blob: c3f78d6d8191018ee3ec63934b92ecb431416cba [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathRef_DEFINED
#define SkPathRef_DEFINED
#include "include/core/SkArc.h"
#include "include/core/SkPathTypes.h" // IWYU pragma: keep
#include "include/core/SkPoint.h"
#include "include/core/SkRRect.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkTypes.h"
#include "include/private/SkIDChangeListener.h"
#include "include/private/base/SkDebug.h"
#include "include/private/base/SkSpan_impl.h"
#include "include/private/base/SkTArray.h"
#include "include/private/base/SkTo.h"
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <tuple>
class SkMatrix;
/*
* These "info" structs are used to return identifying information, when a path
* is queried if it is a special "shape". (e.g. isOval(), isRRect())
*/
struct SkPathRectInfo {
SkRect fRect;
SkPathDirection fDirection;
uint8_t fStartIndex;
};
struct SkPathOvalInfo {
SkRect fBounds;
SkPathDirection fDirection;
uint8_t fStartIndex;
};
struct SkPathRRectInfo {
SkRRect fRRect;
SkPathDirection fDirection;
uint8_t fStartIndex;
};
/*
* Paths can be tagged with a "Type" -- the IsAType
* This signals that it was built from a high-level shape: oval, rrect, arc, wedge.
* We try to retain this tag, but still build the explicitly line/quad/conic/cubic
* structure need to represent that shape. Thus a user of path can always just look
* at the points and verbs, and draw it correctly.
*
* The GPU backend sometimes will sniff the path for this tag/type, and may have a
* more optimal way to draw the shape if they know its "really" an oval or whatever.
*
* Path's can also identify as a "rect" -- but we don't store any special tag for this.
*
* Here are the special "types" we have APIs for (e.g. isRRect()) and what we store:
*
* kGeneral : no identifying shape, no extra data
* (Rect) : no tag, but isRect() will examing the points/verbs, and try to
* deduce that it represents a rect.
* kOval : the path bounds is also the oval's bounds -- we store the direction
* and start_index (important for dashing). see SkPathMakers.h
* kRRect : same as kOval for implicit bounds, direction and start_index.
* Note: we don't store its radii -- we deduce those when isRRect() is
* called, by examining the points/verbs.
*/
enum class SkPathIsAType : uint8_t {
kGeneral,
kOval,
kRRect,
};
struct SkPathIsAData {
uint8_t fStartIndex;
SkPathDirection fDirection;
};
/**
* Holds the path verbs and points. It is versioned by a generation ID. None of its public methods
* modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an
* SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs
* copy-on-write if the SkPathRef is shared by multiple SkPaths. The caller passes the Editor's
* constructor a pointer to a sk_sp<SkPathRef>, which may be updated to point to a new SkPathRef
* after the editor's constructor returns.
*
* The points and verbs are stored in a single allocation. The points are at the begining of the
* allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points
* and verbs both grow into the middle of the allocation until the meet. To access verb i in the
* verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first
* logical verb or the last verb in memory).
*/
class SK_API SkPathRef final : public SkNVRefCnt<SkPathRef> {
public:
// See https://bugs.chromium.org/p/skia/issues/detail?id=13817 for how these sizes were
// determined.
using PointsArray = skia_private::STArray<4, SkPoint>;
using VerbsArray = skia_private::STArray<4, SkPathVerb>;
using ConicWeightsArray = skia_private::STArray<2, float>;
SkPathRef(SkSpan<const SkPoint> points, SkSpan<const SkPathVerb> verbs,
SkSpan<const SkScalar> weights, unsigned segmentMask)
: fPoints(points)
, fVerbs(verbs)
, fConicWeights(weights)
{
fBoundsIsDirty = true; // this also invalidates fIsFinite
fGenerationID = 0; // recompute
fSegmentMask = segmentMask;
fType = SkPathIsAType::kGeneral;
SkDEBUGCODE(fEditorsAttached.store(0);)
this->computeBounds(); // do this now, before we worry about multiple owners/threads
SkDEBUGCODE(this->validate();)
}
class Editor {
public:
Editor(sk_sp<SkPathRef>* pathRef,
int incReserveVerbs = 0,
int incReservePoints = 0,
int incReserveConics = 0);
~Editor() { SkDEBUGCODE(fPathRef->fEditorsAttached--;) }
/**
* Returns the array of points.
*/
SkPoint* writablePoints() { return fPathRef->getWritablePoints(); }
const SkPoint* points() const { return fPathRef->points(); }
/**
* Gets the ith point. Shortcut for this->points() + i
*/
SkPoint* atPoint(int i) { return fPathRef->getWritablePoints() + i; }
const SkPoint* atPoint(int i) const { return &fPathRef->fPoints[i]; }
/**
* Adds the verb and allocates space for the number of points indicated by the verb. The
* return value is a pointer to where the points for the verb should be written.
* 'weight' is only used if 'verb' is kConic_Verb
*/
SkPoint* growForVerb(SkPathVerb verb, SkScalar weight = 0) {
SkDEBUGCODE(fPathRef->validate();)
return fPathRef->growForVerb(verb, weight);
}
/**
* Allocates space for multiple instances of a particular verb and the
* requisite points & weights.
* The return pointer points at the first new point (indexed normally [<i>]).
* If 'verb' is kConic_Verb, 'weights' will return a pointer to the
* space for the conic weights (indexed normally).
*/
SkPoint* growForRepeatedVerb(SkPathVerb verb,
int numVbs,
SkScalar** weights = nullptr) {
return fPathRef->growForRepeatedVerb(verb, numVbs, weights);
}
/**
* Concatenates all verbs from 'path' onto the pathRef's verbs array. Increases the point
* count by the number of points in 'path', and the conic weight count by the number of
* conics in 'path'.
*
* Returns pointers to the uninitialized points and conic weights data.
*/
std::tuple<SkPoint*, SkScalar*> growForVerbsInPath(const SkPathRef& path) {
return fPathRef->growForVerbsInPath(path);
}
/**
* Resets the path ref to a new verb and point count. The new verbs and points are
* uninitialized.
*/
void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) {
fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount);
}
/**
* Gets the path ref that is wrapped in the Editor.
*/
SkPathRef* pathRef() { return fPathRef; }
void setIsOval(SkPathDirection dir, unsigned start) {
fPathRef->setIsOval(dir, start);
}
void setIsRRect(SkPathDirection dir, unsigned start) {
fPathRef->setIsRRect(dir, start);
}
void setBounds(const SkRect& rect) { fPathRef->setBounds(rect); }
private:
SkPathRef* fPathRef;
};
public:
/**
* Gets a path ref with no verbs or points.
*/
static SkPathRef* CreateEmpty();
/**
* Returns true if all of the points in this path are finite, meaning there
* are no infinities and no NaNs.
*/
bool isFinite() const {
if (fBoundsIsDirty) {
this->computeBounds();
}
return SkToBool(fIsFinite);
}
/**
* Returns a mask, where each bit corresponding to a SegmentMask is
* set if the path contains 1 or more segments of that type.
* Returns 0 for an empty path (no segments).
*/
uint32_t getSegmentMasks() const { return fSegmentMask; }
/** Returns Info struct if the path is an oval, else return {}.
* Tracking whether a path is an oval is considered an
* optimization for performance and so some paths that are in
* fact ovals can report {}.
*/
std::optional<SkPathOvalInfo> isOval() const {
if (fType == SkPathIsAType::kOval) {
return {{
this->getBounds(),
fIsA.fDirection,
fIsA.fStartIndex,
}};
}
return {};
}
std::optional<SkPathRRectInfo> isRRect() const;
bool hasComputedBounds() const {
return !fBoundsIsDirty;
}
/** Returns the bounds of the path's points. If the path contains 0 or 1
points, the bounds is set to (0,0,0,0), and isEmpty() will return true.
Note: this bounds may be larger than the actual shape, since curves
do not extend as far as their control points.
*/
const SkRect& getBounds() const {
if (fBoundsIsDirty) {
this->computeBounds();
}
return fBounds;
}
SkRRect getRRect() const;
/**
* Transforms a path ref by a matrix, allocating a new one only if necessary.
*/
static void CreateTransformedCopy(sk_sp<SkPathRef>* dst,
const SkPathRef& src,
const SkMatrix& matrix);
// static SkPathRef* CreateFromBuffer(SkRBuffer* buffer);
/**
* Rollsback a path ref to zero verbs and points with the assumption that the path ref will be
* repopulated with approximately the same number of verbs and points. A new path ref is created
* only if necessary.
*/
static void Rewind(sk_sp<SkPathRef>* pathRef);
~SkPathRef();
int countPoints() const { return fPoints.size(); }
int countVerbs() const { return fVerbs.size(); }
int countWeights() const { return fConicWeights.size(); }
size_t approximateBytesUsed() const;
/**
* Returns a pointer one beyond the first logical verb (last verb in memory order).
*/
const SkPathVerb* verbsBegin() const { return fVerbs.begin(); }
/**
* Returns a const pointer to the first verb in memory (which is the last logical verb).
*/
const SkPathVerb* verbsEnd() const { return fVerbs.end(); }
SkSpan<const SkPathVerb> verbs() const { return fVerbs; }
/**
* Returns a const pointer to the first point.
*/
const SkPoint* points() const { return fPoints.begin(); }
/**
* Shortcut for this->points() + this->countPoints()
*/
const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); }
SkSpan<const SkPoint> pointSpan() const { return fPoints; }
SkSpan<const float> conicSpan() const { return fConicWeights; }
const SkScalar* conicWeights() const { return fConicWeights.begin(); }
const SkScalar* conicWeightsEnd() const { return fConicWeights.end(); }
/**
* Convenience methods for getting to a verb or point by index.
*/
SkPathVerb atVerb(int index) const { return fVerbs[index]; }
SkPoint atPoint(int index) const { return fPoints[index]; }
bool operator== (const SkPathRef& ref) const;
void interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const;
/**
* Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the
* same ID then they have the same verbs and points. However, two path refs may have the same
* contents but different genIDs.
* skbug.com/40032862 for background on why fillType is necessary (for now).
*/
uint32_t genID(uint8_t fillType) const;
void addGenIDChangeListener(sk_sp<SkIDChangeListener>); // Threadsafe.
int genIDChangeListenerCount(); // Threadsafe
bool dataMatchesVerbs() const;
bool isValid() const;
SkDEBUGCODE(void validate() const { SkASSERT(this->isValid()); } )
/**
* Resets this SkPathRef to a clean state.
*/
void reset();
bool isInitialEmptyPathRef() const {
return fGenerationID == kEmptyGenID;
}
private:
enum SerializationOffsets {
kLegacyRRectOrOvalStartIdx_SerializationShift = 28, // requires 3 bits, ignored.
kLegacyRRectOrOvalIsCCW_SerializationShift = 27, // requires 1 bit, ignored.
kLegacyIsRRect_SerializationShift = 26, // requires 1 bit, ignored.
kIsFinite_SerializationShift = 25, // requires 1 bit
kLegacyIsOval_SerializationShift = 24, // requires 1 bit, ignored.
kSegmentMask_SerializationShift = 0 // requires 4 bits (deprecated)
};
SkPathRef(int numVerbs = 0, int numPoints = 0, int numConics = 0) {
fBoundsIsDirty = true; // this also invalidates fIsFinite
fGenerationID = kEmptyGenID;
fSegmentMask = 0;
fType = SkPathIsAType::kGeneral;
if (numPoints > 0) {
fPoints.reserve_exact(numPoints);
}
if (numVerbs > 0) {
fVerbs.reserve_exact(numVerbs);
}
if (numConics > 0) {
fConicWeights.reserve_exact(numConics);
}
SkDEBUGCODE(fEditorsAttached.store(0);)
SkDEBUGCODE(this->validate();)
}
void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints, int additionalReserveConics);
// Return true if the computed bounds are finite.
static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) {
return bounds->setBoundsCheck({ref.points(), ref.countPoints()});
}
// called, if dirty, by getBounds()
void computeBounds() const {
SkDEBUGCODE(this->validate();)
// TODO: remove fBoundsIsDirty and fIsFinite,
// using an inverted rect instead of fBoundsIsDirty and always recalculating fIsFinite.
SkASSERT(fBoundsIsDirty);
fIsFinite = ComputePtBounds(&fBounds, *this);
fBoundsIsDirty = false;
}
void setBounds(const SkRect& rect) {
SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom);
fBounds = rect;
fBoundsIsDirty = false;
fIsFinite = fBounds.isFinite();
}
/** Makes additional room but does not change the counts or change the genID */
void incReserve(int additionalVerbs, int additionalPoints, int additionalConics) {
SkDEBUGCODE(this->validate();)
// Use reserve() so that if there is not enough space, the array will grow with some
// additional space. This ensures repeated calls to grow won't always allocate.
if (additionalPoints > 0) {
fPoints.reserve(fPoints.size() + additionalPoints);
}
if (additionalVerbs > 0) {
fVerbs.reserve(fVerbs.size() + additionalVerbs);
}
if (additionalConics > 0) {
fConicWeights.reserve(fConicWeights.size() + additionalConics);
}
SkDEBUGCODE(this->validate();)
}
/**
* Resets all state except that of the verbs, points, and conic-weights.
* Intended to be called from other functions that reset state.
*/
void commonReset() {
SkDEBUGCODE(this->validate();)
this->callGenIDChangeListeners();
fBoundsIsDirty = true; // this also invalidates fIsFinite
fGenerationID = 0;
fSegmentMask = 0;
fType = SkPathIsAType::kGeneral;
}
/** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also
* allocates space for reserveVerb additional verbs and reservePoints additional points.*/
void resetToSize(int verbCount, int pointCount, int conicCount,
int reserveVerbs = 0, int reservePoints = 0,
int reserveConics = 0) {
this->commonReset();
// Use reserve_exact() so the arrays are sized to exactly fit the data.
fPoints.reserve_exact(pointCount + reservePoints);
fPoints.resize_back(pointCount);
fVerbs.reserve_exact(verbCount + reserveVerbs);
fVerbs.resize_back(verbCount);
fConicWeights.reserve_exact(conicCount + reserveConics);
fConicWeights.resize_back(conicCount);
SkDEBUGCODE(this->validate();)
}
/**
* Increases the verb count by numVbs and point count by the required amount.
* The new points are uninitialized. All the new verbs are set to the specified
* verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the
* uninitialized conic weights.
*/
SkPoint* growForRepeatedVerb(SkPathVerb, int numVbs, SkScalar** weights);
/**
* Increases the verb count 1, records the new verb, and creates room for the requisite number
* of additional points. A pointer to the first point is returned. Any new points are
* uninitialized.
*/
SkPoint* growForVerb(SkPathVerb, SkScalar weight);
/**
* Concatenates all verbs from 'path' onto our own verbs array. Increases the point count by the
* number of points in 'path', and the conic weight count by the number of conics in 'path'.
*
* Returns pointers to the uninitialized points and conic weights data.
*/
std::tuple<SkPoint*, SkScalar*> growForVerbsInPath(const SkPathRef& path);
/**
* Private, non-const-ptr version of the public function verbsMemBegin().
*/
uint8_t* verbsBeginWritable() { return (uint8_t*)fVerbs.begin(); }
/**
* Called the first time someone calls CreateEmpty to actually create the singleton.
*/
friend SkPathRef* sk_create_empty_pathref();
void setIsOval(SkPathDirection dir, unsigned start) {
fType = SkPathIsAType::kOval;
fIsA.fDirection = dir;
fIsA.fStartIndex = SkToU8(start);
}
void setIsRRect(SkPathDirection dir, unsigned start) {
fType = SkPathIsAType::kRRect;
fIsA.fDirection = dir;
fIsA.fStartIndex = SkToU8(start);
}
// called only by the editor. Note that this is not a const function.
SkPoint* getWritablePoints() {
SkDEBUGCODE(this->validate();)
fType = SkPathIsAType::kGeneral;
return fPoints.begin();
}
const SkPoint* getPoints() const {
SkDEBUGCODE(this->validate();)
return fPoints.begin();
}
void callGenIDChangeListeners();
PointsArray fPoints;
VerbsArray fVerbs;
ConicWeightsArray fConicWeights;
mutable SkRect fBounds;
enum {
kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs.
};
mutable uint32_t fGenerationID;
SkIDChangeListener::List fGenIDChangeListeners;
SkDEBUGCODE(std::atomic<int> fEditorsAttached;) // assert only one editor in use at any time.
// based on fType
SkPathIsAData fIsA {};
SkPathIsAType fType;
uint8_t fSegmentMask;
mutable bool fBoundsIsDirty;
mutable bool fIsFinite; // only meaningful if bounds are valid
friend class PathRefTest_Private;
friend class ForceIsRRect_Private; // unit test isRRect
friend class SkPath;
friend class SkPathBuilder;
friend class SkPathPriv;
};
#endif