blob: 97c76356891829e48b54a11a33c826457067e6eb [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTArray_DEFINED
#define SkTArray_DEFINED
#include "include/private/base/SkAlignedStorage.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkAttributes.h"
#include "include/private/base/SkContainers.h"
#include "include/private/base/SkDebug.h"
#include "include/private/base/SkMalloc.h"
#include "include/private/base/SkMath.h"
#include "include/private/base/SkSpan_impl.h"
#include "include/private/base/SkTo.h"
#include "include/private/base/SkTypeTraits.h" // IWYU pragma: keep
#include <algorithm>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <initializer_list>
#include <new>
#include <utility>
namespace skia_private {
/** TArray<T> implements a typical, mostly std::vector-like array.
Each T will be default-initialized on allocation, and ~T will be called on destruction.
MEM_MOVE controls the behavior when a T needs to be moved (e.g. when the array is resized)
- true: T will be bit-copied via memcpy.
- false: T will be moved via move-constructors.
*/
template <typename T, bool MEM_MOVE = sk_is_trivially_relocatable_v<T>> class TArray {
public:
using value_type = T;
/**
* Creates an empty array with no initial storage
*/
TArray() : fOwnMemory(true), fCapacity{0} {}
/**
* Creates an empty array that will preallocate space for reserveCount elements.
*/
explicit TArray(int reserveCount) : TArray() { this->reserve_exact(reserveCount); }
/**
* Copies one array to another. The new array will be heap allocated.
*/
TArray(const TArray& that) : TArray(that.fData, that.fSize) {}
TArray(TArray&& that) {
if (that.fOwnMemory) {
this->setData(that);
that.setData({});
} else {
this->initData(that.fSize);
that.move(fData);
}
fSize = std::exchange(that.fSize, 0);
}
/**
* Creates a TArray by copying contents of a standard C array. The new
* array will be heap allocated. Be careful not to use this constructor
* when you really want the (void*, int) version.
*/
TArray(const T* array, int count) {
this->initData(count);
this->copy(array);
}
/**
* Creates a TArray by copying contents of an initializer list.
*/
TArray(std::initializer_list<T> data) : TArray(data.begin(), data.size()) {}
TArray& operator=(const TArray& that) {
if (this == &that) {
return *this;
}
this->clear();
this->checkRealloc(that.size(), kExactFit);
fSize = that.fSize;
this->copy(that.fData);
return *this;
}
TArray& operator=(TArray&& that) {
if (this != &that) {
this->clear();
if (that.fOwnMemory) {
// The storage is on the heap, so move the data pointer.
if (fOwnMemory) {
sk_free(fData);
}
fData = std::exchange(that.fData, nullptr);
// Can't use exchange with bitfields.
fCapacity = that.fCapacity;
that.fCapacity = 0;
fOwnMemory = true;
} else {
// The data is stored inline in that, so move it element-by-element.
this->checkRealloc(that.size(), kExactFit);
that.move(fData);
}
fSize = std::exchange(that.fSize, 0);
}
return *this;
}
~TArray() {
this->destroyAll();
if (fOwnMemory) {
sk_free(fData);
}
}
/**
* Resets to size() = n newly constructed T objects and resets any reserve count.
*/
void reset(int n) {
SkASSERT(n >= 0);
this->clear();
this->checkRealloc(n, kExactFit);
fSize = n;
for (int i = 0; i < this->size(); ++i) {
new (fData + i) T;
}
}
/**
* Resets to a copy of a C array and resets any reserve count.
*/
void reset(const T* array, int count) {
SkASSERT(count >= 0);
this->clear();
this->checkRealloc(count, kExactFit);
fSize = count;
this->copy(array);
}
/**
* Ensures there is enough reserved space for at least n elements. This is guaranteed at least
* until the array size grows above n and subsequently shrinks below n, any version of reset()
* is called, or reserve() is called again.
*/
void reserve(int n) {
SkASSERT(n >= 0);
if (n > this->size()) {
this->checkRealloc(n - this->size(), kGrowing);
}
}
/**
* Ensures there is enough reserved space for exactly n elements. The same capacity guarantees
* as above apply.
*/
void reserve_exact(int n) {
SkASSERT(n >= 0);
if (n > this->size()) {
this->checkRealloc(n - this->size(), kExactFit);
}
}
void removeShuffle(int n) {
SkASSERT(n < this->size());
int newCount = fSize - 1;
fSize = newCount;
fData[n].~T();
if (n != newCount) {
this->move(n, newCount);
}
}
// Is the array empty.
bool empty() const { return fSize == 0; }
/**
* Adds one new default-initialized T value and returns it by reference. Note that the reference
* only remains valid until the next call that adds or removes elements.
*/
T& push_back() {
void* newT = this->push_back_raw(1);
return *new (newT) T;
}
/**
* Adds one new T value which is copy-constructed, returning it by reference. As always,
* the reference only remains valid until the next call that adds or removes elements.
*/
T& push_back(const T& t) {
T* newT;
if (this->capacity() > fSize) SK_LIKELY {
// Copy over the element directly.
newT = new (fData + fSize) T(t);
} else {
newT = this->growAndConstructAtEnd(t);
}
fSize += 1;
return *newT;
}
/**
* Adds one new T value which is copy-constructed, returning it by reference.
*/
T& push_back(T&& t) {
T* newT;
if (this->capacity() > fSize) SK_LIKELY {
// Move over the element directly.
newT = new (fData + fSize) T(std::move(t));
} else {
newT = this->growAndConstructAtEnd(std::move(t));
}
fSize += 1;
return *newT;
}
/**
* Constructs a new T at the back of this array, returning it by reference.
*/
template <typename... Args> T& emplace_back(Args&&... args) {
T* newT;
if (this->capacity() > fSize) SK_LIKELY {
// Emplace the new element in directly.
newT = new (fData + fSize) T(std::forward<Args>(args)...);
} else {
newT = this->growAndConstructAtEnd(std::forward<Args>(args)...);
}
fSize += 1;
return *newT;
}
/**
* Allocates n more default-initialized T values, and returns the address of
* the start of that new range. Note: this address is only valid until the
* next API call made on the array that might add or remove elements.
*/
T* push_back_n(int n) {
SkASSERT(n >= 0);
T* newTs = TCast(this->push_back_raw(n));
for (int i = 0; i < n; ++i) {
new (&newTs[i]) T;
}
return newTs;
}
/**
* Version of above that uses a copy constructor to initialize all n items
* to the same T.
*/
T* push_back_n(int n, const T& t) {
SkASSERT(n >= 0);
T* newTs = TCast(this->push_back_raw(n));
for (int i = 0; i < n; ++i) {
new (&newTs[i]) T(t);
}
return static_cast<T*>(newTs);
}
/**
* Version of above that uses a copy constructor to initialize the n items
* to separate T values.
*/
T* push_back_n(int n, const T t[]) {
SkASSERT(n >= 0);
this->checkRealloc(n, kGrowing);
T* end = this->end();
for (int i = 0; i < n; ++i) {
new (end + i) T(t[i]);
}
fSize += n;
return end;
}
/**
* Version of above that uses the move constructor to set n items.
*/
T* move_back_n(int n, T* t) {
SkASSERT(n >= 0);
this->checkRealloc(n, kGrowing);
T* end = this->end();
for (int i = 0; i < n; ++i) {
new (end + i) T(std::move(t[i]));
}
fSize += n;
return end;
}
/**
* Removes the last element. Not safe to call when size() == 0.
*/
void pop_back() {
sk_collection_not_empty(this->empty());
--fSize;
fData[fSize].~T();
}
/**
* Removes the last n elements. Not safe to call when size() < n.
*/
void pop_back_n(int n) {
SkASSERT(n >= 0);
SkASSERT(this->size() >= n);
int i = fSize;
while (i-- > fSize - n) {
(*this)[i].~T();
}
fSize -= n;
}
/**
* Pushes or pops from the back to resize. Pushes will be default initialized.
*/
void resize_back(int newCount) {
SkASSERT(newCount >= 0);
if (newCount > this->size()) {
if (this->empty()) {
// When the container is completely empty, grow to exactly the requested size.
this->checkRealloc(newCount, kExactFit);
}
this->push_back_n(newCount - fSize);
} else if (newCount < this->size()) {
this->pop_back_n(fSize - newCount);
}
}
/** Swaps the contents of this array with that array. Does a pointer swap if possible,
otherwise copies the T values. */
void swap(TArray& that) {
using std::swap;
if (this == &that) {
return;
}
if (fOwnMemory && that.fOwnMemory) {
swap(fData, that.fData);
swap(fSize, that.fSize);
// Can't use swap because fCapacity is a bit field.
auto allocCount = fCapacity;
fCapacity = that.fCapacity;
that.fCapacity = allocCount;
} else {
// This could be more optimal...
TArray copy(std::move(that));
that = std::move(*this);
*this = std::move(copy);
}
}
T* begin() {
return fData;
}
const T* begin() const {
return fData;
}
// It's safe to use fItemArray + fSize because if fItemArray is nullptr then adding 0 is
// valid and returns nullptr. See [expr.add] in the C++ standard.
T* end() {
if (fData == nullptr) {
SkASSERT(fSize == 0);
}
return fData + fSize;
}
const T* end() const {
if (fData == nullptr) {
SkASSERT(fSize == 0);
}
return fData + fSize;
}
T* data() { return fData; }
const T* data() const { return fData; }
int size() const { return fSize; }
size_t size_bytes() const { return Bytes(fSize); }
void resize(size_t count) { this->resize_back((int)count); }
void clear() {
this->destroyAll();
fSize = 0;
}
void shrink_to_fit() {
if (!fOwnMemory || fSize == fCapacity) {
return;
}
if (fSize == 0) {
sk_free(fData);
fData = nullptr;
fCapacity = 0;
} else {
SkSpan<std::byte> allocation = Allocate(fSize);
this->move(TCast(allocation.data()));
if (fOwnMemory) {
sk_free(fData);
}
this->setDataFromBytes(allocation);
}
}
/**
* Get the i^th element.
*/
T& operator[] (int i) {
return fData[sk_collection_check_bounds(i, this->size())];
}
const T& operator[] (int i) const {
return fData[sk_collection_check_bounds(i, this->size())];
}
T& at(int i) { return (*this)[i]; }
const T& at(int i) const { return (*this)[i]; }
/**
* equivalent to operator[](0)
*/
T& front() {
sk_collection_not_empty(this->empty());
return fData[0];
}
const T& front() const {
sk_collection_not_empty(this->empty());
return fData[0];
}
/**
* equivalent to operator[](size() - 1)
*/
T& back() {
sk_collection_not_empty(this->empty());
return fData[fSize - 1];
}
const T& back() const {
sk_collection_not_empty(this->empty());
return fData[fSize - 1];
}
/**
* equivalent to operator[](size()-1-i)
*/
T& fromBack(int i) {
return (*this)[fSize - i - 1];
}
const T& fromBack(int i) const {
return (*this)[fSize - i - 1];
}
bool operator==(const TArray<T, MEM_MOVE>& right) const {
int leftCount = this->size();
if (leftCount != right.size()) {
return false;
}
for (int index = 0; index < leftCount; ++index) {
if (fData[index] != right.fData[index]) {
return false;
}
}
return true;
}
bool operator!=(const TArray<T, MEM_MOVE>& right) const {
return !(*this == right);
}
int capacity() const {
return fCapacity;
}
protected:
// Creates an empty array that will use the passed storage block until it is insufficiently
// large to hold the entire array.
template <int InitialCapacity>
TArray(SkAlignedSTStorage<InitialCapacity, T>* storage, int size = 0) {
static_assert(InitialCapacity >= 0);
SkASSERT(size >= 0);
SkASSERT(storage->get() != nullptr);
if (size > InitialCapacity) {
this->initData(size);
} else {
this->setDataFromBytes(*storage);
fSize = size;
// setDataFromBytes always sets fOwnMemory to true, but we are actually using static
// storage here, which shouldn't ever be freed.
fOwnMemory = false;
}
}
// Copy a C array, using pre-allocated storage if preAllocCount >= count. Otherwise, storage
// will only be used when array shrinks to fit.
template <int InitialCapacity>
TArray(const T* array, int size, SkAlignedSTStorage<InitialCapacity, T>* storage)
: TArray{storage, size}
{
this->copy(array);
}
private:
// Growth factors for checkRealloc.
static constexpr double kExactFit = 1.0;
static constexpr double kGrowing = 1.5;
static constexpr int kMinHeapAllocCount = 8;
static_assert(SkIsPow2(kMinHeapAllocCount), "min alloc count not power of two.");
// Note for 32-bit machines kMaxCapacity will be <= SIZE_MAX. For 64-bit machines it will
// just be INT_MAX if the sizeof(T) < 2^32.
static constexpr int kMaxCapacity = SkToInt(std::min(SIZE_MAX / sizeof(T), (size_t)INT_MAX));
void setDataFromBytes(SkSpan<std::byte> allocation) {
T* data = TCast(allocation.data());
// We have gotten extra bytes back from the allocation limit, pin to kMaxCapacity. It
// would seem like the SkContainerAllocator should handle the divide, but it would have
// to a full divide instruction. If done here the size is known at compile, and usually
// can be implemented by a right shift. The full divide takes ~50X longer than the shift.
size_t size = std::min(allocation.size() / sizeof(T), SkToSizeT(kMaxCapacity));
this->setData(SkSpan<T>(data, size));
}
void setData(SkSpan<T> array) {
fData = array.data();
fCapacity = SkToU32(array.size());
fOwnMemory = true;
}
// We disable Control-Flow Integrity sanitization (go/cfi) when casting item-array buffers.
// CFI flags this code as dangerous because we are casting `buffer` to a T* while the buffer's
// contents might still be uninitialized memory. When T has a vtable, this is especially risky
// because we could hypothetically access a virtual method on fItemArray and jump to an
// unpredictable location in memory. Of course, TArray won't actually use fItemArray in this
// way, and we don't want to construct a T before the user requests one. There's no real risk
// here, so disable CFI when doing these casts.
SK_CLANG_NO_SANITIZE("cfi")
static T* TCast(void* buffer) {
return (T*)buffer;
}
static size_t Bytes(int n) {
SkASSERT(n <= kMaxCapacity);
return SkToSizeT(n) * sizeof(T);
}
static SkSpan<std::byte> Allocate(int capacity, double growthFactor = 1.0) {
return SkContainerAllocator{sizeof(T), kMaxCapacity}.allocate(capacity, growthFactor);
}
void initData(int count) {
this->setDataFromBytes(Allocate(count));
fSize = count;
}
void destroyAll() {
if (!this->empty()) {
T* cursor = this->begin();
T* const end = this->end();
do {
cursor->~T();
cursor++;
} while (cursor < end);
}
}
/** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage.
* In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage.
*/
void copy(const T* src) {
if constexpr (std::is_trivially_copyable_v<T>) {
if (!this->empty() && src != nullptr) {
sk_careful_memcpy(fData, src, this->size_bytes());
}
} else {
for (int i = 0; i < this->size(); ++i) {
new (fData + i) T(src[i]);
}
}
}
void move(int dst, int src) {
if constexpr (MEM_MOVE) {
memcpy(static_cast<void*>(&fData[dst]),
static_cast<const void*>(&fData[src]),
sizeof(T));
} else {
new (&fData[dst]) T(std::move(fData[src]));
fData[src].~T();
}
}
void move(void* dst) {
if constexpr (MEM_MOVE) {
sk_careful_memcpy(dst, fData, Bytes(fSize));
} else {
for (int i = 0; i < this->size(); ++i) {
new (static_cast<char*>(dst) + Bytes(i)) T(std::move(fData[i]));
fData[i].~T();
}
}
}
// Helper function that makes space for n objects, adjusts the count, but does not initialize
// the new objects.
void* push_back_raw(int n) {
this->checkRealloc(n, kGrowing);
void* ptr = fData + fSize;
fSize += n;
return ptr;
}
template <typename... Args>
SK_ALWAYS_INLINE T* growAndConstructAtEnd(Args&&... args) {
SkSpan<std::byte> buffer = this->preallocateNewData(/*delta=*/1, kGrowing);
T* newT = new (TCast(buffer.data()) + fSize) T(std::forward<Args>(args)...);
this->installDataAndUpdateCapacity(buffer);
return newT;
}
void checkRealloc(int delta, double growthFactor) {
SkASSERT(delta >= 0);
SkASSERT(fSize >= 0);
SkASSERT(fCapacity >= 0);
// Check if there are enough remaining allocated elements to satisfy the request.
if (this->capacity() - fSize < delta) {
// Looks like we need to reallocate.
this->installDataAndUpdateCapacity(this->preallocateNewData(delta, growthFactor));
}
}
SkSpan<std::byte> preallocateNewData(int delta, double growthFactor) {
SkASSERT(delta >= 0);
SkASSERT(fSize >= 0);
SkASSERT(fCapacity >= 0);
// Don't overflow fSize or size_t later in the memory allocation. Overflowing memory
// allocation really only applies to fSizes on 32-bit machines; on 64-bit machines this
// will probably never produce a check. Since kMaxCapacity is bounded above by INT_MAX,
// this also checks the bounds of fSize.
if (delta > kMaxCapacity - fSize) {
sk_report_container_overflow_and_die();
}
const int newCount = fSize + delta;
return Allocate(newCount, growthFactor);
}
void installDataAndUpdateCapacity(SkSpan<std::byte> allocation) {
this->move(TCast(allocation.data()));
if (fOwnMemory) {
sk_free(fData);
}
this->setDataFromBytes(allocation);
SkASSERT(fData != nullptr);
}
T* fData{nullptr};
int fSize{0};
uint32_t fOwnMemory : 1;
uint32_t fCapacity : 31;
};
template <typename T, bool M> static inline void swap(TArray<T, M>& a, TArray<T, M>& b) {
a.swap(b);
}
// Subclass of TArray that contains a pre-allocated memory block for the array.
template <int N, typename T, bool MEM_MOVE = sk_is_trivially_relocatable_v<T>>
class STArray : private SkAlignedSTStorage<N,T>, public TArray<T, MEM_MOVE> {
static_assert(N > 0);
using Storage = SkAlignedSTStorage<N,T>;
public:
STArray()
: Storage{}
, TArray<T, MEM_MOVE>(this) {} // Must use () to avoid confusion with initializer_list
// when T=bool because * are convertable to bool.
STArray(const T* array, int count)
: Storage{}
, TArray<T, MEM_MOVE>{array, count, this} {}
STArray(std::initializer_list<T> data)
: STArray{data.begin(), SkToInt(data.size())} {}
explicit STArray(int reserveCount)
: STArray() { this->reserve_exact(reserveCount); }
STArray(const STArray& that)
: STArray() { *this = that; }
explicit STArray(const TArray<T, MEM_MOVE>& that)
: STArray() { *this = that; }
STArray(STArray&& that)
: STArray() { *this = std::move(that); }
explicit STArray(TArray<T, MEM_MOVE>&& that)
: STArray() { *this = std::move(that); }
STArray& operator=(const STArray& that) {
TArray<T, MEM_MOVE>::operator=(that);
return *this;
}
STArray& operator=(const TArray<T, MEM_MOVE>& that) {
TArray<T, MEM_MOVE>::operator=(that);
return *this;
}
STArray& operator=(STArray&& that) {
TArray<T, MEM_MOVE>::operator=(std::move(that));
return *this;
}
STArray& operator=(TArray<T, MEM_MOVE>&& that) {
TArray<T, MEM_MOVE>::operator=(std::move(that));
return *this;
}
// Force the use of TArray for data() and size().
using TArray<T, MEM_MOVE>::data;
using TArray<T, MEM_MOVE>::size;
};
} // namespace skia_private
#endif // SkTArray_DEFINED