|  | /* | 
|  | * Copyright 2006 The Android Open Source Project | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #ifndef SkGeometry_DEFINED | 
|  | #define SkGeometry_DEFINED | 
|  |  | 
|  | #include "include/core/SkPoint.h" | 
|  | #include "include/core/SkScalar.h" | 
|  | #include "include/core/SkTypes.h" | 
|  | #include "src/base/SkVx.h" | 
|  |  | 
|  | #include <cstring> | 
|  |  | 
|  | class SkMatrix; | 
|  | struct SkRect; | 
|  |  | 
|  | static inline skvx::float2 from_point(const SkPoint& point) { | 
|  | return skvx::float2::Load(&point); | 
|  | } | 
|  |  | 
|  | static inline SkPoint to_point(const skvx::float2& x) { | 
|  | SkPoint point; | 
|  | x.store(&point); | 
|  | return point; | 
|  | } | 
|  |  | 
|  | static skvx::float2 times_2(const skvx::float2& value) { | 
|  | return value + value; | 
|  | } | 
|  |  | 
|  | /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the | 
|  | equation. | 
|  | */ | 
|  | int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); | 
|  |  | 
|  | /** Measures the angle between two vectors, in the range [0, pi]. | 
|  | */ | 
|  | float SkMeasureAngleBetweenVectors(SkVector, SkVector); | 
|  |  | 
|  | /** Returns a new, arbitrarily scaled vector that bisects the given vectors. The returned bisector | 
|  | will always point toward the interior of the provided vectors. | 
|  | */ | 
|  | SkVector SkFindBisector(SkVector, SkVector); | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t); | 
|  | SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t); | 
|  |  | 
|  | /** Set pt to the point on the src quadratic specified by t. t must be | 
|  | 0 <= t <= 1.0 | 
|  | */ | 
|  | void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr); | 
|  |  | 
|  | /** Given a src quadratic bezier, chop it at the specified t value, | 
|  | where 0 < t < 1, and return the two new quadratics in dst: | 
|  | dst[0..2] and dst[2..4] | 
|  | */ | 
|  | void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); | 
|  |  | 
|  | /** Given a src quadratic bezier, chop it at the specified t == 1/2, | 
|  | The new quads are returned in dst[0..2] and dst[2..4] | 
|  | */ | 
|  | void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); | 
|  |  | 
|  | /** Measures the rotation of the given quadratic curve in radians. | 
|  |  | 
|  | Rotation is perhaps easiest described via a driving analogy: If you drive your car along the | 
|  | curve from p0 to p2, then by the time you arrive at p2, how many radians will your car have | 
|  | rotated? For a quadratic this is the same as the vector inside the tangents at the endpoints. | 
|  |  | 
|  | Quadratics can have rotations in the range [0, pi]. | 
|  | */ | 
|  | inline float SkMeasureQuadRotation(const SkPoint pts[3]) { | 
|  | return SkMeasureAngleBetweenVectors(pts[1] - pts[0], pts[2] - pts[1]); | 
|  | } | 
|  |  | 
|  | /** Given a src quadratic bezier, returns the T value whose tangent angle is halfway between the | 
|  | tangents at p0 and p3. | 
|  | */ | 
|  | float SkFindQuadMidTangent(const SkPoint src[3]); | 
|  |  | 
|  | /** Given a src quadratic bezier, chop it at the tangent whose angle is halfway between the | 
|  | tangents at p0 and p2. The new quads are returned in dst[0..2] and dst[2..4]. | 
|  | */ | 
|  | inline void SkChopQuadAtMidTangent(const SkPoint src[3], SkPoint dst[5]) { | 
|  | SkChopQuadAt(src, dst, SkFindQuadMidTangent(src)); | 
|  | } | 
|  |  | 
|  | /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look | 
|  | for extrema, and return the number of t-values that are found that represent | 
|  | these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the | 
|  | function returns 0. | 
|  | Returned count      tValues[] | 
|  | 0                   ignored | 
|  | 1                   0 < tValues[0] < 1 | 
|  | */ | 
|  | int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); | 
|  |  | 
|  | /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that | 
|  | the resulting beziers are monotonic in Y. This is called by the scan converter. | 
|  | Depending on what is returned, dst[] is treated as follows | 
|  | 0   dst[0..2] is the original quad | 
|  | 1   dst[0..2] and dst[2..4] are the two new quads | 
|  | */ | 
|  | int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); | 
|  | int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]); | 
|  |  | 
|  | /** Given 3 points on a quadratic bezier, if the point of maximum | 
|  | curvature exists on the segment, returns the t value for this | 
|  | point along the curve. Otherwise it will return a value of 0. | 
|  | */ | 
|  | SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]); | 
|  |  | 
|  | /** Given 3 points on a quadratic bezier, divide it into 2 quadratics | 
|  | if the point of maximum curvature exists on the quad segment. | 
|  | Depending on what is returned, dst[] is treated as follows | 
|  | 1   dst[0..2] is the original quad | 
|  | 2   dst[0..2] and dst[2..4] are the two new quads | 
|  | If dst == null, it is ignored and only the count is returned. | 
|  | */ | 
|  | int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); | 
|  |  | 
|  | /** Given 3 points on a quadratic bezier, use degree elevation to | 
|  | convert it into the cubic fitting the same curve. The new cubic | 
|  | curve is returned in dst[0..3]. | 
|  | */ | 
|  | void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]); | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | /** Set pt to the point on the src cubic specified by t. t must be | 
|  | 0 <= t <= 1.0 | 
|  | */ | 
|  | void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, | 
|  | SkVector* tangentOrNull, SkVector* curvatureOrNull); | 
|  |  | 
|  | /** Given a src cubic bezier, chop it at the specified t value, | 
|  | where 0 <= t <= 1, and return the two new cubics in dst: | 
|  | dst[0..3] and dst[3..6] | 
|  | */ | 
|  | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); | 
|  |  | 
|  | /** Given a src cubic bezier, chop it at the specified t0 and t1 values, | 
|  | where 0 <= t0 <= t1 <= 1, and return the three new cubics in dst: | 
|  | dst[0..3], dst[3..6], and dst[6..9] | 
|  | */ | 
|  | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[10], float t0, float t1); | 
|  |  | 
|  | /** Given a src cubic bezier, chop it at the specified t values, | 
|  | where 0 <= t0 <= t1 <= ... <= 1, and return the new cubics in dst: | 
|  | dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)] | 
|  | */ | 
|  | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[], | 
|  | int t_count); | 
|  |  | 
|  | /** Given a src cubic bezier, chop it at the specified t == 1/2, | 
|  | The new cubics are returned in dst[0..3] and dst[3..6] | 
|  | */ | 
|  | void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); | 
|  |  | 
|  | /** Given a cubic curve with no inflection points, this method measures the rotation in radians. | 
|  |  | 
|  | Rotation is perhaps easiest described via a driving analogy: If you drive your car along the | 
|  | curve from p0 to p3, then by the time you arrive at p3, how many radians will your car have | 
|  | rotated? This is not quite the same as the vector inside the tangents at the endpoints, even | 
|  | without inflection, because the curve might rotate around the outside of the | 
|  | tangents (>= 180 degrees) or the inside (<= 180 degrees). | 
|  |  | 
|  | Cubics can have rotations in the range [0, 2*pi]. | 
|  |  | 
|  | NOTE: The caller must either call SkChopCubicAtInflections or otherwise prove that the provided | 
|  | cubic has no inflection points prior to calling this method. | 
|  | */ | 
|  | float SkMeasureNonInflectCubicRotation(const SkPoint[4]); | 
|  |  | 
|  | /** Given a src cubic bezier, returns the T value whose tangent angle is halfway between the | 
|  | tangents at p0 and p3. | 
|  | */ | 
|  | float SkFindCubicMidTangent(const SkPoint src[4]); | 
|  |  | 
|  | /** Given a src cubic bezier, chop it at the tangent whose angle is halfway between the | 
|  | tangents at p0 and p3. The new cubics are returned in dst[0..3] and dst[3..6]. | 
|  |  | 
|  | NOTE: 0- and 360-degree flat lines don't have single points of midtangent. | 
|  | (tangent == midtangent at every point on these curves except the cusp points.) | 
|  | If this is the case then we simply chop at a point which guarantees neither side rotates more | 
|  | than 180 degrees. | 
|  | */ | 
|  | inline void SkChopCubicAtMidTangent(const SkPoint src[4], SkPoint dst[7]) { | 
|  | SkChopCubicAt(src, dst, SkFindCubicMidTangent(src)); | 
|  | } | 
|  |  | 
|  | /** Given the 4 coefficients for a cubic bezier (either X or Y values), look | 
|  | for extrema, and return the number of t-values that are found that represent | 
|  | these extrema. If the cubic has no extrema betwee (0..1) exclusive, the | 
|  | function returns 0. | 
|  | Returned count      tValues[] | 
|  | 0                   ignored | 
|  | 1                   0 < tValues[0] < 1 | 
|  | 2                   0 < tValues[0] < tValues[1] < 1 | 
|  | */ | 
|  | int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, | 
|  | SkScalar tValues[2]); | 
|  |  | 
|  | /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that | 
|  | the resulting beziers are monotonic in Y. This is called by the scan converter. | 
|  | Depending on what is returned, dst[] is treated as follows | 
|  | 0   dst[0..3] is the original cubic | 
|  | 1   dst[0..3] and dst[3..6] are the two new cubics | 
|  | 2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics | 
|  | If dst == null, it is ignored and only the count is returned. | 
|  | */ | 
|  | int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); | 
|  | int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]); | 
|  |  | 
|  | /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the | 
|  | inflection points. | 
|  | */ | 
|  | int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); | 
|  |  | 
|  | /** Return 1 for no chop, 2 for having chopped the cubic at a single | 
|  | inflection point, 3 for having chopped at 2 inflection points. | 
|  | dst will hold the resulting 1, 2, or 3 cubics. | 
|  | */ | 
|  | int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); | 
|  |  | 
|  | int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); | 
|  | int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], | 
|  | SkScalar tValues[3] = nullptr); | 
|  | /** Returns t value of cusp if cubic has one; returns -1 otherwise. | 
|  | */ | 
|  | SkScalar SkFindCubicCusp(const SkPoint src[4]); | 
|  |  | 
|  | /** Given a monotonically increasing or decreasing cubic bezier src, chop it | 
|  | *  where the X value is the specified value. The returned cubics will be in | 
|  | *  dst, sharing the middle point. That is, the first cubic is dst[0..3] and | 
|  | *  the second dst[3..6]. | 
|  | * | 
|  | *  If the cubic provided is *not* monotone, it will be chopped at the first | 
|  | *  time the curve has the specified X value. | 
|  | * | 
|  | *  If the cubic never reaches the specified value, the function returns false. | 
|  | */ | 
|  | bool SkChopMonoCubicAtX(const SkPoint src[4], SkScalar x, SkPoint dst[7]); | 
|  |  | 
|  | /** Given a monotonically increasing or decreasing cubic bezier src, chop it | 
|  | *  where the Y value is the specified value. The returned cubics will be in | 
|  | *  dst, sharing the middle point. That is, the first cubic is dst[0..3] and | 
|  | *  the second dst[3..6]. | 
|  | * | 
|  | *  If the cubic provided is *not* monotone, it will be chopped at the first | 
|  | *  time the curve has the specified Y value. | 
|  | * | 
|  | *  If the cubic never reaches the specified value, the function returns false. | 
|  | */ | 
|  | bool SkChopMonoCubicAtY(const SkPoint src[4], SkScalar y, SkPoint dst[7]); | 
|  |  | 
|  | enum class SkCubicType { | 
|  | kSerpentine, | 
|  | kLoop, | 
|  | kLocalCusp,       // Cusp at a non-infinite parameter value with an inflection at t=infinity. | 
|  | kCuspAtInfinity,  // Cusp with a cusp at t=infinity and a local inflection. | 
|  | kQuadratic, | 
|  | kLineOrPoint | 
|  | }; | 
|  |  | 
|  | static inline bool SkCubicIsDegenerate(SkCubicType type) { | 
|  | switch (type) { | 
|  | case SkCubicType::kSerpentine: | 
|  | case SkCubicType::kLoop: | 
|  | case SkCubicType::kLocalCusp: | 
|  | case SkCubicType::kCuspAtInfinity: | 
|  | return false; | 
|  | case SkCubicType::kQuadratic: | 
|  | case SkCubicType::kLineOrPoint: | 
|  | return true; | 
|  | } | 
|  | SK_ABORT("Invalid SkCubicType"); | 
|  | } | 
|  |  | 
|  | static inline const char* SkCubicTypeName(SkCubicType type) { | 
|  | switch (type) { | 
|  | case SkCubicType::kSerpentine: return "kSerpentine"; | 
|  | case SkCubicType::kLoop: return "kLoop"; | 
|  | case SkCubicType::kLocalCusp: return "kLocalCusp"; | 
|  | case SkCubicType::kCuspAtInfinity: return "kCuspAtInfinity"; | 
|  | case SkCubicType::kQuadratic: return "kQuadratic"; | 
|  | case SkCubicType::kLineOrPoint: return "kLineOrPoint"; | 
|  | } | 
|  | SK_ABORT("Invalid SkCubicType"); | 
|  | } | 
|  |  | 
|  | /** Returns the cubic classification. | 
|  |  | 
|  | t[],s[] are set to the two homogeneous parameter values at which points the lines L & M | 
|  | intersect with K, sorted from smallest to largest and oriented so positive values of the | 
|  | implicit are on the "left" side. For a serpentine curve they are the inflection points. For a | 
|  | loop they are the double point. For a local cusp, they are both equal and denote the cusp point. | 
|  | For a cusp at an infinite parameter value, one will be the local inflection point and the other | 
|  | +inf (t,s = 1,0). If the curve is degenerate (i.e. quadratic or linear) they are both set to a | 
|  | parameter value of +inf (t,s = 1,0). | 
|  |  | 
|  | d[] is filled with the cubic inflection function coefficients. See "Resolution Independent | 
|  | Curve Rendering using Programmable Graphics Hardware", 4.2 Curve Categorization: | 
|  |  | 
|  | If the input points contain infinities or NaN, the return values are undefined. | 
|  |  | 
|  | https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf | 
|  | */ | 
|  | SkCubicType SkClassifyCubic(const SkPoint p[4], double t[2] = nullptr, double s[2] = nullptr, | 
|  | double d[4] = nullptr); | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | enum SkRotationDirection { | 
|  | kCW_SkRotationDirection, | 
|  | kCCW_SkRotationDirection | 
|  | }; | 
|  |  | 
|  | struct SkConic { | 
|  | SkConic() {} | 
|  | SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) { | 
|  | this->set(p0, p1, p2, w); | 
|  | } | 
|  |  | 
|  | SkConic(const SkPoint pts[3], SkScalar w) { | 
|  | this->set(pts, w); | 
|  | } | 
|  |  | 
|  | SkPoint  fPts[3]; | 
|  | SkScalar fW; | 
|  |  | 
|  | void set(const SkPoint pts[3], SkScalar w) { | 
|  | memcpy(fPts, pts, 3 * sizeof(SkPoint)); | 
|  | this->setW(w); | 
|  | } | 
|  |  | 
|  | void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) { | 
|  | fPts[0] = p0; | 
|  | fPts[1] = p1; | 
|  | fPts[2] = p2; | 
|  | this->setW(w); | 
|  | } | 
|  |  | 
|  | void setW(SkScalar w) { | 
|  | if (SkScalarIsFinite(w)) { | 
|  | SkASSERT(w > 0); | 
|  | } | 
|  |  | 
|  | // Guard against bad weights by forcing them to 1. | 
|  | fW = w > 0 && SkScalarIsFinite(w) ? w : 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Given a t-value [0...1] return its position and/or tangent. | 
|  | *  If pos is not null, return its position at the t-value. | 
|  | *  If tangent is not null, return its tangent at the t-value. NOTE the | 
|  | *  tangent value's length is arbitrary, and only its direction should | 
|  | *  be used. | 
|  | */ | 
|  | void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const; | 
|  | [[nodiscard]] bool chopAt(SkScalar t, SkConic dst[2]) const; | 
|  | void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const; | 
|  | void chop(SkConic dst[2]) const; | 
|  |  | 
|  | SkPoint evalAt(SkScalar t) const; | 
|  | SkVector evalTangentAt(SkScalar t) const; | 
|  |  | 
|  | void computeAsQuadError(SkVector* err) const; | 
|  | bool asQuadTol(SkScalar tol) const; | 
|  |  | 
|  | /** | 
|  | *  return the power-of-2 number of quads needed to approximate this conic | 
|  | *  with a sequence of quads. Will be >= 0. | 
|  | */ | 
|  | int SK_SPI computeQuadPOW2(SkScalar tol) const; | 
|  |  | 
|  | /** | 
|  | *  Chop this conic into N quads, stored continguously in pts[], where | 
|  | *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N) | 
|  | */ | 
|  | [[nodiscard]] int SK_SPI chopIntoQuadsPOW2(SkPoint pts[], int pow2) const; | 
|  |  | 
|  | float findMidTangent() const; | 
|  | bool findXExtrema(SkScalar* t) const; | 
|  | bool findYExtrema(SkScalar* t) const; | 
|  | bool chopAtXExtrema(SkConic dst[2]) const; | 
|  | bool chopAtYExtrema(SkConic dst[2]) const; | 
|  |  | 
|  | void computeTightBounds(SkRect* bounds) const; | 
|  | void computeFastBounds(SkRect* bounds) const; | 
|  |  | 
|  | /** Find the parameter value where the conic takes on its maximum curvature. | 
|  | * | 
|  | *  @param t   output scalar for max curvature.  Will be unchanged if | 
|  | *             max curvature outside 0..1 range. | 
|  | * | 
|  | *  @return  true if max curvature found inside 0..1 range, false otherwise | 
|  | */ | 
|  | //    bool findMaxCurvature(SkScalar* t) const;  // unimplemented | 
|  |  | 
|  | static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&); | 
|  |  | 
|  | enum { | 
|  | kMaxConicsForArc = 5 | 
|  | }; | 
|  | static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection, | 
|  | const SkMatrix*, SkConic conics[kMaxConicsForArc]); | 
|  | }; | 
|  |  | 
|  | // inline helpers are contained in a namespace to avoid external leakage to fragile SkVx members | 
|  | namespace {  // NOLINT(google-build-namespaces) | 
|  |  | 
|  | /** | 
|  | *  use for : eval(t) == A * t^2 + B * t + C | 
|  | */ | 
|  | struct SkQuadCoeff { | 
|  | SkQuadCoeff() {} | 
|  |  | 
|  | SkQuadCoeff(const skvx::float2& A, const skvx::float2& B, const skvx::float2& C) | 
|  | : fA(A) | 
|  | , fB(B) | 
|  | , fC(C) | 
|  | { | 
|  | } | 
|  |  | 
|  | SkQuadCoeff(const SkPoint src[3]) { | 
|  | fC = from_point(src[0]); | 
|  | auto P1 = from_point(src[1]); | 
|  | auto P2 = from_point(src[2]); | 
|  | fB = times_2(P1 - fC); | 
|  | fA = P2 - times_2(P1) + fC; | 
|  | } | 
|  |  | 
|  | skvx::float2 eval(const skvx::float2& tt) { | 
|  | return (fA * tt + fB) * tt + fC; | 
|  | } | 
|  |  | 
|  | skvx::float2 fA; | 
|  | skvx::float2 fB; | 
|  | skvx::float2 fC; | 
|  | }; | 
|  |  | 
|  | struct SkConicCoeff { | 
|  | SkConicCoeff(const SkConic& conic) { | 
|  | skvx::float2 p0 = from_point(conic.fPts[0]); | 
|  | skvx::float2 p1 = from_point(conic.fPts[1]); | 
|  | skvx::float2 p2 = from_point(conic.fPts[2]); | 
|  | skvx::float2 ww(conic.fW); | 
|  |  | 
|  | auto p1w = p1 * ww; | 
|  | fNumer.fC = p0; | 
|  | fNumer.fA = p2 - times_2(p1w) + p0; | 
|  | fNumer.fB = times_2(p1w - p0); | 
|  |  | 
|  | fDenom.fC = 1; | 
|  | fDenom.fB = times_2(ww - fDenom.fC); | 
|  | fDenom.fA = 0 - fDenom.fB; | 
|  | } | 
|  |  | 
|  | skvx::float2 eval(SkScalar t) { | 
|  | skvx::float2 tt(t); | 
|  | skvx::float2 numer = fNumer.eval(tt); | 
|  | skvx::float2 denom = fDenom.eval(tt); | 
|  | return numer / denom; | 
|  | } | 
|  |  | 
|  | SkQuadCoeff fNumer; | 
|  | SkQuadCoeff fDenom; | 
|  | }; | 
|  |  | 
|  | struct SkCubicCoeff { | 
|  | SkCubicCoeff(const SkPoint src[4]) { | 
|  | skvx::float2 P0 = from_point(src[0]); | 
|  | skvx::float2 P1 = from_point(src[1]); | 
|  | skvx::float2 P2 = from_point(src[2]); | 
|  | skvx::float2 P3 = from_point(src[3]); | 
|  | skvx::float2 three(3); | 
|  | fA = P3 + three * (P1 - P2) - P0; | 
|  | fB = three * (P2 - times_2(P1) + P0); | 
|  | fC = three * (P1 - P0); | 
|  | fD = P0; | 
|  | } | 
|  |  | 
|  | skvx::float2 eval(const skvx::float2& t) { | 
|  | return ((fA * t + fB) * t + fC) * t + fD; | 
|  | } | 
|  |  | 
|  | skvx::float2 fA; | 
|  | skvx::float2 fB; | 
|  | skvx::float2 fC; | 
|  | skvx::float2 fD; | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | #include "include/private/base/SkTemplates.h" | 
|  |  | 
|  | /** | 
|  | *  Help class to allocate storage for approximating a conic with N quads. | 
|  | */ | 
|  | class SkAutoConicToQuads { | 
|  | public: | 
|  | SkAutoConicToQuads() : fQuadCount(0) {} | 
|  |  | 
|  | /** | 
|  | *  Given a conic and a tolerance, return the array of points for the | 
|  | *  approximating quad(s). Call countQuads() to know the number of quads | 
|  | *  represented in these points. | 
|  | * | 
|  | *  The quads are allocated to share end-points. e.g. if there are 4 quads, | 
|  | *  there will be 9 points allocated as follows | 
|  | *      quad[0] == pts[0..2] | 
|  | *      quad[1] == pts[2..4] | 
|  | *      quad[2] == pts[4..6] | 
|  | *      quad[3] == pts[6..8] | 
|  | */ | 
|  | const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) { | 
|  | int pow2 = conic.computeQuadPOW2(tol); | 
|  | fQuadCount = 1 << pow2; | 
|  | SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount); | 
|  | fQuadCount = conic.chopIntoQuadsPOW2(pts, pow2); | 
|  | return pts; | 
|  | } | 
|  |  | 
|  | const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight, | 
|  | SkScalar tol) { | 
|  | SkConic conic; | 
|  | conic.set(pts, weight); | 
|  | return computeQuads(conic, tol); | 
|  | } | 
|  |  | 
|  | int countQuads() const { return fQuadCount; } | 
|  |  | 
|  | private: | 
|  | enum { | 
|  | kQuadCount = 8, // should handle most conics | 
|  | kPointCount = 1 + 2 * kQuadCount, | 
|  | }; | 
|  | skia_private::AutoSTMalloc<kPointCount, SkPoint> fStorage; | 
|  | int fQuadCount; // #quads for current usage | 
|  | }; | 
|  |  | 
|  | #endif |