|  | /* | 
|  | * Copyright 2020 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "include/core/SkPoint.h" | 
|  | #include "include/core/SkScalar.h" | 
|  | #include "include/core/SkTypes.h" | 
|  | #include "src/core/SkGeometry.h" | 
|  | #include "src/gpu/tessellate/Tessellation.h" | 
|  | #include "tests/Test.h" | 
|  |  | 
|  | #include <cmath> | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  |  | 
|  | namespace skgpu::tess { | 
|  |  | 
|  | static bool is_linear(SkPoint p0, SkPoint p1, SkPoint p2) { | 
|  | return SkScalarNearlyZero((p0 - p1).cross(p2 - p1)); | 
|  | } | 
|  |  | 
|  | static bool is_linear(const SkPoint p[4]) { | 
|  | return is_linear(p[0],p[1],p[2]) && is_linear(p[0],p[2],p[3]) && is_linear(p[1],p[2],p[3]); | 
|  | } | 
|  |  | 
|  | static void check_cubic_convex_180(skiatest::Reporter* r, const SkPoint p[4]) { | 
|  | bool areCusps = false; | 
|  | float inflectT[2], convex180T[2]; | 
|  | if (int inflectN = SkFindCubicInflections(p, inflectT)) { | 
|  | // The curve has inflections. FindCubicConvex180Chops should return the inflection | 
|  | // points. | 
|  | int convex180N = FindCubicConvex180Chops(p, convex180T, &areCusps); | 
|  | REPORTER_ASSERT(r, inflectN == convex180N); | 
|  | if (!areCusps) { | 
|  | REPORTER_ASSERT(r, inflectN == 1 || | 
|  | fabsf(inflectT[0] - inflectT[1]) >= SK_ScalarNearlyZero); | 
|  | } | 
|  | for (int i = 0; i < convex180N; ++i) { | 
|  | REPORTER_ASSERT(r, SkScalarNearlyEqual(inflectT[i], convex180T[i])); | 
|  | } | 
|  | } else { | 
|  | float totalRotation = SkMeasureNonInflectCubicRotation(p); | 
|  | int convex180N = FindCubicConvex180Chops(p, convex180T, &areCusps); | 
|  | SkPoint chops[10]; | 
|  | SkChopCubicAt(p, chops, convex180T, convex180N); | 
|  | float radsSum = 0; | 
|  | for (int i = 0; i <= convex180N; ++i) { | 
|  | float rads = SkMeasureNonInflectCubicRotation(chops + i*3); | 
|  | SkASSERT(rads < SK_ScalarPI + SK_ScalarNearlyZero); | 
|  | radsSum += rads; | 
|  | } | 
|  | if (totalRotation < SK_ScalarPI - SK_ScalarNearlyZero) { | 
|  | // The curve should never chop if rotation is <180 degrees. | 
|  | REPORTER_ASSERT(r, convex180N == 0); | 
|  | } else if (!is_linear(p)) { | 
|  | REPORTER_ASSERT(r, SkScalarNearlyEqual(radsSum, totalRotation)); | 
|  | if (totalRotation > SK_ScalarPI + SK_ScalarNearlyZero) { | 
|  | REPORTER_ASSERT(r, convex180N == 1); | 
|  | // This works because cusps take the "inflection" path above, so we don't get | 
|  | // non-lilnear curves that lose rotation when chopped. | 
|  | REPORTER_ASSERT(r, SkScalarNearlyEqual( | 
|  | SkMeasureNonInflectCubicRotation(chops), SK_ScalarPI)); | 
|  | REPORTER_ASSERT(r, SkScalarNearlyEqual( | 
|  | SkMeasureNonInflectCubicRotation(chops + 3), totalRotation - SK_ScalarPI)); | 
|  | } | 
|  | REPORTER_ASSERT(r, !areCusps); | 
|  | } else { | 
|  | REPORTER_ASSERT(r, areCusps); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DEF_TEST(FindCubicConvex180Chops, r) { | 
|  | // Test all combinations of corners from the square [0,0,1,1]. This covers every cubic type as | 
|  | // well as a wide variety of special cases for cusps, lines, loops, and inflections. | 
|  | for (int i = 0; i < (1 << 8); ++i) { | 
|  | SkPoint p[4] = {SkPoint::Make((i>>0)&1, (i>>1)&1), | 
|  | SkPoint::Make((i>>2)&1, (i>>3)&1), | 
|  | SkPoint::Make((i>>4)&1, (i>>5)&1), | 
|  | SkPoint::Make((i>>6)&1, (i>>7)&1)}; | 
|  | check_cubic_convex_180(r, p); | 
|  | } | 
|  |  | 
|  | { | 
|  | // This cubic has a convex-180 chop at T=1-"epsilon" | 
|  | static const uint32_t hexPts[] = {0x3ee0ac74, 0x3f1e061a, 0x3e0fc408, 0x3f457230, | 
|  | 0x3f42ac7c, 0x3f70d76c, 0x3f4e6520, 0x3f6acafa}; | 
|  | SkPoint p[4]; | 
|  | memcpy(p, hexPts, sizeof(p)); | 
|  | check_cubic_convex_180(r, p); | 
|  | } | 
|  |  | 
|  | // Now test an exact quadratic. | 
|  | SkPoint quad[4] = {{0,0}, {2,2}, {4,2}, {6,0}}; | 
|  | float T[2]; | 
|  | bool areCusps; | 
|  | REPORTER_ASSERT(r, FindCubicConvex180Chops(quad, T, &areCusps) == 0); | 
|  |  | 
|  | // Now test that cusps and near-cusps get flagged as cusps. | 
|  | SkPoint cusp[4] = {{0,0}, {1,1}, {1,0}, {0,1}}; | 
|  | REPORTER_ASSERT(r, FindCubicConvex180Chops(cusp, T, &areCusps) == 1); | 
|  | REPORTER_ASSERT(r, areCusps == true); | 
|  |  | 
|  | // Find the height of the right side of "cusp" at which the distance between its inflection | 
|  | // points is kEpsilon (in parametric space). | 
|  | constexpr static double kEpsilon = 1.0 / (1 << 11); | 
|  | constexpr static double kEpsilonSquared = kEpsilon * kEpsilon; | 
|  | double h = (1 - kEpsilonSquared) / (3 * kEpsilonSquared + 1); | 
|  | double dy = (1 - h) / 2; | 
|  | cusp[1].fY = (float)(1 - dy); | 
|  | cusp[2].fY = (float)(0 + dy); | 
|  | REPORTER_ASSERT(r, SkFindCubicInflections(cusp, T) == 2); | 
|  | REPORTER_ASSERT(r, SkScalarNearlyEqual(T[1] - T[0], (float)kEpsilon, (float)kEpsilonSquared)); | 
|  |  | 
|  | // Ensure two inflection points barely more than kEpsilon apart do not get flagged as cusps. | 
|  | cusp[1].fY = (float)(1 - 1.1 * dy); | 
|  | cusp[2].fY = (float)(0 + 1.1 * dy); | 
|  | REPORTER_ASSERT(r, FindCubicConvex180Chops(cusp, T, &areCusps) == 2); | 
|  | REPORTER_ASSERT(r, areCusps == false); | 
|  |  | 
|  | // Ensure two inflection points barely less than kEpsilon apart do get flagged as cusps. | 
|  | cusp[1].fY = (float)(1 - .9 * dy); | 
|  | cusp[2].fY = (float)(0 + .9 * dy); | 
|  | REPORTER_ASSERT(r, FindCubicConvex180Chops(cusp, T, &areCusps) == 1); | 
|  | REPORTER_ASSERT(r, areCusps == true); | 
|  | } | 
|  |  | 
|  | }  // namespace skgpu::tess |