|  | /* | 
|  | * Copyright 2019 Google LLC | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "gm/gm.h" | 
|  | #include "include/core/SkBitmap.h" | 
|  | #include "include/core/SkCanvas.h" | 
|  | #include "include/core/SkData.h" | 
|  | #include "include/core/SkPaint.h" | 
|  | #include "include/core/SkRRect.h" | 
|  | #include "include/core/SkSize.h" | 
|  | #include "include/core/SkString.h" | 
|  | #include "include/core/SkSurface.h" | 
|  | #include "include/effects/SkGradientShader.h" | 
|  | #include "include/effects/SkImageFilters.h" | 
|  | #include "include/effects/SkRuntimeEffect.h" | 
|  | #include "include/gpu/GrRecordingContext.h" | 
|  | #include "src/base/SkRandom.h" | 
|  | #include "src/core/SkColorSpacePriv.h" | 
|  | #include "src/core/SkRuntimeEffectPriv.h" | 
|  | #include "tools/Resources.h" | 
|  |  | 
|  | enum RT_Flags { | 
|  | kAnimate_RTFlag     = 0x1, | 
|  | kBench_RTFlag       = 0x2, | 
|  | kColorFilter_RTFlag = 0x4, | 
|  | }; | 
|  |  | 
|  | class RuntimeShaderGM : public skiagm::GM { | 
|  | public: | 
|  | RuntimeShaderGM(const char* name, SkISize size, const char* sksl, uint32_t flags = 0) | 
|  | : fName(name), fSize(size), fFlags(flags), fSkSL(sksl) {} | 
|  |  | 
|  | void onOnceBeforeDraw() override { | 
|  | auto [effect, error] = (fFlags & kColorFilter_RTFlag) | 
|  | ? SkRuntimeEffect::MakeForColorFilter(fSkSL) | 
|  | : SkRuntimeEffect::MakeForShader(fSkSL); | 
|  | if (!effect) { | 
|  | SkDebugf("RuntimeShader error: %s\n", error.c_str()); | 
|  | } | 
|  | fEffect = std::move(effect); | 
|  | } | 
|  |  | 
|  | bool runAsBench() const override { return SkToBool(fFlags & kBench_RTFlag); } | 
|  | SkString getName() const override { return fName; } | 
|  | SkISize getISize() override { return fSize; } | 
|  |  | 
|  | bool onAnimate(double nanos) override { | 
|  | fSecs = nanos / (1000 * 1000 * 1000); | 
|  | return SkToBool(fFlags & kAnimate_RTFlag); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | SkString fName; | 
|  | SkISize  fSize; | 
|  | uint32_t fFlags; | 
|  | float    fSecs = 0.0f; | 
|  |  | 
|  | SkString fSkSL; | 
|  | sk_sp<SkRuntimeEffect> fEffect; | 
|  | }; | 
|  |  | 
|  | class SimpleRT : public RuntimeShaderGM { | 
|  | public: | 
|  | SimpleRT() : RuntimeShaderGM("runtime_shader", {512, 256}, R"( | 
|  | uniform half4 gColor; | 
|  |  | 
|  | half4 main(float2 p) { | 
|  | return half4(p*(1.0/255), gColor.b, 1); | 
|  | } | 
|  | )", kBench_RTFlag) {} | 
|  |  | 
|  | void onDraw(SkCanvas* canvas) override { | 
|  | SkRuntimeShaderBuilder builder(fEffect); | 
|  |  | 
|  | SkMatrix localM; | 
|  | localM.setRotate(90, 128, 128); | 
|  | builder.uniform("gColor") = SkColor4f{1, 0, 0, 1}; | 
|  |  | 
|  | SkPaint p; | 
|  | p.setShader(builder.makeShader(&localM)); | 
|  | canvas->drawRect({0, 0, 256, 256}, p); | 
|  | } | 
|  | }; | 
|  | DEF_GM(return new SimpleRT;) | 
|  |  | 
|  | static sk_sp<SkShader> make_shader(sk_sp<SkImage> img, SkISize size) { | 
|  | SkMatrix scale = SkMatrix::Scale(size.width()  / (float)img->width(), | 
|  | size.height() / (float)img->height()); | 
|  | return img->makeShader(SkSamplingOptions(), scale); | 
|  | } | 
|  |  | 
|  | static sk_sp<SkShader> make_threshold(SkISize size) { | 
|  | auto info = SkImageInfo::Make(size.width(), size.height(), kAlpha_8_SkColorType, | 
|  | kPremul_SkAlphaType); | 
|  | auto surf = SkSurfaces::Raster(info); | 
|  | auto canvas = surf->getCanvas(); | 
|  |  | 
|  | const SkScalar rad = 50; | 
|  | SkColor colors[] = {SK_ColorBLACK, 0}; | 
|  | SkPaint paint; | 
|  | paint.setAntiAlias(true); | 
|  | paint.setShader(SkGradientShader::MakeRadial({0,0}, rad, colors, nullptr, 2, SkTileMode::kClamp)); | 
|  |  | 
|  | SkPaint layerPaint; | 
|  | const SkScalar sigma = 16.0f; | 
|  | layerPaint.setImageFilter(SkImageFilters::Blur(sigma, sigma, nullptr)); | 
|  | canvas->saveLayer(nullptr, &layerPaint); | 
|  |  | 
|  | SkRandom rand; | 
|  | for (int i = 0; i < 25; ++i) { | 
|  | SkScalar x = rand.nextF() * size.width(); | 
|  | SkScalar y = rand.nextF() * size.height(); | 
|  | canvas->save(); | 
|  | canvas->translate(x, y); | 
|  | canvas->drawCircle(0, 0, rad, paint); | 
|  | canvas->restore(); | 
|  | } | 
|  |  | 
|  | canvas->restore();  // apply the blur | 
|  |  | 
|  | return surf->makeImageSnapshot()->makeShader(SkSamplingOptions()); | 
|  | } | 
|  |  | 
|  | class ThresholdRT : public RuntimeShaderGM { | 
|  | public: | 
|  | ThresholdRT() : RuntimeShaderGM("threshold_rt", {256, 256}, R"( | 
|  | uniform shader before_map; | 
|  | uniform shader after_map; | 
|  | uniform shader threshold_map; | 
|  |  | 
|  | uniform float cutoff; | 
|  | uniform float slope; | 
|  |  | 
|  | float smooth_cutoff(float x) { | 
|  | x = x * slope + (0.5 - slope * cutoff); | 
|  | return clamp(x, 0, 1); | 
|  | } | 
|  |  | 
|  | half4 main(float2 xy) { | 
|  | half4 before = before_map.eval(xy); | 
|  | half4 after = after_map.eval(xy); | 
|  |  | 
|  | float m = smooth_cutoff(threshold_map.eval(xy).a); | 
|  | return mix(before, after, m); | 
|  | } | 
|  | )", kAnimate_RTFlag | kBench_RTFlag) {} | 
|  |  | 
|  | sk_sp<SkShader> fBefore, fAfter, fThreshold; | 
|  |  | 
|  | void onOnceBeforeDraw() override { | 
|  | const SkISize size = {256, 256}; | 
|  | fThreshold = make_threshold(size); | 
|  | fBefore = make_shader(GetResourceAsImage("images/mandrill_256.png"), size); | 
|  | fAfter = make_shader(GetResourceAsImage("images/dog.jpg"), size); | 
|  |  | 
|  | this->RuntimeShaderGM::onOnceBeforeDraw(); | 
|  | } | 
|  |  | 
|  | void onDraw(SkCanvas* canvas) override { | 
|  | SkRuntimeShaderBuilder builder(fEffect); | 
|  |  | 
|  | builder.uniform("cutoff") = sinf(fSecs) * 0.55f + 0.5f; | 
|  | builder.uniform("slope")  = 10.0f; | 
|  |  | 
|  | builder.child("before_map")    = fBefore; | 
|  | builder.child("after_map")     = fAfter; | 
|  | builder.child("threshold_map") = fThreshold; | 
|  |  | 
|  | SkPaint paint; | 
|  | paint.setShader(builder.makeShader()); | 
|  | canvas->drawRect({0, 0, 256, 256}, paint); | 
|  |  | 
|  | auto draw = [&](SkScalar x, SkScalar y, sk_sp<SkShader> shader) { | 
|  | paint.setShader(shader); | 
|  | canvas->save(); | 
|  | canvas->translate(x, y); | 
|  | canvas->drawRect({0, 0, 256, 256}, paint); | 
|  | canvas->restore(); | 
|  | }; | 
|  | draw(256,   0, fThreshold); | 
|  | draw(  0, 256, fBefore); | 
|  | draw(256, 256, fAfter); | 
|  | } | 
|  | }; | 
|  | DEF_GM(return new ThresholdRT;) | 
|  |  | 
|  | class SpiralRT : public RuntimeShaderGM { | 
|  | public: | 
|  | SpiralRT() : RuntimeShaderGM("spiral_rt", {512, 512}, R"( | 
|  | uniform float rad_scale; | 
|  | uniform float2 in_center; | 
|  | layout(color) uniform float4 in_colors0; | 
|  | layout(color) uniform float4 in_colors1; | 
|  |  | 
|  | half4 main(float2 p) { | 
|  | float2 pp = p - in_center; | 
|  | float radius = length(pp); | 
|  | radius = sqrt(radius); | 
|  | float angle = atan(pp.y / pp.x); | 
|  | float t = (angle + 3.1415926/2) / (3.1415926); | 
|  | t += radius * rad_scale; | 
|  | t = fract(t); | 
|  | return in_colors0 * (1-t) + in_colors1 * t; | 
|  | } | 
|  | )", kAnimate_RTFlag | kBench_RTFlag) {} | 
|  |  | 
|  | void onDraw(SkCanvas* canvas) override { | 
|  | SkRuntimeShaderBuilder builder(fEffect); | 
|  |  | 
|  | builder.uniform("rad_scale")  = std::sin(fSecs * 0.5f + 2.0f) / 5; | 
|  | builder.uniform("in_center")  = SkV2{256, 256}; | 
|  | builder.uniform("in_colors0") = SkColors::kRed; | 
|  | builder.uniform("in_colors1") = SkColors::kGreen; | 
|  |  | 
|  | SkPaint paint; | 
|  | paint.setShader(builder.makeShader()); | 
|  | canvas->drawRect({0, 0, 512, 512}, paint); | 
|  | } | 
|  | }; | 
|  | DEF_GM(return new SpiralRT;) | 
|  |  | 
|  | // Test case for sampling with both unmodified input coordinates, and explicit coordinates. | 
|  | // The first version of skbug.com/11869 suffered a bug where all samples of a child were treated | 
|  | // as pass-through if *at least one* used the unmodified coordinates. This was detected & tracked | 
|  | // in b/181092919. This GM is similar, and demonstrates the bug before the fix was applied. | 
|  | class UnsharpRT : public RuntimeShaderGM { | 
|  | public: | 
|  | UnsharpRT() : RuntimeShaderGM("unsharp_rt", {512, 256}, R"( | 
|  | uniform shader child; | 
|  | half4 main(float2 xy) { | 
|  | half4 c = child.eval(xy) * 5; | 
|  | c -= child.eval(xy + float2( 1,  0)); | 
|  | c -= child.eval(xy + float2(-1,  0)); | 
|  | c -= child.eval(xy + float2( 0,  1)); | 
|  | c -= child.eval(xy + float2( 0, -1)); | 
|  | return c; | 
|  | } | 
|  | )") {} | 
|  |  | 
|  | sk_sp<SkImage> fMandrill; | 
|  |  | 
|  | void onOnceBeforeDraw() override { | 
|  | fMandrill      = GetResourceAsImage("images/mandrill_256.png"); | 
|  | this->RuntimeShaderGM::onOnceBeforeDraw(); | 
|  | } | 
|  |  | 
|  | void onDraw(SkCanvas* canvas) override { | 
|  | // First we draw the unmodified image | 
|  | canvas->drawImage(fMandrill,      0,   0); | 
|  |  | 
|  | // Now draw the image with our unsharp mask applied | 
|  | SkRuntimeShaderBuilder builder(fEffect); | 
|  | const SkSamplingOptions sampling(SkFilterMode::kNearest); | 
|  | builder.child("child") = fMandrill->makeShader(sampling); | 
|  |  | 
|  | SkPaint paint; | 
|  | paint.setShader(builder.makeShader()); | 
|  | canvas->translate(256, 0); | 
|  | canvas->drawRect({ 0, 0, 256, 256 }, paint); | 
|  | } | 
|  | }; | 
|  | DEF_GM(return new UnsharpRT;) | 
|  |  | 
|  | class ColorCubeRT : public RuntimeShaderGM { | 
|  | public: | 
|  | ColorCubeRT() : RuntimeShaderGM("color_cube_rt", {512, 512}, R"( | 
|  | uniform shader child; | 
|  | uniform shader color_cube; | 
|  |  | 
|  | uniform float rg_scale; | 
|  | uniform float rg_bias; | 
|  | uniform float b_scale; | 
|  | uniform float inv_size; | 
|  |  | 
|  | half4 main(float2 xy) { | 
|  | float4 c = unpremul(child.eval(xy)); | 
|  |  | 
|  | // Map to cube coords: | 
|  | float3 cubeCoords = float3(c.rg * rg_scale + rg_bias, c.b * b_scale); | 
|  |  | 
|  | // Compute slice coordinate | 
|  | float2 coords1 = float2((floor(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g); | 
|  | float2 coords2 = float2(( ceil(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g); | 
|  |  | 
|  | // Two bilinear fetches, plus a manual lerp for the third axis: | 
|  | half4 color = mix(color_cube.eval(coords1), color_cube.eval(coords2), | 
|  | fract(cubeCoords.b)); | 
|  |  | 
|  | // Premul again | 
|  | color.rgb *= color.a; | 
|  |  | 
|  | return color; | 
|  | } | 
|  | )") {} | 
|  |  | 
|  | sk_sp<SkImage> fMandrill, fMandrillSepia, fIdentityCube, fSepiaCube; | 
|  |  | 
|  | void onOnceBeforeDraw() override { | 
|  | fMandrill      = GetResourceAsImage("images/mandrill_256.png"); | 
|  | fMandrillSepia = GetResourceAsImage("images/mandrill_sepia.png"); | 
|  | fIdentityCube  = GetResourceAsImage("images/lut_identity.png"); | 
|  | fSepiaCube     = GetResourceAsImage("images/lut_sepia.png"); | 
|  |  | 
|  | this->RuntimeShaderGM::onOnceBeforeDraw(); | 
|  | } | 
|  |  | 
|  | void onDraw(SkCanvas* canvas) override { | 
|  | SkRuntimeShaderBuilder builder(fEffect); | 
|  |  | 
|  | // First we draw the unmodified image, and a copy that was sepia-toned in Photoshop: | 
|  | canvas->drawImage(fMandrill,      0,   0); | 
|  | canvas->drawImage(fMandrillSepia, 0, 256); | 
|  |  | 
|  | // LUT dimensions should be (kSize^2, kSize) | 
|  | constexpr float kSize = 16.0f; | 
|  |  | 
|  | const SkSamplingOptions sampling(SkFilterMode::kLinear); | 
|  |  | 
|  | builder.uniform("rg_scale")     = (kSize - 1) / kSize; | 
|  | builder.uniform("rg_bias")      = 0.5f / kSize; | 
|  | builder.uniform("b_scale")      = kSize - 1; | 
|  | builder.uniform("inv_size")     = 1.0f / kSize; | 
|  |  | 
|  | builder.child("child")        = fMandrill->makeShader(sampling); | 
|  |  | 
|  | SkPaint paint; | 
|  |  | 
|  | // TODO: Should we add SkImage::makeNormalizedShader() to handle this automatically? | 
|  | SkMatrix normalize = SkMatrix::Scale(1.0f / (kSize * kSize), 1.0f / kSize); | 
|  |  | 
|  | // Now draw the image with an identity color cube - it should look like the original | 
|  | builder.child("color_cube") = fIdentityCube->makeShader(sampling, normalize); | 
|  | paint.setShader(builder.makeShader()); | 
|  | canvas->translate(256, 0); | 
|  | canvas->drawRect({ 0, 0, 256, 256 }, paint); | 
|  |  | 
|  | // ... and with a sepia-tone color cube. This should match the sepia-toned image. | 
|  | builder.child("color_cube") = fSepiaCube->makeShader(sampling, normalize); | 
|  | paint.setShader(builder.makeShader()); | 
|  | canvas->translate(0, 256); | 
|  | canvas->drawRect({ 0, 0, 256, 256 }, paint); | 
|  | } | 
|  | }; | 
|  | DEF_GM(return new ColorCubeRT;) | 
|  |  | 
|  | // Same as above, but demonstrating how to implement this as a runtime color filter (that samples | 
|  | // a shader child for the LUT). | 
|  | class ColorCubeColorFilterRT : public RuntimeShaderGM { | 
|  | public: | 
|  | ColorCubeColorFilterRT() : RuntimeShaderGM("color_cube_cf_rt", {512, 512}, R"( | 
|  | uniform shader color_cube; | 
|  |  | 
|  | uniform float rg_scale; | 
|  | uniform float rg_bias; | 
|  | uniform float b_scale; | 
|  | uniform float inv_size; | 
|  |  | 
|  | half4 main(half4 inColor) { | 
|  | float4 c = unpremul(inColor); | 
|  |  | 
|  | // Map to cube coords: | 
|  | float3 cubeCoords = float3(c.rg * rg_scale + rg_bias, c.b * b_scale); | 
|  |  | 
|  | // Compute slice coordinate | 
|  | float2 coords1 = float2((floor(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g); | 
|  | float2 coords2 = float2(( ceil(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g); | 
|  |  | 
|  | // Two bilinear fetches, plus a manual lerp for the third axis: | 
|  | half4 color = mix(color_cube.eval(coords1), color_cube.eval(coords2), | 
|  | fract(cubeCoords.b)); | 
|  |  | 
|  | // Premul again | 
|  | color.rgb *= color.a; | 
|  |  | 
|  | return color; | 
|  | } | 
|  | )", kColorFilter_RTFlag) {} | 
|  |  | 
|  | sk_sp<SkImage> fMandrill, fMandrillSepia, fIdentityCube, fSepiaCube; | 
|  |  | 
|  | void onOnceBeforeDraw() override { | 
|  | fMandrill      = GetResourceAsImage("images/mandrill_256.png"); | 
|  | fMandrillSepia = GetResourceAsImage("images/mandrill_sepia.png"); | 
|  | fIdentityCube  = GetResourceAsImage("images/lut_identity.png"); | 
|  | fSepiaCube     = GetResourceAsImage("images/lut_sepia.png"); | 
|  |  | 
|  | this->RuntimeShaderGM::onOnceBeforeDraw(); | 
|  | } | 
|  |  | 
|  | void onDraw(SkCanvas* canvas) override { | 
|  | SkRuntimeColorFilterBuilder builder(fEffect); | 
|  |  | 
|  | // First we draw the unmodified image, and a copy that was sepia-toned in Photoshop: | 
|  | canvas->drawImage(fMandrill,      0,   0); | 
|  | canvas->drawImage(fMandrillSepia, 0, 256); | 
|  |  | 
|  | // LUT dimensions should be (kSize^2, kSize) | 
|  | constexpr float kSize = 16.0f; | 
|  |  | 
|  | const SkSamplingOptions sampling(SkFilterMode::kLinear); | 
|  |  | 
|  | builder.uniform("rg_scale")     = (kSize - 1) / kSize; | 
|  | builder.uniform("rg_bias")      = 0.5f / kSize; | 
|  | builder.uniform("b_scale")      = kSize - 1; | 
|  | builder.uniform("inv_size")     = 1.0f / kSize; | 
|  |  | 
|  | SkPaint paint; | 
|  |  | 
|  | // TODO: Should we add SkImage::makeNormalizedShader() to handle this automatically? | 
|  | SkMatrix normalize = SkMatrix::Scale(1.0f / (kSize * kSize), 1.0f / kSize); | 
|  |  | 
|  | // Now draw the image with an identity color cube - it should look like the original | 
|  | builder.child("color_cube") = fIdentityCube->makeShader(sampling, normalize); | 
|  |  | 
|  | paint.setColorFilter(builder.makeColorFilter()); | 
|  | canvas->drawImage(fMandrill, 256, 0, sampling, &paint); | 
|  |  | 
|  | // ... and with a sepia-tone color cube. This should match the sepia-toned image. | 
|  | builder.child("color_cube") = fSepiaCube->makeShader(sampling, normalize); | 
|  |  | 
|  | paint.setColorFilter(builder.makeColorFilter()); | 
|  | canvas->drawImage(fMandrill, 256, 256, sampling, &paint); | 
|  | } | 
|  | }; | 
|  | DEF_GM(return new ColorCubeColorFilterRT;) | 
|  |  | 
|  | class DefaultColorRT : public RuntimeShaderGM { | 
|  | public: | 
|  | DefaultColorRT() : RuntimeShaderGM("default_color_rt", {512, 256}, R"( | 
|  | uniform shader child; | 
|  | half4 main(float2 xy) { | 
|  | return child.eval(xy); | 
|  | } | 
|  | )") {} | 
|  |  | 
|  | sk_sp<SkImage> fMandrill; | 
|  |  | 
|  | void onOnceBeforeDraw() override { | 
|  | fMandrill      = GetResourceAsImage("images/mandrill_256.png"); | 
|  | this->RuntimeShaderGM::onOnceBeforeDraw(); | 
|  | } | 
|  |  | 
|  | void onDraw(SkCanvas* canvas) override { | 
|  | SkRuntimeShaderBuilder builder(fEffect); | 
|  |  | 
|  | // First, we leave the child as null, so sampling it returns the default (paint) color | 
|  | SkPaint paint; | 
|  | paint.setColor4f({ 0.25f, 0.75f, 0.75f, 1.0f }); | 
|  | paint.setShader(builder.makeShader()); | 
|  | canvas->drawRect({ 0, 0, 256, 256 }, paint); | 
|  |  | 
|  | // Now we bind an image shader as the child. This (by convention) scales by the paint alpha | 
|  | builder.child("child") = fMandrill->makeShader(SkSamplingOptions()); | 
|  | paint.setColor4f({ 1.0f, 1.0f, 1.0f, 0.5f }); | 
|  | paint.setShader(builder.makeShader()); | 
|  | canvas->translate(256, 0); | 
|  | canvas->drawRect({ 0, 0, 256, 256 }, paint); | 
|  |  | 
|  | } | 
|  | }; | 
|  | DEF_GM(return new DefaultColorRT;) | 
|  |  | 
|  | // Emits coverage for a rounded rectangle whose corners are superellipses defined by the boundary: | 
|  | // | 
|  | //   x^n + y^n == 1 | 
|  | // | 
|  | // Where x and y are normalized, clamped coordinates ranging from 0..1 inside the nearest corner's | 
|  | // bounding box. | 
|  | // | 
|  | // See: https://en.wikipedia.org/wiki/Superellipse | 
|  | class ClipSuperRRect : public RuntimeShaderGM { | 
|  | public: | 
|  | ClipSuperRRect(const char* name, float power) : RuntimeShaderGM(name, {500, 500}, R"( | 
|  | uniform float power_minus1; | 
|  | uniform float2 stretch_factor; | 
|  | uniform float2x2 derivatives; | 
|  | half4 main(float2 xy) { | 
|  | xy = max(abs(xy) + stretch_factor, 0); | 
|  | float2 exp_minus1 = pow(xy, power_minus1.xx);  // If power == 3.5: xy * xy * sqrt(xy) | 
|  | float f = dot(exp_minus1, xy) - 1;  // f = x^n + y^n - 1 | 
|  | float2 grad = exp_minus1 * derivatives; | 
|  | float fwidth = abs(grad.x) + abs(grad.y) + 1e-12;  // 1e-12 to avoid a divide by zero. | 
|  | return half4(saturate(.5 - f/fwidth)); // Approx coverage by riding the gradient to f=0. | 
|  | } | 
|  | )"), fPower(power) {} | 
|  |  | 
|  | void drawSuperRRect(SkCanvas* canvas, const SkRect& superRRect, float radX, float radY, | 
|  | SkColor color) { | 
|  | SkPaint paint; | 
|  | paint.setColor(color); | 
|  |  | 
|  | if (fPower == 2) { | 
|  | // Draw a normal round rect for the sake of testing. | 
|  | SkRRect rrect = SkRRect::MakeRectXY(superRRect, radX, radY); | 
|  | paint.setAntiAlias(true); | 
|  | canvas->drawRRect(rrect, paint); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SkRuntimeShaderBuilder builder(fEffect); | 
|  | builder.uniform("power_minus1") = fPower - 1; | 
|  |  | 
|  | // Size the corners such that the "apex" of our "super" rounded corner is in the same | 
|  | // location that the apex of a circular rounded corner would be with the given radii. We | 
|  | // define the apex as the point on the rounded corner that is 45 degrees between the | 
|  | // horizontal and vertical edges. | 
|  | float scale = (1 - SK_ScalarRoot2Over2) / (1 - exp2f(-1/fPower)); | 
|  | float cornerWidth = radX * scale; | 
|  | float cornerHeight = radY * scale; | 
|  | cornerWidth = std::min(cornerWidth, superRRect.width() * .5f); | 
|  | cornerHeight = std::min(cornerHeight, superRRect.height() * .5f); | 
|  | // The stretch factor controls how long the flat edge should be between rounded corners. | 
|  | builder.uniform("stretch_factor") = SkV2{1 - superRRect.width()*.5f / cornerWidth, | 
|  | 1 - superRRect.height()*.5f / cornerHeight}; | 
|  |  | 
|  | // Calculate a 2x2 "derivatives" matrix that the shader will use to find the gradient. | 
|  | // | 
|  | //     f = s^n + t^n - 1   [s,t are "super" rounded corner coords in normalized 0..1 space] | 
|  | // | 
|  | //     gradient = [df/dx  df/dy] = [ns^(n-1)  nt^(n-1)] * |ds/dx  ds/dy| | 
|  | //                                                        |dt/dx  dt/dy| | 
|  | // | 
|  | //              = [s^(n-1)  t^(n-1)] * |n  0| * |ds/dx  ds/dy| | 
|  | //                                     |0  n|   |dt/dx  dt/dy| | 
|  | // | 
|  | //              = [s^(n-1)  t^(n-1)] * |2n/cornerWidth   0| * mat2x2(canvasMatrix)^-1 | 
|  | //                                     |0  2n/cornerHeight| | 
|  | // | 
|  | //              = [s^(n-1)  t^(n-1)] * "derivatives" | 
|  | // | 
|  | const SkMatrix& M = canvas->getTotalMatrix(); | 
|  | float a=M.getScaleX(), b=M.getSkewX(), c=M.getSkewY(), d=M.getScaleY(); | 
|  | float determinant = a*d - b*c; | 
|  | float dx = fPower / (cornerWidth * determinant); | 
|  | float dy = fPower / (cornerHeight * determinant); | 
|  | builder.uniform("derivatives") = SkV4{d*dx, -c*dy, -b*dx, a*dy}; | 
|  |  | 
|  | // This matrix will be inverted by the effect system, giving a matrix that converts local | 
|  | // coordinates to (almost) coner coordinates. To get the rest of the way to the nearest | 
|  | // corner's space, the shader will have to take the absolute value, add the stretch_factor, | 
|  | // then clamp above zero. | 
|  | SkMatrix cornerToLocal; | 
|  | cornerToLocal.setScaleTranslate(cornerWidth, cornerHeight, superRRect.centerX(), | 
|  | superRRect.centerY()); | 
|  | canvas->clipShader(builder.makeShader(&cornerToLocal)); | 
|  |  | 
|  | // Bloat the outer edges of the rect we will draw so it contains all the antialiased pixels. | 
|  | // Bloat by a full pixel instead of half in case Skia is in a mode that draws this rect with | 
|  | // unexpected AA of its own. | 
|  | float inverseDet = 1 / fabsf(determinant); | 
|  | float bloatX = (fabsf(d) + fabsf(c)) * inverseDet; | 
|  | float bloatY = (fabsf(b) + fabsf(a)) * inverseDet; | 
|  | canvas->drawRect(superRRect.makeOutset(bloatX, bloatY), paint); | 
|  | } | 
|  |  | 
|  | void onDraw(SkCanvas* canvas) override { | 
|  | SkRandom rand(2); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->translate(canvas->imageInfo().width() / 2.f, canvas->imageInfo().height() / 2.f); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->rotate(21); | 
|  | this->drawSuperRRect(canvas, SkRect::MakeXYWH(-5, 25, 175, 100), 50, 30, | 
|  | rand.nextU() | 0xff808080); | 
|  | canvas->restore(); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->rotate(94); | 
|  | this->drawSuperRRect(canvas, SkRect::MakeXYWH(95, 75, 125, 100), 30, 30, | 
|  | rand.nextU() | 0xff808080); | 
|  | canvas->restore(); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->rotate(132); | 
|  | this->drawSuperRRect(canvas, SkRect::MakeXYWH(0, 75, 150, 100), 40, 30, | 
|  | rand.nextU() | 0xff808080); | 
|  | canvas->restore(); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->rotate(282); | 
|  | this->drawSuperRRect(canvas, SkRect::MakeXYWH(15, -20, 100, 100), 20, 20, | 
|  | rand.nextU() | 0xff808080); | 
|  | canvas->restore(); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->rotate(0); | 
|  | this->drawSuperRRect(canvas, SkRect::MakeXYWH(140, -50, 90, 110), 25, 25, | 
|  | rand.nextU() | 0xff808080); | 
|  | canvas->restore(); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->rotate(-35); | 
|  | this->drawSuperRRect(canvas, SkRect::MakeXYWH(160, -60, 60, 90), 18, 18, | 
|  | rand.nextU() | 0xff808080); | 
|  | canvas->restore(); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->rotate(65); | 
|  | this->drawSuperRRect(canvas, SkRect::MakeXYWH(220, -120, 60, 90), 18, 18, | 
|  | rand.nextU() | 0xff808080); | 
|  | canvas->restore(); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->rotate(265); | 
|  | this->drawSuperRRect(canvas, SkRect::MakeXYWH(150, -129, 80, 160), 24, 39, | 
|  | rand.nextU() | 0xff808080); | 
|  | canvas->restore(); | 
|  |  | 
|  | canvas->restore(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const float fPower; | 
|  | }; | 
|  | DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow2", 2);) | 
|  | // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow3", 3);) | 
|  | DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow3.5", 3.5);) | 
|  | // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow4", 4);) | 
|  | // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow4.5", 4.5);) | 
|  | // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow5", 5);) | 
|  |  | 
|  | class LinearGradientRT : public RuntimeShaderGM { | 
|  | public: | 
|  | LinearGradientRT() : RuntimeShaderGM("linear_gradient_rt", {256 + 10, 128 + 15}, R"( | 
|  | layout(color) uniform vec4 in_colors0; | 
|  | layout(color) uniform vec4 in_colors1; | 
|  |  | 
|  | vec4 main(vec2 p) { | 
|  | float t = p.x / 256; | 
|  | if (p.y < 32) { | 
|  | return mix(in_colors0, in_colors1, t); | 
|  | } else { | 
|  | vec3 linColor0 = toLinearSrgb(in_colors0.rgb); | 
|  | vec3 linColor1 = toLinearSrgb(in_colors1.rgb); | 
|  | vec3 linColor = mix(linColor0, linColor1, t); | 
|  | return fromLinearSrgb(linColor).rgb1; | 
|  | } | 
|  | } | 
|  | )") {} | 
|  |  | 
|  | void onDraw(SkCanvas* canvas) override { | 
|  | // Colors chosen to use values other than 0 and 1 - so that it's obvious if the conversion | 
|  | // intrinsics are doing anything. (Most transfer functions map 0 -> 0 and 1 -> 1). | 
|  | SkRuntimeShaderBuilder builder(fEffect); | 
|  | builder.uniform("in_colors0") = SkColor4f{0.75f, 0.25f, 0.0f, 1.0f}; | 
|  | builder.uniform("in_colors1") = SkColor4f{0.0f, 0.75f, 0.25f, 1.0f}; | 
|  | SkPaint paint; | 
|  | paint.setShader(builder.makeShader()); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->clear(SK_ColorWHITE); | 
|  | canvas->translate(5, 5); | 
|  |  | 
|  | // We draw everything twice. First to a surface with no color management, where the | 
|  | // intrinsics should do nothing (eg, the top bar should look the same in the top and bottom | 
|  | // halves). Then to an sRGB surface, where they should produce linearly interpolated | 
|  | // gradients (the bottom half of the second bar should be brighter than the top half). | 
|  | for (auto cs : {static_cast<SkColorSpace*>(nullptr), sk_srgb_singleton()}) { | 
|  | SkImageInfo info = SkImageInfo::Make( | 
|  | 256, 64, kN32_SkColorType, kPremul_SkAlphaType, sk_ref_sp(cs)); | 
|  | auto surface = canvas->makeSurface(info); | 
|  | if (!surface) { | 
|  | surface = SkSurfaces::Raster(info); | 
|  | } | 
|  |  | 
|  | surface->getCanvas()->drawRect({0, 0, 256, 64}, paint); | 
|  | canvas->drawImage(surface->makeImageSnapshot(), 0, 0); | 
|  | canvas->translate(0, 64 + 5); | 
|  | } | 
|  |  | 
|  | canvas->restore(); | 
|  | } | 
|  | }; | 
|  | DEF_GM(return new LinearGradientRT;) | 
|  |  | 
|  | DEF_SIMPLE_GM(child_sampling_rt, canvas, 256,256) { | 
|  | static constexpr char scale[] = | 
|  | "uniform shader child;" | 
|  | "half4 main(float2 xy) {" | 
|  | "    return child.eval(xy*0.1);" | 
|  | "}"; | 
|  |  | 
|  | SkPaint p; | 
|  | p.setColor(SK_ColorRED); | 
|  | p.setAntiAlias(true); | 
|  | p.setStyle(SkPaint::kStroke_Style); | 
|  | p.setStrokeWidth(1); | 
|  |  | 
|  | auto surf = SkSurfaces::Raster(SkImageInfo::MakeN32Premul(100, 100)); | 
|  | surf->getCanvas()->drawLine(0, 0, 100, 100, p); | 
|  | auto shader = surf->makeImageSnapshot()->makeShader(SkSamplingOptions(SkFilterMode::kLinear)); | 
|  |  | 
|  | SkRuntimeShaderBuilder builder(SkRuntimeEffect::MakeForShader(SkString(scale)).effect); | 
|  | builder.child("child") = shader; | 
|  | p.setShader(builder.makeShader()); | 
|  |  | 
|  | canvas->drawPaint(p); | 
|  | } | 
|  |  | 
|  | static sk_sp<SkShader> normal_map_shader() { | 
|  | // Produces a hemispherical normal: | 
|  | static const char* kSrc = R"( | 
|  | half4 main(vec2 p) { | 
|  | p = (p / 256) * 2 - 1; | 
|  | float p2 = dot(p, p); | 
|  | vec3 v = (p2 > 1) ? vec3(0, 0, 1) : vec3(p, sqrt(1 - p2)); | 
|  | return (v * 0.5 + 0.5).xyz1; | 
|  | } | 
|  | )"; | 
|  | auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect; | 
|  | return effect->makeShader(nullptr, {}); | 
|  | } | 
|  |  | 
|  | static sk_sp<SkImage> normal_map_image() { | 
|  | // Above, baked into an image: | 
|  | auto info = SkImageInfo::Make(256, 256, kN32_SkColorType, kPremul_SkAlphaType); | 
|  | auto surface = SkSurfaces::Raster(info); | 
|  | SkPaint p; | 
|  | p.setShader(normal_map_shader()); | 
|  | surface->getCanvas()->drawPaint(p); | 
|  | return surface->makeImageSnapshot(); | 
|  | } | 
|  |  | 
|  | static sk_sp<SkShader> normal_map_image_shader() { | 
|  | return normal_map_image()->makeShader(SkFilterMode::kNearest); | 
|  | } | 
|  |  | 
|  | static sk_sp<SkShader> normal_map_raw_image_shader() { | 
|  | return normal_map_image()->makeRawShader(SkFilterMode::kNearest); | 
|  | } | 
|  |  | 
|  | static sk_sp<SkImage> normal_map_unpremul_image() { | 
|  | auto image = normal_map_image(); | 
|  | SkPixmap pm; | 
|  | SkAssertResult(image->peekPixels(&pm)); | 
|  | SkBitmap bmp; | 
|  | bmp.allocPixels(image->imageInfo().makeAlphaType(kUnpremul_SkAlphaType)); | 
|  | // Copy all pixels over, but set alpha to 0 | 
|  | for (int y = 0; y < pm.height(); y++) { | 
|  | for (int x = 0; x < pm.width(); x++) { | 
|  | *bmp.getAddr32(x, y) = *pm.addr32(x, y) & 0x00FFFFFF; | 
|  | } | 
|  | } | 
|  | return bmp.asImage(); | 
|  | } | 
|  |  | 
|  | static sk_sp<SkShader> normal_map_unpremul_image_shader() { | 
|  | return normal_map_unpremul_image()->makeShader(SkFilterMode::kNearest); | 
|  | } | 
|  |  | 
|  | static sk_sp<SkShader> normal_map_raw_unpremul_image_shader() { | 
|  | return normal_map_unpremul_image()->makeRawShader(SkFilterMode::kNearest); | 
|  | } | 
|  |  | 
|  | static sk_sp<SkShader> lit_shader(sk_sp<SkShader> normals) { | 
|  | // Simple N-dot-L against a fixed, directional light: | 
|  | static const char* kSrc = R"( | 
|  | uniform shader normals; | 
|  | half4 main(vec2 p) { | 
|  | vec3 n = normalize(normals.eval(p).xyz * 2 - 1); | 
|  | vec3 l = normalize(vec3(1, -1, 1)); | 
|  | return saturate(dot(n, l)).xxx1; | 
|  | } | 
|  | )"; | 
|  | auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect; | 
|  | return effect->makeShader(nullptr, &normals, 1); | 
|  | } | 
|  |  | 
|  | static sk_sp<SkShader> lit_shader_linear(sk_sp<SkShader> normals) { | 
|  | // Simple N-dot-L against a fixed, directional light, done in linear space: | 
|  | static const char* kSrc = R"( | 
|  | uniform shader normals; | 
|  | half4 main(vec2 p) { | 
|  | vec3 n = normalize(normals.eval(p).xyz * 2 - 1); | 
|  | vec3 l = normalize(vec3(1, -1, 1)); | 
|  | return fromLinearSrgb(saturate(dot(n, l)).xxx).xxx1; | 
|  | } | 
|  | )"; | 
|  | auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect; | 
|  | return effect->makeShader(nullptr, &normals, 1); | 
|  | } | 
|  |  | 
|  | DEF_SIMPLE_GM(paint_alpha_normals_rt, canvas, 512,512) { | 
|  | // Various draws, with non-opaque paint alpha. This demonstrates several issues around how | 
|  | // paint alpha is applied differently on CPU (globally, after all shaders) and GPU (per shader, | 
|  | // inconsistently). See: skbug.com/11942 | 
|  | // | 
|  | // When this works, it will be a demo of applying paint alpha to fade out a complex effect. | 
|  | auto draw_shader = [=](int x, int y, sk_sp<SkShader> shader) { | 
|  | SkPaint p; | 
|  | p.setAlpha(164); | 
|  | p.setShader(shader); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->translate(x, y); | 
|  | canvas->clipRect({0, 0, 256, 256}); | 
|  | canvas->drawPaint(p); | 
|  | canvas->restore(); | 
|  | }; | 
|  |  | 
|  | draw_shader(0, 0, normal_map_shader()); | 
|  | draw_shader(0, 256, normal_map_image_shader()); | 
|  |  | 
|  | draw_shader(256, 0, lit_shader(normal_map_shader())); | 
|  | draw_shader(256, 256, lit_shader(normal_map_image_shader())); | 
|  | } | 
|  |  | 
|  | DEF_SIMPLE_GM(raw_image_shader_normals_rt, canvas, 768, 512) { | 
|  | // Demonstrates the utility of SkImage::makeRawShader, for non-color child shaders. | 
|  |  | 
|  | // First, make an offscreen surface, so we can control the destination color space: | 
|  | auto surfInfo = SkImageInfo::Make(512, 512, | 
|  | kN32_SkColorType, | 
|  | kPremul_SkAlphaType, | 
|  | SkColorSpace::MakeSRGB()->makeColorSpin()); | 
|  | auto surface = canvas->makeSurface(surfInfo); | 
|  | if (!surface) { | 
|  | surface = SkSurfaces::Raster(surfInfo); | 
|  | } | 
|  |  | 
|  | auto draw_shader = [](int x, int y, sk_sp<SkShader> shader, SkCanvas* canvas) { | 
|  | SkPaint p; | 
|  | p.setShader(shader); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->translate(x, y); | 
|  | canvas->clipRect({0, 0, 256, 256}); | 
|  | canvas->drawPaint(p); | 
|  | canvas->restore(); | 
|  | }; | 
|  |  | 
|  | sk_sp<SkShader> colorNormals = normal_map_image_shader(), | 
|  | rawNormals = normal_map_raw_image_shader(); | 
|  |  | 
|  | // Draw our normal map as colors (will be color-rotated), and raw (untransformed) | 
|  | draw_shader(0, 0, colorNormals, surface->getCanvas()); | 
|  | draw_shader(0, 256, rawNormals, surface->getCanvas()); | 
|  |  | 
|  | // Now draw our lighting shader using the normal and raw versions of the normals as children. | 
|  | // The top image will have the normals rotated (incorrectly), so the lighting is very dark. | 
|  | draw_shader(256, 0, lit_shader(colorNormals), surface->getCanvas()); | 
|  | draw_shader(256, 256, lit_shader(rawNormals), surface->getCanvas()); | 
|  |  | 
|  | // Now draw the offscreen surface back to our original canvas. If we do this naively, the image | 
|  | // will be un-transformed back to the canvas' color space. That will have the effect of undoing | 
|  | // the color spin on the upper-left, and APPLYING a color-spin on the bottom left. To preserve | 
|  | // the intent of this GM (and make it draw consistently whether or not the original surface has | 
|  | // a color space attached), we reinterpret the offscreen image as being in sRGB: | 
|  | canvas->drawImage( | 
|  | surface->makeImageSnapshot()->reinterpretColorSpace(SkColorSpace::MakeSRGB()), 0, 0); | 
|  |  | 
|  | // Finally, to demonstrate that raw unpremul image shaders don't premul, draw lighting two more | 
|  | // times, with an unpremul normal map (containing ZERO in the alpha channel). THe top will | 
|  | // premultiply the normals, resulting in totally dark lighting. The bottom will retain the RGB | 
|  | // encoded normals, even with zero alpha: | 
|  | draw_shader(512, 0, lit_shader(normal_map_unpremul_image_shader()), canvas); | 
|  | draw_shader(512, 256, lit_shader(normal_map_raw_unpremul_image_shader()), canvas); | 
|  | } | 
|  |  | 
|  | DEF_SIMPLE_GM(lit_shader_linear_rt, canvas, 512, 256) { | 
|  | // First, make an offscreen surface, so we can control the destination color space: | 
|  | auto surfInfo = SkImageInfo::Make(512, 256, | 
|  | kN32_SkColorType, | 
|  | kPremul_SkAlphaType, | 
|  | SkColorSpace::MakeSRGB()); | 
|  | auto surface = canvas->makeSurface(surfInfo); | 
|  | if (!surface) { | 
|  | surface = SkSurfaces::Raster(surfInfo); | 
|  | } | 
|  |  | 
|  | auto draw_shader = [](int x, int y, sk_sp<SkShader> shader, SkCanvas* canvas) { | 
|  | SkPaint p; | 
|  | p.setShader(shader); | 
|  |  | 
|  | canvas->save(); | 
|  | canvas->translate(x, y); | 
|  | canvas->clipRect({0, 0, 256, 256}); | 
|  | canvas->drawPaint(p); | 
|  | canvas->restore(); | 
|  | }; | 
|  |  | 
|  | // We draw two lit spheres - one does math in the working space (so gamma-encoded). The second | 
|  | // works in linear space, then converts to sRGB. This produces (more accurate) sharp falloff: | 
|  | draw_shader(0, 0, lit_shader(normal_map_shader()), surface->getCanvas()); | 
|  | draw_shader(256, 0, lit_shader_linear(normal_map_shader()), surface->getCanvas()); | 
|  |  | 
|  | // Now draw the offscreen surface back to our original canvas: | 
|  | canvas->drawImage(surface->makeImageSnapshot(), 0, 0); | 
|  | } | 
|  |  | 
|  | // skbug.com/13598 GPU was double applying the local matrix. | 
|  | DEF_SIMPLE_GM(local_matrix_shader_rt, canvas, 256, 256) { | 
|  | SkString passthrough(R"( | 
|  | uniform shader s; | 
|  | half4 main(float2 p) { return s.eval(p); } | 
|  | )"); | 
|  | auto [rte, error] = SkRuntimeEffect::MakeForShader(passthrough, {}); | 
|  | if (!rte) { | 
|  | SkDebugf("%s\n", error.c_str()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto image     = GetResourceAsImage("images/mandrill_128.png"); | 
|  | auto imgShader = image->makeShader(SkFilterMode::kNearest); | 
|  |  | 
|  | auto r = SkRect::MakeWH(image->width(), image->height()); | 
|  |  | 
|  | auto lm = SkMatrix::RotateDeg(90.f, {image->width()/2.f, image->height()/2.f}); | 
|  |  | 
|  | SkPaint paint; | 
|  |  | 
|  | // image | 
|  | paint.setShader(imgShader); | 
|  | canvas->drawRect(r, paint); | 
|  |  | 
|  | // passthrough(image) | 
|  | canvas->save(); | 
|  | canvas->translate(image->width(), 0); | 
|  | paint.setShader(rte->makeShader(nullptr, &imgShader, 1)); | 
|  | canvas->drawRect(r, paint); | 
|  | canvas->restore(); | 
|  |  | 
|  | // localmatrix(image) | 
|  | canvas->save(); | 
|  | canvas->translate(0, image->height()); | 
|  | paint.setShader(imgShader->makeWithLocalMatrix(lm)); | 
|  | canvas->drawRect(r, paint); | 
|  | canvas->restore(); | 
|  |  | 
|  | // localmatrix(passthrough(image)) This was the bug. | 
|  | canvas->save(); | 
|  | canvas->translate(image->width(), image->height()); | 
|  | paint.setShader(rte->makeShader(nullptr, &imgShader, 1)->makeWithLocalMatrix(lm)); | 
|  | canvas->drawRect(r, paint); | 
|  | canvas->restore(); | 
|  | } | 
|  |  | 
|  | DEF_SIMPLE_GM(null_child_rt, canvas, 150, 150) { | 
|  | using ChildPtr = SkRuntimeEffect::ChildPtr; | 
|  |  | 
|  | // Every swatch should evaluate to the same shade of purple. | 
|  | // Paint with a shader evaluating a null shader. | 
|  | // Point passed to eval() is ignored; paint color is returned. | 
|  | { | 
|  | const SkString kEvalShader{R"( | 
|  | uniform shader s; | 
|  | half4 main(float2 p) { return s.eval(p); } | 
|  | )"}; | 
|  | auto [rtShader, error] = SkRuntimeEffect::MakeForShader(kEvalShader); | 
|  | SkASSERT(rtShader); | 
|  |  | 
|  | SkPaint paint; | 
|  | ChildPtr children[1] = {ChildPtr{sk_sp<SkShader>{nullptr}}}; | 
|  | paint.setShader(rtShader->makeShader(/*uniforms=*/nullptr, children)); | 
|  | paint.setColor(SkColorSetARGB(0xFF, 0x80, 0x00, 0x80));  // purple (contributes) | 
|  | canvas->drawRect({0, 0, 48, 48}, paint); | 
|  | canvas->translate(50, 0); | 
|  | } | 
|  | // Paint with a shader evaluating a null color filter. | 
|  | // Color passed to eval() is returned; paint color is ignored. | 
|  | { | 
|  | const SkString kEvalColorFilter{R"( | 
|  | uniform colorFilter cf; | 
|  | half4 main(float2 p) { return cf.eval(half4(0.5, 0, 0.5, 1)); } | 
|  | )"}; | 
|  | auto [rtShader, error] = SkRuntimeEffect::MakeForShader(kEvalColorFilter); | 
|  | SkASSERT(rtShader); | 
|  |  | 
|  | SkPaint paint; | 
|  | ChildPtr children[1] = {ChildPtr{sk_sp<SkColorFilter>{nullptr}}}; | 
|  | paint.setShader(rtShader->makeShader(/*uniforms=*/nullptr, children)); | 
|  | paint.setColor(SkColorSetARGB(0xFF, 0x00, 0x00, 0xFF));  // green (does not contribute) | 
|  | canvas->drawRect({0, 0, 48, 48}, paint); | 
|  | canvas->translate(50, 0); | 
|  | } | 
|  | // Paint with a shader evaluating a null blender. | 
|  | // Colors passed to eval() are blended via src-over; paint color is ignored. | 
|  | { | 
|  | const SkString kEvalBlender{R"( | 
|  | uniform blender b; | 
|  | half4 main(float2 p) { return b.eval(half4(0.5, 0, 0, 0.5), half4(0, 0, 1, 1)); } | 
|  | )"}; | 
|  | auto [rtShader, error] = SkRuntimeEffect::MakeForShader(kEvalBlender); | 
|  | SkASSERT(rtShader); | 
|  |  | 
|  | SkPaint paint; | 
|  | ChildPtr children[1] = {ChildPtr{sk_sp<SkBlender>{nullptr}}}; | 
|  | paint.setShader(rtShader->makeShader(/*uniforms=*/nullptr, children)); | 
|  | paint.setColor(SkColorSetARGB(0xFF, 0x00, 0x00, 0xFF));  // green (does not contribute) | 
|  | canvas->drawRect({0, 0, 48, 48}, paint); | 
|  | canvas->translate(50, 0); | 
|  | } | 
|  |  | 
|  | canvas->translate(-150, 50); | 
|  |  | 
|  | // Paint with a color filter evaluating a null shader. | 
|  | // Point passed to eval() is ignored; previous-stage color (the paint color) is returned. | 
|  | { | 
|  | const SkString kEvalShader{R"( | 
|  | uniform shader s; | 
|  | half4 main(half4 c) { return s.eval(float2(0)); } | 
|  | )"}; | 
|  | auto [rtFilter, error] = SkRuntimeEffect::MakeForColorFilter(kEvalShader); | 
|  | SkASSERT(rtFilter); | 
|  |  | 
|  | SkPaint paint; | 
|  | ChildPtr children[1] = {ChildPtr{sk_sp<SkShader>{nullptr}}}; | 
|  | paint.setColorFilter(rtFilter->makeColorFilter(/*uniforms=*/nullptr, children)); | 
|  | paint.setColor(SkColorSetARGB(0xFF, 0x80, 0x00, 0x80));  // purple (contributes) | 
|  | canvas->drawRect({0, 0, 48, 48}, paint); | 
|  | canvas->translate(50, 0); | 
|  | } | 
|  | // Paint with a color filter evaluating a null color filter. | 
|  | // Color passed to eval() is returned; paint color is ignored. | 
|  | { | 
|  | const SkString kEvalColorFilter{R"( | 
|  | uniform colorFilter cf; | 
|  | half4 main(half4 c) { return cf.eval(half4(0.5, 0, 0.5, 1)); } | 
|  | )"}; | 
|  | auto [rtFilter, error] = SkRuntimeEffect::MakeForColorFilter(kEvalColorFilter); | 
|  | SkASSERT(rtFilter); | 
|  |  | 
|  | SkPaint paint; | 
|  | ChildPtr children[1] = {ChildPtr{sk_sp<SkColorFilter>{nullptr}}}; | 
|  | paint.setColorFilter(rtFilter->makeColorFilter(/*uniforms=*/nullptr, children)); | 
|  | paint.setColor(SkColorSetARGB(0xFF, 0x00, 0x00, 0xFF));  // green (does not contribute) | 
|  | canvas->drawRect({0, 0, 48, 48}, paint); | 
|  | canvas->translate(50, 0); | 
|  | } | 
|  | // Paint with a color filter evaluating a null blender. | 
|  | // Colors passed to eval() are blended via src-over; paint color is ignored. | 
|  | { | 
|  | const SkString kEvalBlender{R"( | 
|  | uniform blender b; | 
|  | half4 main(half4 c) { return b.eval(half4(0.5, 0, 0, 0.5), half4(0, 0, 1, 1)); } | 
|  | )"}; | 
|  | auto [rtFilter, error] = SkRuntimeEffect::MakeForColorFilter(kEvalBlender); | 
|  | SkASSERT(rtFilter); | 
|  |  | 
|  | SkPaint paint; | 
|  | ChildPtr children[1] = {ChildPtr{sk_sp<SkBlender>{nullptr}}}; | 
|  | paint.setColorFilter(rtFilter->makeColorFilter(/*uniforms=*/nullptr, children)); | 
|  | paint.setColor(SkColorSetARGB(0xFF, 0x00, 0x00, 0xFF));  // green (does not contribute) | 
|  | canvas->drawRect({0, 0, 48, 48}, paint); | 
|  | canvas->translate(50, 0); | 
|  | } | 
|  |  | 
|  | canvas->translate(-150, 50); | 
|  |  | 
|  | // Paint with a shader evaluating a null shader. | 
|  | // Point passed to eval() is ignored; paint color is returned. | 
|  | // We draw to an offscreen surface in a different color space, then draw that surface back to | 
|  | // the main canvas. This ensures the paint color is correctly transformed. (skbug.com/14153) | 
|  | { | 
|  | const SkString kEvalShader{R"( | 
|  | uniform shader s; | 
|  | half4 main(float2 p) { return s.eval(p); } | 
|  | )"}; | 
|  | auto [rtShader, error] = SkRuntimeEffect::MakeForShader(kEvalShader); | 
|  | SkASSERT(rtShader); | 
|  |  | 
|  | sk_sp<SkColorSpace> spin = SkColorSpace::MakeSRGB()->makeColorSpin(); | 
|  | SkImageInfo spinInfo = | 
|  | SkImageInfo::Make(50, 50, kN32_SkColorType, kPremul_SkAlphaType, spin); | 
|  | auto surface = canvas->makeSurface(spinInfo); | 
|  | if (!surface) { | 
|  | surface = SkSurfaces::Raster(spinInfo); | 
|  | } | 
|  |  | 
|  | SkPaint paint; | 
|  | ChildPtr children[1] = {ChildPtr{sk_sp<SkShader>{nullptr}}}; | 
|  | paint.setShader(rtShader->makeShader(/*uniforms=*/nullptr, children)); | 
|  | paint.setColor(SkColorSetARGB(0xFF, 0x80, 0x00, 0x80));  // purple (contributes) | 
|  | surface->getCanvas()->clear(SK_ColorTRANSPARENT); | 
|  | surface->getCanvas()->drawRect({0, 0, 48, 48}, paint); | 
|  |  | 
|  | // Ideally, we'd just draw the offscreen surface back to the canvas. But if `canvas` isn't | 
|  | // color managed, we won't convert it BACK, so we'll still see a color-spin happen. | 
|  | // Instead, convert the image back to sRGB, and the resulting image will look correct for | 
|  | // all modes (assuming the paint color was handled correctly above): | 
|  | auto image = surface->makeImageSnapshot(); | 
|  | #if defined(SK_GRAPHITE) | 
|  | if (auto recorder = canvas->recorder()) { | 
|  | image = image->makeColorSpace(recorder, SkColorSpace::MakeSRGB(), {}); | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | auto direct = GrAsDirectContext(canvas->recordingContext()); | 
|  | image = image->makeColorSpace(direct, SkColorSpace::MakeSRGB()); | 
|  | } | 
|  |  | 
|  | canvas->drawImage(image, 0, 0); | 
|  | canvas->translate(50, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEF_SIMPLE_GM_CAN_FAIL(deferred_shader_rt, canvas, errorMsg, 150, 50) { | 
|  | // Skip this GM on recording devices. It actually works okay on serialize-8888, but pic-8888 | 
|  | // does not. Ultimately, behavior on CPU is potentially strange (especially with SkRP), because | 
|  | // SkRP will build the shader more than once per draw. | 
|  | if (canvas->imageInfo().colorType() == kUnknown_SkColorType) { | 
|  | return skiagm::DrawResult::kSkip; | 
|  | } | 
|  |  | 
|  | const SkString kShader{R"( | 
|  | uniform half4 color; | 
|  | half4 main(float2 p) { return color; } | 
|  | )"}; | 
|  | auto [effect, error] = SkRuntimeEffect::MakeForShader(kShader); | 
|  | SkASSERT(effect); | 
|  |  | 
|  | SkColor4f color = SkColors::kRed; | 
|  | auto makeUniforms = [color](const SkRuntimeEffectPriv::UniformsCallbackContext&) mutable { | 
|  | auto result = SkData::MakeWithCopy(&color, sizeof(color)); | 
|  | color = {color.fB, color.fR, color.fG, color.fA}; | 
|  | return result; | 
|  | }; | 
|  |  | 
|  | auto shader = | 
|  | SkRuntimeEffectPriv::MakeDeferredShader(effect.get(), makeUniforms, /*children=*/{}); | 
|  | SkASSERT(shader); | 
|  |  | 
|  | SkPaint paint; | 
|  | paint.setShader(shader); | 
|  |  | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | canvas->drawRect({0, 0, 50, 50}, paint); | 
|  | canvas->translate(50, 0); | 
|  | } | 
|  |  | 
|  | return skiagm::DrawResult::kOk; | 
|  | } |