3++) {
Point P0 = {x0, 0},
P1 = {x1, 1},
P2 = {x2, 0},
P3 = {x3, 1};
bool actual = s0_intersects_s1({P0, P1}, {P2, P3});
bool expected = (x0 <= x2 && x3 <= x1) || (x2 <= x0 && x1 <= x3);
if (actual != expected) {
s0_intersects_s1({P0, P1}, {P2, P3});
REPORTER_ASSERT(r, actual == expected);
}
}
}
}
}
{
Segment s0 = {{0, -100}, {0, -50}},
s1 = {{100, -100}, {-100, 100}}; // goes through (0,0)
REPORTER_ASSERT(r, !s0_intersects_s1(s0, s1));
REPORTER_ASSERT(r, !s0_intersects_s1(s1, s0));
}
{
Segment s0 = {{0, 100}, {0, 50}},
s1 = {{100, -100}, {-100, 100}}; // goes through (0,0)
REPORTER_ASSERT(r, !s0_intersects_s1(s0, s1));
REPORTER_ASSERT(r, !s0_intersects_s1(s1, s0));
}
{
Segment s0 = {{0, -101}, {0, -50}},
s1 = {{100, -100}, {-100, 100}}; // goes through (0,0)
REPORTER_ASSERT(r, !s0_intersects_s1(s0, s1));
REPORTER_ASSERT(r, !s0_intersects_s1(s1, s0));
}
}
DEF_TEST(MFC_myers_brute_force_comparison, r) {
const std::vector<Segment> tests[] = {
{{{-58, -100}, {75, 105}}, {{149, -58}, {-156, 49}}, {{-34, -55}, {37, 49}}, {{-58, -100}, {75, 105}}, {{-147, -229}, {143, 220}}},
{{{-57, -138}, {56, 178}}, {{14, -146}, {-22, 132}}},
{{{-4, -23}, {-11, 11}}, {{6, -2}, {-11, 11}}, {{159, -244}, {-159, 233}}},
{{{-7, -22}, {10, 14}}, {{-7, -71}, {-7, 80}}, {{-7, -22}, {-4, 5}}},
{{{91, -22}, {-93, 24}}, {{31, -18}, {-25, 7}}, {{-25, 7}, {33, 12}}, {{-26, -24}, {18, 20}}},
{{{2, -21}, {-16, 7}}, {{-45, -28}, {51, 35}}, {{39, -48}, {-53, 44}}, {{-16, 7}, {26, 7}}},
{{{142, -82}, {-128, 64}}, {{208, -16}, {-217, -3}}, {{91, -22}, {-93, 24}}, {{31, -18}, {-25, 7}}, {{-25, 7}, {33, 12}}},
{{{-159, -101}, {167, 91}}, {{-96, -117}, {99, 117}}, {{-16, -21}, {12, 35}}, {{-48, -55}, {33, 63}}, {{-16, -21}, {26, 41}}},
{{{-51, -18}, {34, 1}}, {{189, -169}, {-171, 150}}, {{24, -8}, {-5, 7}}, {{24, -8}, {-26, 16}}, {{54, -22}, {-36, 20}}},
{{{-29, -3}, {15, -3}}, {{-28, -7}, {15, -3}}},
{{{20, -149}, {-32, 130}}, {{-29, -3}, {15, -3}}, {{-28, -7}, {15, -3}}},
{{{-32, -8}, {16, -8}}, {{-28, -104}, {23, 88}}, {{-17, -11}, {16, -8}}},
{{{-59, -9}, {48, 11}}, {{-59, -9}, {75, -9}}, {{173, -20}, {-178, 13}}},
{{{-11, 1}, {12, 1}}, {{-42, -35}, {54, 29}}},
{{{14, -11}, {-15, -2}}, {{-9, -2}, {13, -2}}}, // both end same s0 horz s1 < s0
{{{-38, 7}, {47, 7}}, {{-148, 6}, {166, 7}}}, // just sort of s0 along s1
{{{-26, -22}, {9, 21}}, {{-32, -28}, {13, 17}}}, // s1 endpoint on s0
{{{23, -2}, {-12, 3}}, {{22, -13}, {-5, 2}}}, // s1 endpoint on s0
{{{-2, -100}, {-2, 89}}, {{6, -70}, {-2, 72}}},
{{{8, -1}, {-8, 19}}, {{-130, -93}, {137, 85}}}, // Endpoint of s0 lies on s1
{{{-39, -111}, {25, 119}}, {{-26, -112}, {25, 119}}}, // Same end points
{{{-9, -5}, {16, -5}}, {{90, -134}, {-71, 144}}}, // Diag crossing horizontal
{{{-1, -1}, {1, 1}}, {{1, -1}, {-1, 1}}}, // Crossing
{{{-1, -1}, {-1, 1}}, {{1, -1}, {1, 1}}}, // Two vertical lines
{{{-1, -1}, {1, -1}}, {{-1, 1}, {1, 1}}}, // Two horizontal lines
{{{-2, 1}, {1, 1}}, {{-1, 1}, {2, 1}}}, // Overlapping horizontal lines
{{{0, -100}, {0, -50}}, {{100, -100}, {-100, 100}}},
{{{0, 100}, {0, 50}}, {{100, -100}, {-100, 100}}},
{{{0, -101}, {0, -50}}, {{100, -100}, {-100, 100}}},
{{{0, 0}, {0, 50}}, {{100, -100}, {-100, 100}}},
{{{-10, -10}, {10, 10}}, {{-10, -10}, {11, 11}}, {{10, -10}, {-10, 10}}},
{{{10, -10}, {-10, 10}}, {{10, -10}, {-11, 11}}, {{-10, -10}, {10, 10}}},
{{{-11, -11}, {10, 10}}, {{-10, -10}, {11, 11}}, {{10, -10}, {-10, 10}}},
};
for (const auto& segments : tests) {
std::vector<Segment> myersSegments = segments;
std::vector<Segment> bruteSegments = segments;
auto myersResponse = myers_find_crossings(myersSegments);
auto bruteResponse = brute_force_crossings(bruteSegments);
std::sort(myersResponse.begin(), myersResponse.end());
std::sort(bruteResponse.begin(), bruteResponse.end());
REPORTER_ASSERT(r, myersResponse.size() == bruteResponse.size());
#if 0
if (myersResponse.size() != bruteResponse.size()) {
SkASSERT(false);
}
#endif
// There should be no duplicate crossings.
REPORTER_ASSERT(r,
std::unique(myersResponse.begin(), myersResponse.end()) ==
myersResponse.end());
REPORTER_ASSERT(r,
std::unique(bruteResponse.begin(), bruteResponse.end()) ==
bruteResponse.end());
// Both should be equal.
REPORTER_ASSERT(r, std::equal(myersResponse.begin(), myersResponse.end(),
bruteResponse.begin(), bruteResponse.end()));
}
}
class StopWatch {
public:
void start() {
fStart = std::chrono::high_resolution_clock::now();
}
void stop() {
std::chrono::high_resolution_clock::time_point stop =
std::chrono::high_resolution_clock::now();
fAccumulatedTime += std::chrono::duration_cast<std::chrono::microseconds>(stop - fStart);
fCount += 1;
}
void print() {
int64_t average = fAccumulatedTime.count() / fCount;
SkDebugf("average time: %" PRId64 " µs\n", average);
}
private:
int fCount = 0;
std::chrono::high_resolution_clock::time_point fStart;
std::chrono::microseconds fAccumulatedTime = std::chrono::microseconds::zero();
};
constexpr bool kRunRandomTest = false;
DEF_TEST(MFC_myers_brute_force_random_comparison, r) {
if constexpr (!kRunRandomTest) {
return;
}
const int n = 200;
const int boxSize = 20000;
SkRandom random{n + boxSize};
std::vector<Segment> segments;
StopWatch myersStopWatch;
StopWatch bruteStopWatch;
for (int trials = 0; trials < 100'000; trials++) {
for (int i = 0; i < n; ++i) {
float x = random.nextRangeF(-boxSize, boxSize),
y = random.nextRangeF(-boxSize, boxSize);
float angle = random.nextF() * SK_FloatPI;
float distance = random.nextRangeF(10, 300);
Point p0 = {sk_float_round2int(x + cos(angle) * distance),
sk_float_round2int(y + sin(angle) * distance)};
Point p1 = {sk_float_round2int(x - cos(angle) * distance),
sk_float_round2int(y - sin(angle) * distance)};
segments.emplace_back(p0, p1);
}
std::vector<Segment> myersSegments = segments;
std::vector<Segment> bruteSegments = segments;
myersStopWatch.start();
auto myersResponse = myers_find_crossings(myersSegments);
myersStopWatch.stop();
bruteStopWatch.start();
auto bruteResponse = brute_force_crossings(bruteSegments);
bruteStopWatch.stop();
std::sort(myersResponse.begin(), myersResponse.end());
std::sort(bruteResponse.begin(), bruteResponse.end());
//SkDebugf("myers size: %zu brute size: %zu\n", myersResponse.size(), bruteResponse.size());
REPORTER_ASSERT(r, myersResponse.size() == bruteResponse.size());
if (myersResponse.size() != bruteResponse.size()) {
SkDebugf("myers size: %zu brute size: %zu\n", myersResponse.size(), bruteResponse.size());
SkDebugf("{");
for (const Segment& s : segments) {
const auto [u, l] = s;
SkDebugf("{{%d, %d}, {%d, %d}}, ", u.x, u.y, l.x, l.y);
}
SkDebugf("},\n");
}
// There should be no duplicate crossings.
REPORTER_ASSERT(r,
std::unique(myersResponse.begin(), myersResponse.end()) ==
myersResponse.end());
REPORTER_ASSERT(r,
std::unique(bruteResponse.begin(), bruteResponse.end()) ==
bruteResponse.end());
// Both should be equal.
REPORTER_ASSERT(r, std::equal(myersResponse.begin(), myersResponse.end(),
bruteResponse.begin(), bruteResponse.end()));
segments.clear();
}
SkDebugf("myers ");
myersStopWatch.print();
SkDebugf("brute ");
bruteStopWatch.print();
}