blob: c3c25da947669ae27bacc3c3d5c1fc2ff4bd3e9c [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkBlendMode.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkMaskFilter.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkRRect.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkSamplingOptions.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSize.h"
#include "include/core/SkTileMode.h"
#include "include/gpu/GpuTypes.h"
#include "include/gpu/ganesh/GrContextOptions.h"
#include "include/gpu/ganesh/GrRecordingContext.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkPoint_impl.h"
#include "include/private/base/SkTPin.h"
#include "include/private/base/SkTemplates.h"
#include "include/private/gpu/ganesh/GrImageContext.h"
#include "include/private/gpu/ganesh/GrTypesPriv.h"
#include "src/base/SkTLazy.h"
#include "src/core/SkColorData.h"
#include "src/core/SkRRectPriv.h"
#include "src/core/SkSpecialImage.h"
#include "src/gpu/BlurUtils.h"
#include "src/gpu/Swizzle.h"
#include "src/gpu/TiledTextureUtils.h"
#include "src/gpu/ganesh/Device.h"
#include "src/gpu/ganesh/GrBlurUtils.h"
#include "src/gpu/ganesh/GrCaps.h"
#include "src/gpu/ganesh/GrColorInfo.h"
#include "src/gpu/ganesh/GrColorSpaceXform.h"
#include "src/gpu/ganesh/GrFPArgs.h"
#include "src/gpu/ganesh/GrFragmentProcessor.h"
#include "src/gpu/ganesh/GrFragmentProcessors.h"
#include "src/gpu/ganesh/GrOpsTypes.h"
#include "src/gpu/ganesh/GrPaint.h"
#include "src/gpu/ganesh/GrRecordingContextPriv.h"
#include "src/gpu/ganesh/GrSamplerState.h"
#include "src/gpu/ganesh/GrSurfaceProxy.h"
#include "src/gpu/ganesh/GrSurfaceProxyPriv.h"
#include "src/gpu/ganesh/GrSurfaceProxyView.h"
#include "src/gpu/ganesh/GrTextureProxy.h"
#include "src/gpu/ganesh/SkGr.h"
#include "src/gpu/ganesh/SurfaceDrawContext.h"
#include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h"
#include "src/gpu/ganesh/effects/GrTextureEffect.h"
#include "src/gpu/ganesh/geometry/GrRect.h"
#include "src/gpu/ganesh/geometry/GrStyledShape.h"
#include "src/gpu/ganesh/image/GrImageUtils.h"
#include "src/gpu/ganesh/image/SkImage_Ganesh.h"
#include "src/gpu/ganesh/image/SkSpecialImage_Ganesh.h"
#include "src/image/SkImage_Base.h"
#include "src/shaders/SkShaderBase.h"
#include <memory>
#include <tuple>
#include <utility>
class GrClip;
using namespace skia_private;
namespace {
inline bool use_shader(bool textureIsAlphaOnly, const SkPaint& paint) {
return textureIsAlphaOnly && paint.getShader();
}
//////////////////////////////////////////////////////////////////////////////
// Helper functions for dropping src rect subset with GrSamplerState::Filter::kLinear.
static const SkScalar kColorBleedTolerance = 0.001f;
bool has_aligned_samples(const SkRect& srcRect, const SkRect& transformedRect) {
// detect pixel disalignment
if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - transformedRect.left()) < kColorBleedTolerance &&
SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - transformedRect.top()) < kColorBleedTolerance &&
SkScalarAbs(transformedRect.width() - srcRect.width()) < kColorBleedTolerance &&
SkScalarAbs(transformedRect.height() - srcRect.height()) < kColorBleedTolerance) {
return true;
}
return false;
}
bool may_color_bleed(const SkRect& srcRect,
const SkRect& transformedRect,
const SkMatrix& m,
int numSamples) {
// Only gets called if has_aligned_samples returned false.
// So we can assume that sampling is axis aligned but not texel aligned.
SkASSERT(!has_aligned_samples(srcRect, transformedRect));
SkRect innerSrcRect(srcRect), innerTransformedRect, outerTransformedRect(transformedRect);
if (numSamples > 1) {
innerSrcRect.inset(SK_Scalar1, SK_Scalar1);
} else {
innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf);
}
m.mapRect(&innerTransformedRect, innerSrcRect);
// The gap between outerTransformedRect and innerTransformedRect
// represents the projection of the source border area, which is
// problematic for color bleeding. We must check whether any
// destination pixels sample the border area.
outerTransformedRect.inset(kColorBleedTolerance, kColorBleedTolerance);
innerTransformedRect.outset(kColorBleedTolerance, kColorBleedTolerance);
SkIRect outer, inner;
outerTransformedRect.round(&outer);
innerTransformedRect.round(&inner);
// If the inner and outer rects round to the same result, it means the
// border does not overlap any pixel centers. Yay!
return inner != outer;
}
bool can_ignore_linear_filtering_subset(const SkRect& srcSubset,
const SkMatrix& srcRectToDeviceSpace,
int numSamples) {
if (srcRectToDeviceSpace.rectStaysRect()) {
// sampling is axis-aligned
SkRect transformedRect;
srcRectToDeviceSpace.mapRect(&transformedRect, srcSubset);
if (has_aligned_samples(srcSubset, transformedRect) ||
!may_color_bleed(srcSubset, transformedRect, srcRectToDeviceSpace, numSamples)) {
return true;
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
// Helper functions for drawing an image with ganesh::SurfaceDrawContext
/**
* Checks whether the paint is compatible with using SurfaceDrawContext::drawTexture. It is more
* efficient than the SkImage general case.
*/
bool can_use_draw_texture(const SkPaint& paint, const SkSamplingOptions& sampling) {
return (!paint.getColorFilter() && !paint.getShader() && !paint.getMaskFilter() &&
!paint.getImageFilter() && !paint.getBlender() && !sampling.isAniso() &&
!sampling.useCubic && sampling.mipmap == SkMipmapMode::kNone);
}
SkPMColor4f texture_color(SkColor4f paintColor, float entryAlpha, GrColorType srcColorType,
const GrColorInfo& dstColorInfo) {
paintColor.fA *= entryAlpha;
if (GrColorTypeIsAlphaOnly(srcColorType)) {
return SkColor4fPrepForDst(paintColor, dstColorInfo).premul();
} else {
float paintAlpha = SkTPin(paintColor.fA, 0.f, 1.f);
return { paintAlpha, paintAlpha, paintAlpha, paintAlpha };
}
}
// Assumes srcRect and dstRect have already been optimized to fit the proxy
void draw_texture(skgpu::ganesh::SurfaceDrawContext* sdc,
const GrClip* clip,
const SkMatrix& ctm,
const SkPaint& paint,
GrSamplerState::Filter filter,
const SkRect& srcRect,
const SkRect& dstRect,
const SkPoint dstClip[4],
GrQuadAAFlags aaFlags,
SkCanvas::SrcRectConstraint constraint,
GrSurfaceProxyView view,
const GrColorInfo& srcColorInfo) {
if (GrColorTypeIsAlphaOnly(srcColorInfo.colorType())) {
view.concatSwizzle(skgpu::Swizzle("aaaa"));
}
const GrColorInfo& dstInfo = sdc->colorInfo();
auto textureXform = GrColorSpaceXform::Make(srcColorInfo, sdc->colorInfo());
GrSurfaceProxy* proxy = view.proxy();
// Must specify the strict constraint when the proxy is not functionally exact and the src
// rect would access pixels outside the proxy's content area without the constraint.
if (constraint != SkCanvas::kStrict_SrcRectConstraint && !proxy->isFunctionallyExact()) {
// Conservative estimate of how much a coord could be outset from src rect:
// 1/2 pixel for AA and 1/2 pixel for linear filtering
float buffer = 0.5f * (aaFlags != GrQuadAAFlags::kNone) +
GrTextureEffect::kLinearInset * (filter == GrSamplerState::Filter::kLinear);
SkRect safeBounds = proxy->getBoundsRect();
safeBounds.inset(buffer, buffer);
if (!safeBounds.contains(srcRect)) {
constraint = SkCanvas::kStrict_SrcRectConstraint;
}
}
SkPMColor4f color = texture_color(paint.getColor4f(), 1.f, srcColorInfo.colorType(), dstInfo);
if (dstClip) {
// Get source coords corresponding to dstClip
SkPoint srcQuad[4];
GrMapRectPoints(dstRect, srcRect, dstClip, srcQuad, 4);
sdc->drawTextureQuad(clip,
std::move(view),
srcColorInfo.colorType(),
srcColorInfo.alphaType(),
filter,
GrSamplerState::MipmapMode::kNone,
paint.getBlendMode_or(SkBlendMode::kSrcOver),
color,
srcQuad,
dstClip,
aaFlags,
constraint == SkCanvas::kStrict_SrcRectConstraint ? &srcRect : nullptr,
ctm,
std::move(textureXform));
} else {
sdc->drawTexture(clip,
std::move(view),
srcColorInfo.alphaType(),
filter,
GrSamplerState::MipmapMode::kNone,
paint.getBlendMode_or(SkBlendMode::kSrcOver),
color,
srcRect,
dstRect,
aaFlags,
constraint,
ctm,
std::move(textureXform));
}
}
SkFilterMode downgrade_to_filter(const SkSamplingOptions& sampling) {
SkFilterMode filter = sampling.filter;
if (sampling.isAniso() || sampling.useCubic || sampling.mipmap != SkMipmapMode::kNone) {
// if we were "fancier" than just bilerp, only do bilerp
filter = SkFilterMode::kLinear;
}
return filter;
}
} // anonymous namespace
//////////////////////////////////////////////////////////////////////////////
namespace skgpu::ganesh {
void Device::drawEdgeAAImage(const SkImage* image,
const SkRect& src,
const SkRect& dst,
const SkPoint dstClip[4],
SkCanvas::QuadAAFlags canvasAAFlags,
const SkMatrix& localToDevice,
const SkSamplingOptions& sampling,
const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint,
const SkMatrix& srcToDst,
SkTileMode tm) {
GrRecordingContext* rContext = fContext.get();
SurfaceDrawContext* sdc = fSurfaceDrawContext.get();
const GrClip* clip = this->clip();
GrQuadAAFlags aaFlags = SkToGrQuadAAFlags(canvasAAFlags);
auto ib = as_IB(image);
if (tm == SkTileMode::kClamp && !ib->isYUVA() && can_use_draw_texture(paint, sampling)) {
// We've done enough checks above to allow us to pass ClampNearest() and not check for
// scaling adjustments.
auto [view, ct] = skgpu::ganesh::AsView(rContext, image, skgpu::Mipmapped::kNo);
if (!view) {
return;
}
GrColorInfo info(image->imageInfo().colorInfo());
info = info.makeColorType(ct);
draw_texture(sdc,
clip,
localToDevice,
paint,
sampling.filter,
src,
dst,
dstClip,
aaFlags,
constraint,
std::move(view),
info);
return;
}
const SkMaskFilter* mf = paint.getMaskFilter();
// The shader expects proper local coords, so we can't replace local coords with texture coords
// if the shader will be used. If we have a mask filter we will change the underlying geometry
// that is rendered.
bool canUseTextureCoordsAsLocalCoords = !use_shader(image->isAlphaOnly(), paint) && !mf;
// Specifying the texture coords as local coordinates is an attempt to enable more GrDrawOp
// combining by not baking anything about the srcRect, dstRect, or ctm, into the texture
// FP. In the future this should be an opaque optimization enabled by the combination of
// GrDrawOp/GP and FP.
if (GrFragmentProcessors::IsSupported(mf)) {
mf = nullptr;
}
bool restrictToSubset = SkCanvas::kStrict_SrcRectConstraint == constraint;
// If we have to outset for AA then we will generate texture coords outside the src rect. The
// same happens for any mask filter that extends the bounds rendered in the dst.
// This is conservative as a mask filter does not have to expand the bounds rendered.
bool coordsAllInsideSrcRect = aaFlags == GrQuadAAFlags::kNone && !mf;
// Check for optimization to drop the src rect constraint when using linear filtering.
// TODO: Just rely on image to handle this.
if (sampling.isAniso() && !sampling.useCubic && sampling.filter == SkFilterMode::kLinear &&
restrictToSubset && sampling.mipmap == SkMipmapMode::kNone && coordsAllInsideSrcRect &&
!ib->isYUVA()) {
SkMatrix combinedMatrix;
combinedMatrix.setConcat(localToDevice, srcToDst);
if (can_ignore_linear_filtering_subset(src, combinedMatrix, sdc->numSamples())) {
restrictToSubset = false;
}
}
SkMatrix textureMatrix;
if (canUseTextureCoordsAsLocalCoords) {
textureMatrix = SkMatrix::I();
} else {
if (auto inv = srcToDst.invert()) {
textureMatrix = *inv;
} else {
return;
}
}
const SkRect* subset = restrictToSubset ? &src : nullptr;
const SkRect* domain = coordsAllInsideSrcRect ? &src : nullptr;
SkTileMode tileModes[] = {tm, tm};
std::unique_ptr<GrFragmentProcessor> fp = skgpu::ganesh::AsFragmentProcessor(
sdc, image, sampling, tileModes, textureMatrix, subset, domain);
fp = GrColorSpaceXformEffect::Make(
std::move(fp), image->imageInfo().colorInfo(), sdc->colorInfo());
if (image->isAlphaOnly()) {
if (const auto* shader = as_SB(paint.getShader())) {
auto shaderFP = GrFragmentProcessors::Make(shader,
GrFPArgs(sdc,
&sdc->colorInfo(),
sdc->surfaceProps(),
GrFPArgs::Scope::kDefault),
localToDevice);
if (!shaderFP) {
return;
}
fp = GrBlendFragmentProcessor::Make<SkBlendMode::kDstIn>(std::move(fp),
std::move(shaderFP));
} else {
// Multiply the input (paint) color by the texture (alpha)
fp = GrFragmentProcessor::MulInputByChildAlpha(std::move(fp));
}
}
GrPaint grPaint;
if (!SkPaintToGrPaintReplaceShader(sdc, paint, localToDevice, std::move(fp), &grPaint)) {
return;
}
if (!mf) {
// Can draw the image directly (any mask filter on the paint was converted to an FP already)
if (dstClip) {
SkPoint srcClipPoints[4];
SkPoint* srcClip = nullptr;
if (canUseTextureCoordsAsLocalCoords) {
// Calculate texture coordinates that match the dst clip
GrMapRectPoints(dst, src, dstClip, srcClipPoints, 4);
srcClip = srcClipPoints;
}
sdc->fillQuadWithEdgeAA(clip, std::move(grPaint), aaFlags, localToDevice,
dstClip, srcClip);
} else {
// Provide explicit texture coords when possible, otherwise rely on texture matrix
sdc->fillRectWithEdgeAA(clip, std::move(grPaint), aaFlags, localToDevice, dst,
canUseTextureCoordsAsLocalCoords ? &src : nullptr);
}
} else {
// Must draw the mask filter as a GrStyledShape. For now, this loses the per-edge AA
// information since it always draws with AA, but that should not be noticeable since the
// mask filter is probably a blur.
GrStyledShape shape;
if (dstClip) {
// Represent it as an SkPath formed from the dstClip
shape = GrStyledShape(SkPath::Polygon({dstClip, 4}, true));
} else {
shape = GrStyledShape(dst);
}
GrBlurUtils::DrawShapeWithMaskFilter(
rContext, sdc, clip, shape, std::move(grPaint), localToDevice, mf);
}
}
void Device::drawSpecial(SkSpecialImage* special,
const SkMatrix& localToDevice,
const SkSamplingOptions& origSampling,
const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint) {
SkASSERT(!paint.getMaskFilter() && !paint.getImageFilter());
SkASSERT(special->isGaneshBacked());
SkRect src = SkRect::Make(special->subset());
SkRect dst = SkRect::MakeWH(special->width(), special->height());
SkMatrix srcToDst = SkMatrix::RectToRect(src, dst);
SkSamplingOptions sampling = SkSamplingOptions(downgrade_to_filter(origSampling));
GrAA aa = fSurfaceDrawContext->chooseAA(paint);
SkCanvas::QuadAAFlags aaFlags = (aa == GrAA::kYes) ? SkCanvas::kAll_QuadAAFlags
: SkCanvas::kNone_QuadAAFlags;
GrSurfaceProxyView view = SkSpecialImages::AsView(this->recordingContext(), special);
if (!view) {
// This shouldn't happen since we shouldn't be mixing SkSpecialImage subclasses but
// returning early should avoid problems in release builds.
SkASSERT(false);
return;
}
if (constraint == SkCanvas::kFast_SrcRectConstraint) {
// If 'fast' was requested, we assume the caller has done sufficient analysis to know the
// logical dimensions are safe (which is true for FilterResult, the only current caller that
// passes in 'fast'). Without exactify'ing the proxy, GrTextureEffect would re-introduce
// subset clamping.
view.proxy()->priv().exactify();
}
SkImage_Ganesh image(sk_ref_sp(special->getContext()),
special->uniqueID(),
std::move(view),
special->colorInfo());
// In most cases this ought to hit draw_texture since there won't be a color filter,
// alpha-only texture+shader, or a high filter quality.
this->drawEdgeAAImage(&image,
src,
dst,
/* dstClip= */nullptr,
aaFlags,
localToDevice,
sampling,
paint,
constraint,
srcToDst,
SkTileMode::kClamp);
}
void Device::drawCoverageMask(const SkSpecialImage* mask,
const SkMatrix& maskToDevice,
const SkSamplingOptions& sampling,
const SkPaint& paint) {
// Use the active local-to-device transform for this since it determines the
// local coords for evaluating the skpaint, whereas the provided 'maskToDevice'
// just places the coverage mask.
SkMatrix localToDevice = this->localToDevice();
auto deviceToLocal = localToDevice.invert();
if (!deviceToLocal) {
return;
}
GrSurfaceProxyView view = SkSpecialImages::AsView(this->recordingContext(), mask);
if (!view) {
// This shouldn't happen since we shouldn't be mixing SkSpecialImage subclasses but
// returning early should avoid problems in release builds.
SkASSERT(false);
return;
}
SkTileMode tileModes[] = {SkTileMode::kDecal, SkTileMode::kDecal};
auto deviceToMask = maskToDevice.invert();
if (!deviceToMask) {
return;
}
// 'textureMaskSpace' needs to map from local coords -> mask coords -> texture coords.
SkMatrix textureMaskSpace = localToDevice;
textureMaskSpace.postConcat(*deviceToMask);
textureMaskSpace.postTranslate(mask->subset().fLeft, mask->subset().fTop);
SkRect maskSubset = SkRect::Make(mask->subset());
std::unique_ptr<GrFragmentProcessor> coverageFP = skgpu::ganesh::MakeFragmentProcessorFromView(
this->recordingContext(), std::move(view), mask->alphaType(), sampling, tileModes,
textureMaskSpace, &maskSubset, &maskSubset);
coverageFP = GrFragmentProcessor::SwizzleOutput(std::move(coverageFP), skgpu::Swizzle("aaaa"));
SurfaceDrawContext* sdc = fSurfaceDrawContext.get();
GrPaint grPaint;
// Any shading is done in local space which we want to draw to the device.
SkPaintToGrPaint(sdc, paint, localToDevice, &grPaint);
grPaint.setCoverageFragmentProcessor(std::move(coverageFP));
GrAA aa = fSurfaceDrawContext->chooseAA(paint);
SkCanvas::QuadAAFlags aaFlags = (aa == GrAA::kYes) ? SkCanvas::kAll_QuadAAFlags
: SkCanvas::kNone_QuadAAFlags;
SkMatrix maskToLocal = SkMatrix::Concat(*deviceToLocal, maskToDevice);
SkRect maskRect = SkRect::MakeWH(mask->width(), mask->height());
// 'local' are mask points transformed to get local space. 'localToDevice' may
// have a perspective transform that 'maskToDevice' doesn't so this is necessary.
SkPoint local[4];
maskToLocal.mapRectToQuad(local, maskRect);
sdc->fillQuadWithEdgeAA(this->clip(),
std::move(grPaint),
SkToGrQuadAAFlags(aaFlags),
localToDevice,
local,
nullptr);
}
void Device::drawImageQuadDirect(const SkImage* image,
const SkRect& srcRect,
const SkRect& dstRect,
const SkPoint dstClip[4],
SkCanvas::QuadAAFlags aaFlags,
const SkMatrix* preViewMatrix,
const SkSamplingOptions& origSampling,
const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint) {
SkRect src;
SkRect dst;
SkMatrix srcToDst;
auto mode = TiledTextureUtils::OptimizeSampleArea(SkISize::Make(image->width(),
image->height()),
srcRect, dstRect, dstClip,
&src, &dst, &srcToDst);
if (mode == TiledTextureUtils::ImageDrawMode::kSkip) {
return;
}
if (src.contains(image->bounds())) {
constraint = SkCanvas::kFast_SrcRectConstraint;
}
// Depending on the nature of image, it can flow through more or less optimal pipelines
SkTileMode tileMode = mode == TiledTextureUtils::ImageDrawMode::kDecal ? SkTileMode::kDecal
: SkTileMode::kClamp;
// Get final CTM matrix
SkMatrix ctm = this->localToDevice();
if (preViewMatrix) {
ctm.preConcat(*preViewMatrix);
}
SkSamplingOptions sampling = origSampling;
bool sharpenMM = fContext->priv().options().fSharpenMipmappedTextures;
if (sampling.mipmap != SkMipmapMode::kNone &&
TiledTextureUtils::CanDisableMipmap(ctm, srcToDst, sharpenMM)) {
sampling = SkSamplingOptions(sampling.filter);
}
this->drawEdgeAAImage(image,
src,
dst,
dstClip,
aaFlags,
ctm,
sampling,
paint,
constraint,
srcToDst,
tileMode);
}
void Device::drawEdgeAAImageSet(const SkCanvas::ImageSetEntry set[], int count,
const SkPoint dstClips[], const SkMatrix preViewMatrices[],
const SkSamplingOptions& sampling, const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint) {
SkASSERT(count > 0);
if (!can_use_draw_texture(paint, sampling)) {
// Send every entry through drawImageQuad() to handle the more complicated paint
int dstClipIndex = 0;
for (int i = 0; i < count; ++i) {
// Only no clip or quad clip are supported
SkASSERT(!set[i].fHasClip || dstClips);
SkASSERT(set[i].fMatrixIndex < 0 || preViewMatrices);
SkTCopyOnFirstWrite<SkPaint> entryPaint(paint);
if (set[i].fAlpha != 1.f) {
auto paintAlpha = paint.getAlphaf();
entryPaint.writable()->setAlphaf(paintAlpha * set[i].fAlpha);
}
this->drawImageQuadDirect(
set[i].fImage.get(), set[i].fSrcRect, set[i].fDstRect,
set[i].fHasClip ? dstClips + dstClipIndex : nullptr,
static_cast<SkCanvas::QuadAAFlags>(set[i].fAAFlags),
set[i].fMatrixIndex < 0 ? nullptr : preViewMatrices + set[i].fMatrixIndex,
sampling, *entryPaint, constraint);
dstClipIndex += 4 * set[i].fHasClip;
}
return;
}
GrSamplerState::Filter filter = sampling.filter == SkFilterMode::kNearest
? GrSamplerState::Filter::kNearest
: GrSamplerState::Filter::kLinear;
SkBlendMode mode = paint.getBlendMode_or(SkBlendMode::kSrcOver);
AutoTArray<GrTextureSetEntry> textures(count);
// We accumulate compatible proxies until we find an an incompatible one or reach the end and
// issue the accumulated 'n' draws starting at 'base'. 'p' represents the number of proxy
// switches that occur within the 'n' entries.
int base = 0, n = 0, p = 0;
auto draw = [&](int nextBase) {
if (n > 0) {
auto textureXform = GrColorSpaceXform::Make(set[base].fImage->imageInfo().colorInfo(),
fSurfaceDrawContext->colorInfo());
fSurfaceDrawContext->drawTextureSet(this->clip(),
textures.get() + base,
n,
p,
filter,
GrSamplerState::MipmapMode::kNone,
mode,
constraint,
this->localToDevice(),
std::move(textureXform));
}
base = nextBase;
n = 0;
p = 0;
};
int dstClipIndex = 0;
for (int i = 0; i < count; ++i) {
SkASSERT(!set[i].fHasClip || dstClips);
SkASSERT(set[i].fMatrixIndex < 0 || preViewMatrices);
// Manage the dst clip pointer tracking before any continues are used so we don't lose
// our place in the dstClips array.
const SkPoint* clip = set[i].fHasClip ? dstClips + dstClipIndex : nullptr;
dstClipIndex += 4 * set[i].fHasClip;
// The default SkDevice implementation is based on drawImageRect which does not allow
// non-sorted src rects. TODO: Decide this is OK or make sure we handle it.
if (!set[i].fSrcRect.isSorted()) {
draw(i + 1);
continue;
}
GrSurfaceProxyView view;
const SkImage_Base* image = as_IB(set[i].fImage.get());
// Extract view from image, but skip YUV images so they get processed through
// drawImageQuad and the proper effect to dynamically sample their planes.
if (!image->isYUVA()) {
std::tie(view, std::ignore) =
skgpu::ganesh::AsView(this->recordingContext(), image, skgpu::Mipmapped::kNo);
if (image->isAlphaOnly()) {
skgpu::Swizzle swizzle = skgpu::Swizzle::Concat(view.swizzle(),
skgpu::Swizzle("aaaa"));
view = {view.detachProxy(), view.origin(), swizzle};
}
}
if (!view) {
// This image can't go through the texture op, send through general image pipeline
// after flushing current batch.
draw(i + 1);
SkTCopyOnFirstWrite<SkPaint> entryPaint(paint);
if (set[i].fAlpha != 1.f) {
auto paintAlpha = paint.getAlphaf();
entryPaint.writable()->setAlphaf(paintAlpha * set[i].fAlpha);
}
this->drawImageQuadDirect(
image, set[i].fSrcRect, set[i].fDstRect, clip,
static_cast<SkCanvas::QuadAAFlags>(set[i].fAAFlags),
set[i].fMatrixIndex < 0 ? nullptr : preViewMatrices + set[i].fMatrixIndex,
sampling, *entryPaint, constraint);
continue;
}
textures[i].fProxyView = std::move(view);
textures[i].fSrcAlphaType = image->alphaType();
textures[i].fSrcRect = set[i].fSrcRect;
textures[i].fDstRect = set[i].fDstRect;
textures[i].fDstClipQuad = clip;
textures[i].fPreViewMatrix =
set[i].fMatrixIndex < 0 ? nullptr : preViewMatrices + set[i].fMatrixIndex;
textures[i].fColor = texture_color(paint.getColor4f(), set[i].fAlpha,
SkColorTypeToGrColorType(image->colorType()),
fSurfaceDrawContext->colorInfo());
textures[i].fAAFlags = SkToGrQuadAAFlags(set[i].fAAFlags);
if (n > 0 &&
(!GrTextureProxy::ProxiesAreCompatibleAsDynamicState(
textures[i].fProxyView.proxy(),
textures[base].fProxyView.proxy()) ||
textures[i].fProxyView.swizzle() != textures[base].fProxyView.swizzle() ||
set[i].fImage->alphaType() != set[base].fImage->alphaType() ||
!SkColorSpace::Equals(set[i].fImage->colorSpace(), set[base].fImage->colorSpace()))) {
draw(i);
}
// Whether or not we submitted a draw in the above if(), this ith entry is in the current
// set being accumulated so increment n, and increment p if proxies are different.
++n;
if (n == 1 || textures[i - 1].fProxyView.proxy() != textures[i].fProxyView.proxy()) {
// First proxy or a different proxy (that is compatible, otherwise we'd have drawn up
// to i - 1).
++p;
}
}
draw(count);
}
bool Device::drawBlurredRRect(const SkRRect& rrect, const SkPaint& paint, float deviceSigma) {
SkMatrix localToDevice = this->localToDevice();
SurfaceDrawContext* sdc = fSurfaceDrawContext.get();
const GrClip* clip = this->clip();
GrRecordingContext* context = this->recordingContext();
SkPaint skPaint = paint;
skPaint.setMaskFilter(nullptr);
GrPaint grPaint;
SkPaintToGrPaint(sdc, skPaint, localToDevice, &grPaint);
if (skgpu::BlurIsEffectivelyIdentity(deviceSigma)) {
sdc->drawShape(clip, std::move(grPaint), GrAA::kYes, localToDevice, GrStyledShape(rrect));
return true;
}
std::unique_ptr<GrFragmentProcessor> fp;
auto devRRect = rrect.transform(localToDevice);
bool devRRectIsCircle = devRRect.has_value() && SkRRectPriv::IsCircle(*devRRect);
bool canBeRect = rrect.isRect() && localToDevice.preservesRightAngles();
bool canBeCircle = (SkRRectPriv::IsCircle(rrect) && localToDevice.isSimilarity()) ||
devRRectIsCircle;
if (canBeRect || canBeCircle) {
if (canBeRect) {
fp = GrBlurUtils::MakeRectBlur(context, *context->priv().caps()->shaderCaps(),
rrect.rect(), localToDevice, deviceSigma);
} else {
SkRect devBounds;
if (devRRectIsCircle) {
devBounds = devRRect->getBounds();
} else {
SkPoint center = localToDevice.mapPoint(rrect.getBounds().center());
SkScalar radius = localToDevice.mapVector(0, rrect.width()/2.f).length();
devBounds = {center.x() - radius,
center.y() - radius,
center.x() + radius,
center.y() + radius};
}
fp = GrBlurUtils::MakeCircleBlur(context, devBounds, deviceSigma);
}
if (!fp) {
return false;
}
SkRect srcProxyRect = rrect.rect();
// Determine how much to outset the src rect to ensure we hit pixels within three sigma.
SkScalar outsetX = 3.0f*deviceSigma;
SkScalar outsetY = 3.0f*deviceSigma;
if (localToDevice.isScaleTranslate()) {
outsetX /= SkScalarAbs(localToDevice.getScaleX());
outsetY /= SkScalarAbs(localToDevice.getScaleY());
} else {
SkSize scale;
if (!localToDevice.decomposeScale(&scale, nullptr)) {
return false;
}
outsetX /= scale.width();
outsetY /= scale.height();
}
srcProxyRect.outset(outsetX, outsetY);
grPaint.setCoverageFragmentProcessor(std::move(fp));
sdc->drawRect(clip, std::move(grPaint), GrAA::kNo, localToDevice, srcProxyRect);
return true;
}
if (!localToDevice.rectStaysRect()) {
return false;
}
if (!devRRect.has_value() || !SkRRectPriv::AllCornersCircular(*devRRect)) {
return false;
}
auto deviceToLocal = localToDevice.invert();
if (!deviceToLocal) {
return false;
}
float localSigma = deviceToLocal->mapRadius(deviceSigma);
fp = GrBlurUtils::MakeRRectBlur(context, localSigma, deviceSigma, rrect, *devRRect);
if (!fp) {
return false;
}
SkRect srcProxyRect = rrect.rect();
srcProxyRect.outset(3.0f*localSigma, 3.0f*localSigma);
grPaint.setCoverageFragmentProcessor(std::move(fp));
sdc->drawRect(clip, std::move(grPaint), GrAA::kNo, localToDevice, srcProxyRect);
return true;
}
} // namespace skgpu::ganesh