|  | ''' | 
|  | Created on May 19, 2011 | 
|  |  | 
|  | @author: bungeman | 
|  | ''' | 
|  |  | 
|  | import os | 
|  | import re | 
|  | import math | 
|  |  | 
|  | # bench representation algorithm constant names | 
|  | ALGORITHM_AVERAGE = 'avg' | 
|  | ALGORITHM_MEDIAN = 'med' | 
|  | ALGORITHM_MINIMUM = 'min' | 
|  | ALGORITHM_25TH_PERCENTILE = '25th' | 
|  |  | 
|  | # Regular expressions used throughout. | 
|  | PER_SETTING_RE = '([^\s=]+)(?:=(\S+))?' | 
|  | SETTINGS_RE = 'skia bench:((?:\s+' + PER_SETTING_RE + ')*)' | 
|  | BENCH_RE = 'running bench (?:\[\d+ \d+\] )?\s*(\S+)' | 
|  | TIME_RE = '(?:(\w*)msecs = )?\s*((?:\d+\.\d+)(?:,\s*\d+\.\d+)*)' | 
|  | # non-per-tile benches have configs that don't end with ']' or '>' | 
|  | CONFIG_RE = '(\S+[^\]>]):\s+((?:' + TIME_RE + '\s+)+)' | 
|  | # per-tile bench lines are in the following format. Note that there are | 
|  | # non-averaged bench numbers in separate lines, which we ignore now due to | 
|  | # their inaccuracy. | 
|  | TILE_RE = ('  tile_(\S+): tile \[\d+,\d+\] out of \[\d+,\d+\] <averaged>:' | 
|  | ' ((?:' + TIME_RE + '\s+)+)') | 
|  | # for extracting tile layout | 
|  | TILE_LAYOUT_RE = ' out of \[(\d+),(\d+)\] <averaged>: ' | 
|  |  | 
|  | PER_SETTING_RE_COMPILED = re.compile(PER_SETTING_RE) | 
|  | SETTINGS_RE_COMPILED = re.compile(SETTINGS_RE) | 
|  | BENCH_RE_COMPILED = re.compile(BENCH_RE) | 
|  | TIME_RE_COMPILED = re.compile(TIME_RE) | 
|  | CONFIG_RE_COMPILED = re.compile(CONFIG_RE) | 
|  | TILE_RE_COMPILED = re.compile(TILE_RE) | 
|  | TILE_LAYOUT_RE_COMPILED = re.compile(TILE_LAYOUT_RE) | 
|  |  | 
|  | class BenchDataPoint: | 
|  | """A single data point produced by bench. | 
|  | """ | 
|  | def __init__(self, bench, config, time_type, time, settings, | 
|  | tile_layout='', per_tile_values=[], per_iter_time=[]): | 
|  | # string name of the benchmark to measure | 
|  | self.bench = bench | 
|  | # string name of the configurations to run | 
|  | self.config = config | 
|  | # type of the timer in string: '' (walltime), 'c' (cpu) or 'g' (gpu) | 
|  | self.time_type = time_type | 
|  | # float number of the bench time value | 
|  | self.time = time | 
|  | # dictionary of the run settings | 
|  | self.settings = settings | 
|  | # how tiles cover the whole picture: '5x3' means 5 columns and 3 rows | 
|  | self.tile_layout = tile_layout | 
|  | # list of float for per_tile bench values, if applicable | 
|  | self.per_tile_values = per_tile_values | 
|  | # list of float for per-iteration bench time, if applicable | 
|  | self.per_iter_time = per_iter_time | 
|  |  | 
|  | def __repr__(self): | 
|  | return "BenchDataPoint(%s, %s, %s, %s, %s)" % ( | 
|  | str(self.bench), | 
|  | str(self.config), | 
|  | str(self.time_type), | 
|  | str(self.time), | 
|  | str(self.settings), | 
|  | ) | 
|  |  | 
|  | class _ExtremeType(object): | 
|  | """Instances of this class compare greater or less than other objects.""" | 
|  | def __init__(self, cmpr, rep): | 
|  | object.__init__(self) | 
|  | self._cmpr = cmpr | 
|  | self._rep = rep | 
|  |  | 
|  | def __cmp__(self, other): | 
|  | if isinstance(other, self.__class__) and other._cmpr == self._cmpr: | 
|  | return 0 | 
|  | return self._cmpr | 
|  |  | 
|  | def __repr__(self): | 
|  | return self._rep | 
|  |  | 
|  | Max = _ExtremeType(1, "Max") | 
|  | Min = _ExtremeType(-1, "Min") | 
|  |  | 
|  | class _ListAlgorithm(object): | 
|  | """Algorithm for selecting the representation value from a given list. | 
|  | representation is one of the ALGORITHM_XXX representation types.""" | 
|  | def __init__(self, data, representation=None): | 
|  | if not representation: | 
|  | representation = ALGORITHM_AVERAGE  # default algorithm | 
|  | self._data = data | 
|  | self._len = len(data) | 
|  | if representation == ALGORITHM_AVERAGE: | 
|  | self._rep = sum(self._data) / self._len | 
|  | else: | 
|  | self._data.sort() | 
|  | if representation == ALGORITHM_MINIMUM: | 
|  | self._rep = self._data[0] | 
|  | else: | 
|  | # for percentiles, we use the value below which x% of values are | 
|  | # found, which allows for better detection of quantum behaviors. | 
|  | if representation == ALGORITHM_MEDIAN: | 
|  | x = int(round(0.5 * self._len + 0.5)) | 
|  | elif representation == ALGORITHM_25TH_PERCENTILE: | 
|  | x = int(round(0.25 * self._len + 0.5)) | 
|  | else: | 
|  | raise Exception("invalid representation algorithm %s!" % | 
|  | representation) | 
|  | self._rep = self._data[x - 1] | 
|  |  | 
|  | def compute(self): | 
|  | return self._rep | 
|  |  | 
|  | def _ParseAndStoreTimes(config_re_compiled, is_per_tile, line, bench, | 
|  | value_dic, layout_dic): | 
|  | """Parses given bench time line with regex and adds data to value_dic. | 
|  |  | 
|  | config_re_compiled: precompiled regular expression for parsing the config | 
|  | line. | 
|  | is_per_tile: boolean indicating whether this is a per-tile bench. | 
|  | If so, we add tile layout into layout_dic as well. | 
|  | line: input string line to parse. | 
|  | bench: name of bench for the time values. | 
|  | value_dic: dictionary to store bench values. See bench_dic in parse() below. | 
|  | layout_dic: dictionary to store tile layouts. See parse() for descriptions. | 
|  | """ | 
|  |  | 
|  | for config in config_re_compiled.finditer(line): | 
|  | current_config = config.group(1) | 
|  | tile_layout = '' | 
|  | if is_per_tile:  # per-tile bench, add name prefix | 
|  | current_config = 'tile_' + current_config | 
|  | layouts = TILE_LAYOUT_RE_COMPILED.search(line) | 
|  | if layouts and len(layouts.groups()) == 2: | 
|  | tile_layout = '%sx%s' % layouts.groups() | 
|  | times = config.group(2) | 
|  | for new_time in TIME_RE_COMPILED.finditer(times): | 
|  | current_time_type = new_time.group(1) | 
|  | iters = [float(i) for i in | 
|  | new_time.group(2).strip().split(',')] | 
|  | value_dic.setdefault(bench, {}).setdefault( | 
|  | current_config, {}).setdefault(current_time_type, []).append( | 
|  | iters) | 
|  | layout_dic.setdefault(bench, {}).setdefault( | 
|  | current_config, {}).setdefault(current_time_type, tile_layout) | 
|  |  | 
|  | def parse_skp_bench_data(directory, revision, rep, default_settings=None): | 
|  | """Parses all the skp bench data in the given directory. | 
|  |  | 
|  | Args: | 
|  | directory: string of path to input data directory. | 
|  | revision: git hash revision that matches the data to process. | 
|  | rep: bench representation algorithm, see bench_util.py. | 
|  | default_settings: dictionary of other run settings. See writer.option() in | 
|  | bench/benchmain.cpp. | 
|  |  | 
|  | Returns: | 
|  | A list of BenchDataPoint objects. | 
|  | """ | 
|  | revision_data_points = [] | 
|  | file_list = os.listdir(directory) | 
|  | file_list.sort() | 
|  | for bench_file in file_list: | 
|  | scalar_type = None | 
|  | # Scalar type, if any, is in the bench filename after 'scalar_'. | 
|  | if (bench_file.startswith('bench_' + revision + '_data_')): | 
|  | if bench_file.find('scalar_') > 0: | 
|  | components = bench_file.split('_') | 
|  | scalar_type = components[components.index('scalar') + 1] | 
|  | else:  # Skips non skp bench files. | 
|  | continue | 
|  |  | 
|  | with open('/'.join([directory, bench_file]), 'r') as file_handle: | 
|  | settings = dict(default_settings or {}) | 
|  | settings['scalar'] = scalar_type | 
|  | revision_data_points.extend(parse(settings, file_handle, rep)) | 
|  |  | 
|  | return revision_data_points | 
|  |  | 
|  | # TODO(bensong): switch to reading JSON output when available. This way we don't | 
|  | # need the RE complexities. | 
|  | def parse(settings, lines, representation=None): | 
|  | """Parses bench output into a useful data structure. | 
|  |  | 
|  | ({str:str}, __iter__ -> str) -> [BenchDataPoint] | 
|  | representation is one of the ALGORITHM_XXX types.""" | 
|  |  | 
|  | benches = [] | 
|  | current_bench = None | 
|  | # [bench][config][time_type] -> [[per-iter values]] where per-tile config | 
|  | # has per-iter value list for each tile [[<tile1_iter1>,<tile1_iter2>,...], | 
|  | # [<tile2_iter1>,<tile2_iter2>,...],...], while non-per-tile config only | 
|  | # contains one list of iterations [[iter1, iter2, ...]]. | 
|  | bench_dic = {} | 
|  | # [bench][config][time_type] -> tile_layout | 
|  | layout_dic = {} | 
|  |  | 
|  | for line in lines: | 
|  |  | 
|  | # see if this line is a settings line | 
|  | settingsMatch = SETTINGS_RE_COMPILED.search(line) | 
|  | if (settingsMatch): | 
|  | settings = dict(settings) | 
|  | for settingMatch in PER_SETTING_RE_COMPILED.finditer(settingsMatch.group(1)): | 
|  | if (settingMatch.group(2)): | 
|  | settings[settingMatch.group(1)] = settingMatch.group(2) | 
|  | else: | 
|  | settings[settingMatch.group(1)] = True | 
|  |  | 
|  | # see if this line starts a new bench | 
|  | new_bench = BENCH_RE_COMPILED.search(line) | 
|  | if new_bench: | 
|  | current_bench = new_bench.group(1) | 
|  |  | 
|  | # add configs on this line to the bench_dic | 
|  | if current_bench: | 
|  | if line.startswith('  tile_') : | 
|  | _ParseAndStoreTimes(TILE_RE_COMPILED, True, line, current_bench, | 
|  | bench_dic, layout_dic) | 
|  | else: | 
|  | _ParseAndStoreTimes(CONFIG_RE_COMPILED, False, line, | 
|  | current_bench, bench_dic, layout_dic) | 
|  |  | 
|  | # append benches to list | 
|  | for bench in bench_dic: | 
|  | for config in bench_dic[bench]: | 
|  | for time_type in bench_dic[bench][config]: | 
|  | tile_layout = '' | 
|  | per_tile_values = []  # empty for non-per-tile configs | 
|  | per_iter_time = []  # empty for per-tile configs | 
|  | bench_summary = None  # a single final bench value | 
|  | if len(bench_dic[bench][config][time_type]) > 1: | 
|  | # per-tile config; compute representation for each tile | 
|  | per_tile_values = [ | 
|  | _ListAlgorithm(iters, representation).compute() | 
|  | for iters in bench_dic[bench][config][time_type]] | 
|  | # use sum of each tile representation for total bench value | 
|  | bench_summary = sum(per_tile_values) | 
|  | # extract tile layout | 
|  | tile_layout = layout_dic[bench][config][time_type] | 
|  | else: | 
|  | # get the list of per-iteration values | 
|  | per_iter_time = bench_dic[bench][config][time_type][0] | 
|  | bench_summary = _ListAlgorithm( | 
|  | per_iter_time, representation).compute() | 
|  | benches.append(BenchDataPoint( | 
|  | bench, | 
|  | config, | 
|  | time_type, | 
|  | bench_summary, | 
|  | settings, | 
|  | tile_layout, | 
|  | per_tile_values, | 
|  | per_iter_time)) | 
|  |  | 
|  | return benches | 
|  |  | 
|  | class LinearRegression: | 
|  | """Linear regression data based on a set of data points. | 
|  |  | 
|  | ([(Number,Number)]) | 
|  | There must be at least two points for this to make sense.""" | 
|  | def __init__(self, points): | 
|  | n = len(points) | 
|  | max_x = Min | 
|  | min_x = Max | 
|  |  | 
|  | Sx = 0.0 | 
|  | Sy = 0.0 | 
|  | Sxx = 0.0 | 
|  | Sxy = 0.0 | 
|  | Syy = 0.0 | 
|  | for point in points: | 
|  | x = point[0] | 
|  | y = point[1] | 
|  | max_x = max(max_x, x) | 
|  | min_x = min(min_x, x) | 
|  |  | 
|  | Sx += x | 
|  | Sy += y | 
|  | Sxx += x*x | 
|  | Sxy += x*y | 
|  | Syy += y*y | 
|  |  | 
|  | denom = n*Sxx - Sx*Sx | 
|  | if (denom != 0.0): | 
|  | B = (n*Sxy - Sx*Sy) / denom | 
|  | else: | 
|  | B = 0.0 | 
|  | a = (1.0/n)*(Sy - B*Sx) | 
|  |  | 
|  | se2 = 0 | 
|  | sB2 = 0 | 
|  | sa2 = 0 | 
|  | if (n >= 3 and denom != 0.0): | 
|  | se2 = (1.0/(n*(n-2)) * (n*Syy - Sy*Sy - B*B*denom)) | 
|  | sB2 = (n*se2) / denom | 
|  | sa2 = sB2 * (1.0/n) * Sxx | 
|  |  | 
|  |  | 
|  | self.slope = B | 
|  | self.intercept = a | 
|  | self.serror = math.sqrt(max(0, se2)) | 
|  | self.serror_slope = math.sqrt(max(0, sB2)) | 
|  | self.serror_intercept = math.sqrt(max(0, sa2)) | 
|  | self.max_x = max_x | 
|  | self.min_x = min_x | 
|  |  | 
|  | def __repr__(self): | 
|  | return "LinearRegression(%s, %s, %s, %s, %s)" % ( | 
|  | str(self.slope), | 
|  | str(self.intercept), | 
|  | str(self.serror), | 
|  | str(self.serror_slope), | 
|  | str(self.serror_intercept), | 
|  | ) | 
|  |  | 
|  | def find_min_slope(self): | 
|  | """Finds the minimal slope given one standard deviation.""" | 
|  | slope = self.slope | 
|  | intercept = self.intercept | 
|  | error = self.serror | 
|  | regr_start = self.min_x | 
|  | regr_end = self.max_x | 
|  | regr_width = regr_end - regr_start | 
|  |  | 
|  | if slope < 0: | 
|  | lower_left_y = slope*regr_start + intercept - error | 
|  | upper_right_y = slope*regr_end + intercept + error | 
|  | return min(0, (upper_right_y - lower_left_y) / regr_width) | 
|  |  | 
|  | elif slope > 0: | 
|  | upper_left_y = slope*regr_start + intercept + error | 
|  | lower_right_y = slope*regr_end + intercept - error | 
|  | return max(0, (lower_right_y - upper_left_y) / regr_width) | 
|  |  | 
|  | return 0 | 
|  |  | 
|  | def CreateRevisionLink(revision_number): | 
|  | """Returns HTML displaying the given revision number and linking to | 
|  | that revision's change page at code.google.com, e.g. | 
|  | http://code.google.com/p/skia/source/detail?r=2056 | 
|  | """ | 
|  | return '<a href="http://code.google.com/p/skia/source/detail?r=%s">%s</a>'%( | 
|  | revision_number, revision_number) | 
|  |  | 
|  | def main(): | 
|  | foo = [[0.0, 0.0], [0.0, 1.0], [0.0, 2.0], [0.0, 3.0]] | 
|  | LinearRegression(foo) | 
|  |  | 
|  | if __name__ == "__main__": | 
|  | main() |