| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkAnalyticEdge.h" |
| |
| #include "include/core/SkPoint.h" |
| #include "include/private/base/SkMath.h" |
| #include "include/private/base/SkTo.h" |
| #include "src/base/SkMathPriv.h" |
| #include "src/core/SkFDot6.h" |
| |
| #include <algorithm> |
| #include <cstddef> |
| #include <iterator> |
| |
| static constexpr int kInverseTableSize = 1024; // SK_FDot6One * 16 |
| |
| static inline SkFixed quick_inverse(SkFDot6 x) { |
| static const int32_t table[] = { |
| -4096, -4100, -4104, -4108, -4112, -4116, -4120, -4124, -4128, -4132, -4136, |
| -4140, -4144, -4148, -4152, -4156, -4161, -4165, -4169, -4173, -4177, -4181, |
| -4185, -4190, -4194, -4198, -4202, -4206, -4211, -4215, -4219, -4223, -4228, |
| -4232, -4236, -4240, -4245, -4249, -4253, -4258, -4262, -4266, -4271, -4275, |
| -4279, -4284, -4288, -4293, -4297, -4301, -4306, -4310, -4315, -4319, -4324, |
| -4328, -4332, -4337, -4341, -4346, -4350, -4355, -4359, -4364, -4369, -4373, |
| -4378, -4382, -4387, -4391, -4396, -4401, -4405, -4410, -4415, -4419, -4424, |
| -4429, -4433, -4438, -4443, -4447, -4452, -4457, -4462, -4466, -4471, -4476, |
| -4481, -4485, -4490, -4495, -4500, -4505, -4510, -4514, -4519, -4524, -4529, |
| -4534, -4539, -4544, -4549, -4554, -4559, -4563, -4568, -4573, -4578, -4583, |
| -4588, -4593, -4599, -4604, -4609, -4614, -4619, -4624, -4629, -4634, -4639, |
| -4644, -4650, -4655, -4660, -4665, -4670, -4675, -4681, -4686, -4691, -4696, |
| -4702, -4707, -4712, -4718, -4723, -4728, -4733, -4739, -4744, -4750, -4755, |
| -4760, -4766, -4771, -4777, -4782, -4788, -4793, -4798, -4804, -4809, -4815, |
| -4821, -4826, -4832, -4837, -4843, -4848, -4854, -4860, -4865, -4871, -4877, |
| -4882, -4888, -4894, -4899, -4905, -4911, -4917, -4922, -4928, -4934, -4940, |
| -4946, -4951, -4957, -4963, -4969, -4975, -4981, -4987, -4993, -4999, -5005, |
| -5011, -5017, -5023, -5029, -5035, -5041, -5047, -5053, -5059, -5065, -5071, |
| -5077, -5084, -5090, -5096, -5102, -5108, -5115, -5121, -5127, -5133, -5140, |
| -5146, -5152, -5159, -5165, -5171, -5178, -5184, -5190, -5197, -5203, -5210, |
| -5216, -5223, -5229, -5236, -5242, -5249, -5256, -5262, -5269, -5275, -5282, |
| -5289, -5295, -5302, -5309, -5315, -5322, -5329, -5336, -5343, -5349, -5356, |
| -5363, -5370, -5377, -5384, -5391, -5398, -5405, -5412, -5418, -5426, -5433, |
| -5440, -5447, -5454, -5461, -5468, -5475, -5482, -5489, -5497, -5504, -5511, |
| -5518, -5526, -5533, -5540, -5548, -5555, -5562, -5570, -5577, -5584, -5592, |
| -5599, -5607, -5614, -5622, -5629, -5637, -5645, -5652, -5660, -5667, -5675, |
| -5683, -5691, -5698, -5706, -5714, -5722, -5729, -5737, -5745, -5753, -5761, |
| -5769, -5777, -5785, -5793, -5801, -5809, -5817, -5825, -5833, -5841, -5849, |
| -5857, -5866, -5874, -5882, -5890, -5899, -5907, -5915, -5924, -5932, -5940, |
| -5949, -5957, -5966, -5974, -5983, -5991, -6000, -6009, -6017, -6026, -6034, |
| -6043, -6052, -6061, -6069, -6078, -6087, -6096, -6105, -6114, -6123, -6132, |
| -6141, -6150, -6159, -6168, -6177, -6186, -6195, -6204, -6213, -6223, -6232, |
| -6241, -6250, -6260, -6269, -6278, -6288, -6297, -6307, -6316, -6326, -6335, |
| -6345, -6355, -6364, -6374, -6384, -6393, -6403, -6413, -6423, -6432, -6442, |
| -6452, -6462, -6472, -6482, -6492, -6502, -6512, -6523, -6533, -6543, -6553, |
| -6563, -6574, -6584, -6594, -6605, -6615, -6626, -6636, -6647, -6657, -6668, |
| -6678, -6689, -6700, -6710, -6721, -6732, -6743, -6754, -6765, -6775, -6786, |
| -6797, -6808, -6820, -6831, -6842, -6853, -6864, -6875, -6887, -6898, -6909, |
| -6921, -6932, -6944, -6955, -6967, -6978, -6990, -7002, -7013, -7025, -7037, |
| -7049, -7061, -7073, -7084, -7096, -7108, -7121, -7133, -7145, -7157, -7169, |
| -7182, -7194, -7206, -7219, -7231, -7244, -7256, -7269, -7281, -7294, -7307, |
| -7319, -7332, -7345, -7358, -7371, -7384, -7397, -7410, -7423, -7436, -7449, |
| -7463, -7476, -7489, -7503, -7516, -7530, -7543, -7557, -7570, -7584, -7598, |
| -7612, -7626, -7639, -7653, -7667, -7681, -7695, -7710, -7724, -7738, -7752, |
| -7767, -7781, -7796, -7810, -7825, -7839, -7854, -7869, -7884, -7898, -7913, |
| -7928, -7943, -7958, -7973, -7989, -8004, -8019, -8035, -8050, -8065, -8081, |
| -8097, -8112, -8128, -8144, -8160, -8176, -8192, -8208, -8224, -8240, -8256, |
| -8272, -8289, -8305, -8322, -8338, -8355, -8371, -8388, -8405, -8422, -8439, |
| -8456, -8473, -8490, -8507, -8525, -8542, -8559, -8577, -8594, -8612, -8630, |
| -8648, -8665, -8683, -8701, -8719, -8738, -8756, -8774, -8793, -8811, -8830, |
| -8848, -8867, -8886, -8905, -8924, -8943, -8962, -8981, -9000, -9020, -9039, |
| -9058, -9078, -9098, -9118, -9137, -9157, -9177, -9198, -9218, -9238, -9258, |
| -9279, -9300, -9320, -9341, -9362, -9383, -9404, -9425, -9446, -9467, -9489, |
| -9510, -9532, -9554, -9576, -9597, -9619, -9642, -9664, -9686, -9709, -9731, |
| -9754, -9776, -9799, -9822, -9845, -9868, -9892, -9915, -9939, -9962, -9986, |
| -10010, -10034, -10058, -10082, -10106, -10131, -10155, -10180, -10205, -10230, |
| -10255, -10280, -10305, -10330, -10356, -10381, -10407, -10433, -10459, -10485, |
| -10512, -10538, -10564, -10591, -10618, -10645, -10672, -10699, -10727, -10754, |
| -10782, -10810, -10837, -10866, -10894, -10922, -10951, -10979, -11008, -11037, |
| -11066, -11096, -11125, -11155, -11184, -11214, -11244, -11275, -11305, -11335, |
| -11366, -11397, -11428, -11459, -11491, -11522, -11554, -11586, -11618, -11650, |
| -11683, -11715, -11748, -11781, -11814, -11848, -11881, -11915, -11949, -11983, |
| -12018, -12052, -12087, -12122, -12157, -12192, -12228, -12264, -12300, -12336, |
| -12372, -12409, -12446, -12483, -12520, -12557, -12595, -12633, -12671, -12710, |
| -12748, -12787, -12826, -12865, -12905, -12945, -12985, -13025, -13066, -13107, |
| -13148, -13189, -13231, -13273, -13315, -13357, -13400, -13443, -13486, -13530, |
| -13573, -13617, -13662, -13706, -13751, -13797, -13842, -13888, -13934, -13981, |
| -14027, -14074, -14122, -14169, -14217, -14266, -14315, -14364, -14413, -14463, |
| -14513, -14563, -14614, -14665, -14716, -14768, -14820, -14873, -14926, -14979, |
| -15033, -15087, -15141, -15196, -15252, -15307, -15363, -15420, -15477, -15534, |
| -15592, -15650, -15709, -15768, -15827, -15887, -15947, -16008, -16070, -16131, |
| -16194, -16256, -16320, -16384, -16448, -16513, -16578, -16644, -16710, -16777, |
| -16844, -16912, -16980, -17050, -17119, -17189, -17260, -17331, -17403, -17476, |
| -17549, -17623, -17697, -17772, -17848, -17924, -18001, -18078, -18157, -18236, |
| -18315, -18396, -18477, -18558, -18641, -18724, -18808, -18893, -18978, -19065, |
| -19152, -19239, -19328, -19418, -19508, -19599, -19691, -19784, -19878, -19972, |
| -20068, -20164, -20262, -20360, -20460, -20560, -20661, -20763, -20867, -20971, |
| -21076, -21183, -21290, -21399, -21509, -21620, -21732, -21845, -21959, -22075, |
| -22192, -22310, -22429, -22550, -22671, -22795, -22919, -23045, -23172, -23301, |
| -23431, -23563, -23696, -23831, -23967, -24105, -24244, -24385, -24528, -24672, |
| -24818, -24966, -25115, -25266, -25420, -25575, -25731, -25890, -26051, -26214, |
| -26379, -26546, -26715, -26886, -27060, -27235, -27413, -27594, -27776, -27962, |
| -28149, -28339, -28532, -28728, -28926, -29127, -29330, -29537, -29746, -29959, |
| -30174, -30393, -30615, -30840, -31068, -31300, -31536, -31775, -32017, -32263, |
| -32513, -32768, -33026, -33288, -33554, -33825, -34100, -34379, -34663, -34952, |
| -35246, -35544, -35848, -36157, -36472, -36792, -37117, -37449, -37786, -38130, |
| -38479, -38836, -39199, -39568, -39945, -40329, -40721, -41120, -41527, -41943, |
| -42366, -42799, -43240, -43690, -44150, -44620, -45100, -45590, -46091, -46603, |
| -47127, -47662, -48210, -48770, -49344, -49932, -50533, -51150, -51781, -52428, |
| -53092, -53773, -54471, -55188, -55924, -56679, -57456, -58254, -59074, -59918, |
| -60787, -61680, -62601, -63550, -64527, -65536, -66576, -67650, -68759, -69905, |
| -71089, -72315, -73584, -74898, -76260, -77672, -79137, -80659, -82241, -83886, |
| -85598, -87381, -89240, -91180, -93206, -95325, -97541, -99864, -102300, |
| -104857, -107546, -110376, -113359, -116508, -119837, -123361, -127100, -131072, |
| -135300, -139810, -144631, -149796, -155344, -161319, -167772, -174762, -182361, |
| -190650, -199728, -209715, -220752, -233016, -246723, -262144, -279620, -299593, |
| -322638, -349525, -381300, -419430, -466033, -524288, -599186, -699050, -838860, |
| -1048576, -1398101, -2097152, -4194304, 0 |
| }; |
| |
| static constexpr size_t kLastEntry = std::size(table) - 1; |
| SkASSERT(SkAbs32(x) <= static_cast<int32_t>(kLastEntry)); |
| static_assert(kLastEntry == kInverseTableSize); |
| |
| if (x > 0) { |
| return -table[kLastEntry - x]; |
| } else { |
| return table[kLastEntry + x]; |
| } |
| } |
| |
| static inline SkFixed quick_div(SkFDot6 a, SkFDot6 b) { |
| constexpr int kMinBits = 3; // abs(b) should be at least (1 << kMinBits) for quick division |
| constexpr int kMaxBits = 31; // Number of bits available in signed int |
| // Given abs(b) <= (1 << kMinBits), the inverse of abs(b) is at most 1 << (22 - kMinBits) in |
| // SkFixed format. Hence abs(a) should be less than kMaxAbsA |
| constexpr int kMaxAbsA = 1 << (kMaxBits - (22 - kMinBits)); |
| SkFDot6 abs_a = SkAbs32(a); |
| SkFDot6 abs_b = SkAbs32(b); |
| if (abs_b >= (1 << kMinBits) && abs_b < kInverseTableSize && abs_a < kMaxAbsA) { |
| SkASSERT((int64_t)a * quick_inverse(b) <= SK_MaxS32 |
| && (int64_t)a * quick_inverse(b) >= SK_MinS32); |
| SkFixed ourAnswer = (a * quick_inverse(b)) >> 6; |
| SkASSERT( |
| (SkFDot6Div(a,b) == 0 && ourAnswer == 0) || |
| SkFixedDiv(SkAbs32(SkFDot6Div(a,b) - ourAnswer), SkAbs32(SkFDot6Div(a,b))) <= 1 << 10 |
| ); |
| return ourAnswer; |
| } |
| return SkFDot6Div(a, b); |
| } |
| |
| bool SkAnalyticEdge::setLine(const SkPoint& p0, const SkPoint& p1) { |
| // We must set X/Y using the same way (e.g., times 4, to FDot6, then to Fixed) as Quads/Cubics. |
| // Otherwise the order of the edge might be wrong due to precision limit. |
| constexpr int accuracy = kDefaultAccuracy; |
| #ifdef SK_RASTERIZE_EVEN_ROUNDING |
| SkFixed x0 = SkFDot6ToFixed(SkScalarRoundToFDot6(p0.fX, accuracy)) >> accuracy; |
| SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarRoundToFDot6(p0.fY, accuracy)) >> accuracy); |
| SkFixed x1 = SkFDot6ToFixed(SkScalarRoundToFDot6(p1.fX, accuracy)) >> accuracy; |
| SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarRoundToFDot6(p1.fY, accuracy)) >> accuracy); |
| #else |
| constexpr int multiplier = (1 << kDefaultAccuracy); |
| SkFixed x0 = SkFDot6ToFixed(SkScalarToFDot6(p0.fX * multiplier)) >> accuracy; |
| SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p0.fY * multiplier)) >> accuracy); |
| SkFixed x1 = SkFDot6ToFixed(SkScalarToFDot6(p1.fX * multiplier)) >> accuracy; |
| SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p1.fY * multiplier)) >> accuracy); |
| #endif |
| |
| Winding winding = Winding::kCW; |
| |
| if (y0 > y1) { |
| using std::swap; |
| swap(x0, x1); |
| swap(y0, y1); |
| winding = Winding::kCCW; |
| } |
| |
| // are we a zero-height line? |
| SkFDot6 dy = SkFixedToFDot6(y1 - y0); |
| if (dy == 0) { |
| return false; |
| } |
| SkFDot6 dx = SkFixedToFDot6(x1 - x0); |
| SkFixed slope = quick_div(dx, dy); |
| SkFixed absSlope = SkAbs32(slope); |
| |
| fX = x0; |
| fDX = slope; |
| fUpperX = x0; |
| fY = y0; |
| fUpperY = y0; |
| fLowerY = y1; |
| fDY = dx == 0 || slope == 0 ? SK_MaxS32 : absSlope < kInverseTableSize |
| ? quick_inverse(absSlope) |
| : SkAbs32(quick_div(dy, dx)); |
| fEdgeType = Type::kLine; |
| fCurveCount = 0; |
| fWinding = winding; |
| fCurveShift = 0; |
| |
| return true; |
| } |
| |
| static SkAnalyticEdge::Winding swap_winding(SkAnalyticEdge::Winding w) { |
| return static_cast<SkAnalyticEdge::Winding>(static_cast<int8_t>(w) * -1); |
| } |
| |
| // This will become a bottleneck for small ovals rendering if we call SkFixedDiv twice here. |
| // Therefore, we'll let the outter function compute the slope once and send in the value. |
| // Moreover, we'll compute fDY by quickly lookup the inverse table (if possible). |
| bool SkAnalyticEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1, SkFixed slope) { |
| // Since we send in the slope, we can no longer snap y inside this function. |
| // If we don't send in the slope, or we do some more sophisticated snapping, this function |
| // could be a performance bottleneck. |
| SkASSERT(fWinding == Winding::kCW || fWinding == Winding::kCCW); |
| SkASSERT(fCurveCount != 0); |
| |
| // We don't chop at y extrema for cubics so the y is not guaranteed to be increasing for them. |
| // In that case, we have to swap x/y and negate the winding. |
| if (y0 > y1) { |
| using std::swap; |
| swap(x0, x1); |
| swap(y0, y1); |
| fWinding = swap_winding(fWinding); |
| } |
| |
| SkASSERT(y0 <= y1); |
| |
| SkFDot6 dx = SkFixedToFDot6(x1 - x0); |
| SkFDot6 dy = SkFixedToFDot6(y1 - y0); |
| |
| // are we a zero-height line? |
| if (dy == 0) { |
| return false; |
| } |
| |
| SkASSERT(slope < SK_MaxS32); |
| |
| SkFDot6 absSlope = SkAbs32(SkFixedToFDot6(slope)); |
| fX = x0; |
| fDX = slope; |
| fUpperX = x0; |
| fY = y0; |
| fUpperY = y0; |
| fLowerY = y1; |
| fDY = (dx == 0 || slope == 0) |
| ? SK_MaxS32 |
| : absSlope < kInverseTableSize |
| ? quick_inverse(absSlope) |
| : SkAbs32(quick_div(dy, dx)); |
| |
| return true; |
| } |
| |
| bool SkAnalyticEdge::update(SkFixed last_y) { |
| SkASSERT(last_y >= fLowerY); // we shouldn't update edge if last_y < fLowerY |
| if (fCurveCount < 0) { |
| return static_cast<SkAnalyticCubicEdge*>(this)->updateCubic(); |
| } else if (fCurveCount > 0) { |
| return static_cast<SkAnalyticQuadraticEdge*>(this)->updateQuadratic(); |
| } |
| return false; |
| } |
| |
| /* We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64. |
| Note that this limits the number of lines we use to approximate a curve. |
| If we need to increase this, we need to store fCurveCount in something |
| larger than int8_t. |
| */ |
| #define MAX_COEFF_SHIFT 6 |
| |
| static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy) |
| { |
| dx = SkAbs32(dx); |
| dy = SkAbs32(dy); |
| // return max + min/2 |
| if (dx > dy){ |
| dx += dy >> 1; |
| } else { |
| dx = dy + (dx >> 1); |
| } |
| return dx; |
| } |
| |
| static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA) { |
| // cheap calc of distance from center of p0-p2 to the center of the curve |
| SkFDot6 dist = cheap_distance(dx, dy); |
| |
| // shift down dist (it is currently in dot6) |
| // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...) |
| // this is chosen by heuristic: make it as big as possible (to minimize segments) |
| // ... but small enough so that our curves still look smooth |
| // When shift > 0, we're using AA and everything is scaled up so we can |
| // lower the accuracy. |
| dist = (dist + (1 << (2 + shiftAA))) >> (3 + shiftAA); |
| |
| // each subdivision (shift value) cuts this dist (error) by 1/4 |
| return (32 - SkCLZ(dist)) >> 1; |
| } |
| |
| /* |
| In setQuadraticWithoutUpdate, setCubicWithoutUpdate, the first thing we do is to convert |
| the points into FDot6. This is modulated by the shift parameter, which |
| will be something like 2 for antialiasing. |
| |
| In the float case, we want to turn the float into .6 by saying pt * 64, |
| or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6). |
| |
| In the fixed case, we want to turn the fixed into .6 by saying pt >> 10, |
| or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift). |
| */ |
| |
| static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) { |
| // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw |
| // away data in value, so just perform a modify up-shift |
| return SkLeftShift(value, 16 - 6 - 1); |
| } |
| |
| bool SkAnalyticQuadraticEdge::setQuadraticWithoutUpdate(const SkPoint pts[3], int shift) { |
| SkFDot6 x0, y0, x1, y1, x2, y2; |
| |
| { |
| #ifdef SK_RASTERIZE_EVEN_ROUNDING |
| x0 = SkScalarRoundToFDot6(pts[0].fX, shift); |
| y0 = SkScalarRoundToFDot6(pts[0].fY, shift); |
| x1 = SkScalarRoundToFDot6(pts[1].fX, shift); |
| y1 = SkScalarRoundToFDot6(pts[1].fY, shift); |
| x2 = SkScalarRoundToFDot6(pts[2].fX, shift); |
| y2 = SkScalarRoundToFDot6(pts[2].fY, shift); |
| #else |
| float scale = float(1 << (shift + 6)); |
| x0 = int(pts[0].fX * scale); |
| y0 = int(pts[0].fY * scale); |
| x1 = int(pts[1].fX * scale); |
| y1 = int(pts[1].fY * scale); |
| x2 = int(pts[2].fX * scale); |
| y2 = int(pts[2].fY * scale); |
| #endif |
| } |
| |
| Winding winding = Winding::kCW; |
| if (y0 > y2) |
| { |
| using std::swap; |
| swap(x0, x2); |
| swap(y0, y2); |
| winding = Winding::kCCW; |
| } |
| SkASSERT(y0 <= y1 && y1 <= y2); |
| |
| int top = SkFDot6Round(y0); |
| int bot = SkFDot6Round(y2); |
| |
| // are we a zero-height quad (line)? |
| if (top == bot) { |
| return 0; |
| } |
| |
| // compute number of steps needed (1 << shift) |
| { |
| SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2; |
| SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2; |
| // This is a little confusing: |
| // before this line, shift is the scale up factor for AA; |
| // after this line, shift is the fCurveShift. |
| shift = diff_to_shift(dx, dy, shift); |
| SkASSERT(shift >= 0); |
| } |
| // need at least 1 subdivision for our bias trick |
| if (shift == 0) { |
| shift = 1; |
| } else if (shift > MAX_COEFF_SHIFT) { |
| shift = MAX_COEFF_SHIFT; |
| } |
| |
| fWinding = winding; |
| //fCubicDShift only set for cubics |
| fEdgeType = Type::kQuad; |
| fCurveCount = SkToS8(1 << shift); |
| |
| /* |
| * We want to reformulate into polynomial form, to make it clear how we |
| * should forward-difference. |
| * |
| * p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C |
| * |
| * A = p0 - 2p1 + p2 |
| * B = 2(p1 - p0) |
| * C = p0 |
| * |
| * Our caller must have constrained our inputs (p0..p2) to all fit into |
| * 16.16. However, as seen above, we sometimes compute values that can be |
| * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store |
| * A and B at 1/2 of their actual value, and just apply a 2x scale during |
| * application in updateQuadratic(). Hence we store (shift - 1) in |
| * fCurveShift. |
| */ |
| |
| fCurveShift = SkToU8(shift - 1); |
| |
| SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2); // 1/2 the real value |
| SkFixed B = SkFDot6ToFixed(x1 - x0); // 1/2 the real value |
| |
| fQx = SkFDot6ToFixed(x0); |
| fQDx = B + (A >> shift); // biased by shift |
| fQDDx = A >> (shift - 1); // biased by shift |
| |
| A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2); // 1/2 the real value |
| B = SkFDot6ToFixed(y1 - y0); // 1/2 the real value |
| |
| fQy = SkFDot6ToFixed(y0); |
| fQDy = B + (A >> shift); // biased by shift |
| fQDDy = A >> (shift - 1); // biased by shift |
| |
| fQLastX = SkFDot6ToFixed(x2); |
| fQLastY = SkFDot6ToFixed(y2); |
| |
| return true; |
| } |
| |
| bool SkAnalyticQuadraticEdge::setQuadratic(const SkPoint pts[3]) { |
| if (!setQuadraticWithoutUpdate(pts, kDefaultAccuracy)) { |
| return false; |
| } |
| fQx >>= kDefaultAccuracy; |
| fQy >>= kDefaultAccuracy; |
| fQDx >>= kDefaultAccuracy; |
| fQDy >>= kDefaultAccuracy; |
| fQDDx >>= kDefaultAccuracy; |
| fQDDy >>= kDefaultAccuracy; |
| fQLastX >>= kDefaultAccuracy; |
| fQLastY >>= kDefaultAccuracy; |
| fQy = SnapY(fQy); |
| fQLastY = SnapY(fQLastY); |
| |
| fEdgeType = Type::kQuad; |
| |
| fSnappedX = fQx; |
| fSnappedY = fQy; |
| |
| return this->updateQuadratic(); |
| } |
| |
| bool SkAnalyticQuadraticEdge::updateQuadratic() { |
| int success = 0; // initialize to fail! |
| int count = fCurveCount; |
| SkFixed oldx = fQx; |
| SkFixed oldy = fQy; |
| SkFixed dx = fQDx; |
| SkFixed dy = fQDy; |
| SkFixed newx, newy, newSnappedX, newSnappedY; |
| int shift = fCurveShift; |
| |
| SkASSERT(count > 0); |
| |
| do { |
| SkFixed slope; |
| if (--count > 0) |
| { |
| newx = oldx + (dx >> shift); |
| newy = oldy + (dy >> shift); |
| // only snap when dy is large enough and dx/dy isn't too large |
| if (SkAbs32(dy >> shift) >= SK_Fixed1 * 2 && |
| SkLeftShift((int64_t) SkAbs32(dy), 6) > SkAbs32(dx)) { |
| SkFDot6 diffY = SkFixedToFDot6(newy - fSnappedY); |
| slope = diffY ? quick_div(SkFixedToFDot6(newx - fSnappedX), diffY) |
| : SK_MaxS32; |
| newSnappedY = std::min<SkFixed>(fQLastY, SkFixedRoundToFixed(newy)); |
| newSnappedX = newx - SkFixedMul(slope, newy - newSnappedY); |
| } else { |
| newSnappedY = std::min(fQLastY, SnapY(newy)); |
| newSnappedX = newx; |
| SkFDot6 diffY = SkFixedToFDot6(newSnappedY - fSnappedY); |
| slope = diffY ? quick_div(SkFixedToFDot6(newx - fSnappedX), diffY) |
| : SK_MaxS32; |
| } |
| dx += fQDDx; |
| dy += fQDDy; |
| } |
| else // last segment |
| { |
| newx = fQLastX; |
| newy = fQLastY; |
| newSnappedY = newy; |
| newSnappedX = newx; |
| SkFDot6 diffY = SkFixedToFDot6(newy - fSnappedY); |
| slope = diffY ? quick_div(SkFixedToFDot6(newx - fSnappedX), diffY) : SK_MaxS32; |
| } |
| if (slope < SK_MaxS32) { |
| success = this->updateLine(fSnappedX, fSnappedY, newSnappedX, newSnappedY, slope); |
| } |
| oldx = newx; |
| oldy = newy; |
| } while (count > 0 && !success); |
| |
| SkASSERT(newSnappedY <= fQLastY); |
| |
| fQx = newx; |
| fQy = newy; |
| fQDx = dx; |
| fQDy = dy; |
| fSnappedX = newSnappedX; |
| fSnappedY = newSnappedY; |
| fCurveCount = SkToS8(count); |
| return success; |
| } |
| |
| bool SkAnalyticCubicEdge::setCubic(const SkPoint pts[4]) { |
| if (!setCubicWithoutUpdate(pts, kDefaultAccuracy)) { |
| return false; |
| } |
| |
| fCx >>= kDefaultAccuracy; |
| fCy >>= kDefaultAccuracy; |
| fCDx >>= kDefaultAccuracy; |
| fCDy >>= kDefaultAccuracy; |
| fCDDx >>= kDefaultAccuracy; |
| fCDDy >>= kDefaultAccuracy; |
| fCDDDx >>= kDefaultAccuracy; |
| fCDDDy >>= kDefaultAccuracy; |
| fCLastX >>= kDefaultAccuracy; |
| fCLastY >>= kDefaultAccuracy; |
| fCy = SnapY(fCy); |
| fSnappedY = fCy; |
| fCLastY = SnapY(fCLastY); |
| |
| fEdgeType = Type::kCubic; |
| |
| return this->updateCubic(); |
| } |
| |
| static inline int SkFDot6UpShift(SkFDot6 x, int upShift) { |
| SkASSERT((SkLeftShift(x, upShift) >> upShift) == x); |
| return SkLeftShift(x, upShift); |
| } |
| |
| /* f(1/3) = (8a + 12b + 6c + d) / 27 |
| f(2/3) = (a + 6b + 12c + 8d) / 27 |
| |
| f(1/3)-b = (8a - 15b + 6c + d) / 27 |
| f(2/3)-c = (a + 6b - 15c + 8d) / 27 |
| |
| use 16/512 to approximate 1/27 |
| */ |
| static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d) |
| { |
| // since our parameters may be negative, we don't use << to avoid ASAN warnings |
| SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9; |
| SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9; |
| |
| return std::max(SkAbs32(oneThird), SkAbs32(twoThird)); |
| } |
| |
| bool SkAnalyticCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift) { |
| SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3; |
| |
| { |
| #ifdef SK_RASTERIZE_EVEN_ROUNDING |
| x0 = SkScalarRoundToFDot6(pts[0].fX, shift); |
| y0 = SkScalarRoundToFDot6(pts[0].fY, shift); |
| x1 = SkScalarRoundToFDot6(pts[1].fX, shift); |
| y1 = SkScalarRoundToFDot6(pts[1].fY, shift); |
| x2 = SkScalarRoundToFDot6(pts[2].fX, shift); |
| y2 = SkScalarRoundToFDot6(pts[2].fY, shift); |
| x3 = SkScalarRoundToFDot6(pts[3].fX, shift); |
| y3 = SkScalarRoundToFDot6(pts[3].fY, shift); |
| #else |
| float scale = float(1 << (shift + 6)); |
| x0 = int(pts[0].fX * scale); |
| y0 = int(pts[0].fY * scale); |
| x1 = int(pts[1].fX * scale); |
| y1 = int(pts[1].fY * scale); |
| x2 = int(pts[2].fX * scale); |
| y2 = int(pts[2].fY * scale); |
| x3 = int(pts[3].fX * scale); |
| y3 = int(pts[3].fY * scale); |
| #endif |
| } |
| |
| Winding winding = Winding::kCW; |
| if (y0 > y3) |
| { |
| using std::swap; |
| swap(x0, x3); |
| swap(x1, x2); |
| swap(y0, y3); |
| swap(y1, y2); |
| winding = Winding::kCCW; |
| } |
| |
| int top = SkFDot6Round(y0); |
| int bot = SkFDot6Round(y3); |
| |
| // are we a zero-height cubic (line)? |
| if (top == bot) |
| return 0; |
| |
| // compute number of steps needed (1 << shift) |
| { |
| // Can't use (center of curve - center of baseline), since center-of-curve |
| // need not be the max delta from the baseline (it could even be coincident) |
| // so we try just looking at the two off-curve points |
| SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3); |
| SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3); |
| // add 1 (by observation) |
| shift = diff_to_shift(dx, dy, 2) + 1; |
| } |
| // need at least 1 subdivision for our bias trick |
| SkASSERT(shift > 0); |
| if (shift > MAX_COEFF_SHIFT) { |
| shift = MAX_COEFF_SHIFT; |
| } |
| |
| /* Since our in coming data is initially shifted down by 10 (or 8 in |
| antialias). That means the most we can shift up is 8. However, we |
| compute coefficients with a 3*, so the safest upshift is really 6 |
| */ |
| int upShift = 6; // largest safe value |
| int downShift = shift + upShift - 10; |
| if (downShift < 0) { |
| downShift = 0; |
| upShift = 10 - shift; |
| } |
| |
| fWinding = winding; |
| fEdgeType = Type::kCubic; |
| fCurveCount = SkToS8(SkLeftShift(-1, shift)); |
| fCurveShift = SkToU8(shift); |
| fCubicDShift = SkToU8(downShift); |
| |
| SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift); |
| SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift); |
| SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift); |
| |
| fCx = SkFDot6ToFixed(x0); |
| fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift |
| fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift |
| fCDDDx = 3*D >> (shift - 1); // biased by 2*shift |
| |
| B = SkFDot6UpShift(3 * (y1 - y0), upShift); |
| C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift); |
| D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift); |
| |
| fCy = SkFDot6ToFixed(y0); |
| fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift |
| fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift |
| fCDDDy = 3*D >> (shift - 1); // biased by 2*shift |
| |
| fCLastX = SkFDot6ToFixed(x3); |
| fCLastY = SkFDot6ToFixed(y3); |
| |
| return true; |
| } |
| |
| bool SkAnalyticCubicEdge::updateCubic() { |
| int success; |
| int count = fCurveCount; |
| SkFixed oldx = fCx; |
| SkFixed oldy = fCy; |
| SkFixed newx, newy; |
| const int ddshift = fCurveShift; |
| const int dshift = fCubicDShift; |
| |
| SkASSERT(count < 0); |
| |
| do { |
| if (++count < 0) { |
| newx = oldx + (fCDx >> dshift); |
| fCDx += fCDDx >> ddshift; |
| fCDDx += fCDDDx; |
| |
| newy = oldy + (fCDy >> dshift); |
| fCDy += fCDDy >> ddshift; |
| fCDDy += fCDDDy; |
| } |
| else { // last segment |
| newx = fCLastX; |
| newy = fCLastY; |
| } |
| |
| // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint |
| // doesn't always achieve that, so we have to explicitly pin it here. |
| if (newy < oldy) { |
| newy = oldy; |
| } |
| |
| SkFixed newSnappedY = SnapY(newy); |
| // we want to SkASSERT(snappedNewY <= fCLastY), but our finite fixedpoint |
| // doesn't always achieve that, so we have to explicitly pin it here. |
| if (fCLastY < newSnappedY) { |
| newSnappedY = fCLastY; |
| count = 0; |
| } |
| |
| SkFixed slope = SkFixedToFDot6(newSnappedY - fSnappedY) == 0 |
| ? SK_MaxS32 |
| : SkFDot6Div(SkFixedToFDot6(newx - oldx), |
| SkFixedToFDot6(newSnappedY - fSnappedY)); |
| |
| success = this->updateLine(oldx, fSnappedY, newx, newSnappedY, slope); |
| |
| oldx = newx; |
| oldy = newy; |
| fSnappedY = newSnappedY; |
| } while (count < 0 && !success); |
| |
| fCx = newx; |
| fCy = newy; |
| fCurveCount = SkToS8(count); |
| return success; |
| } |