| /* | 
 |  * Copyright 2016 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #include "src/codec/SkRawCodec.h" | 
 |  | 
 | #include "include/codec/SkCodec.h" | 
 | #include "include/codec/SkRawDecoder.h" | 
 | #include "include/core/SkColorSpace.h" | 
 | #include "include/core/SkData.h" | 
 | #include "include/core/SkImageInfo.h" | 
 | #include "include/core/SkRefCnt.h" | 
 | #include "include/core/SkStream.h" | 
 | #include "include/core/SkTypes.h" | 
 | #include "include/private/SkEncodedInfo.h" | 
 | #include "include/private/base/SkDebug.h" | 
 | #include "include/private/base/SkMutex.h" | 
 | #include "include/private/base/SkTArray.h" | 
 | #include "include/private/base/SkTemplates.h" | 
 | #include "modules/skcms/skcms.h" | 
 | #include "src/codec/SkCodecPriv.h" | 
 | #include "src/codec/SkJpegCodec.h" | 
 | #include "src/core/SkStreamPriv.h" | 
 | #include "src/core/SkTaskGroup.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <cstdint> | 
 | #include <functional> | 
 | #include <limits> | 
 | #include <memory> | 
 | #include <type_traits> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include "dng_area_task.h"  // NO_G3_REWRITE | 
 | #include "dng_color_space.h"  // NO_G3_REWRITE | 
 | #include "dng_errors.h"  // NO_G3_REWRITE | 
 | #include "dng_exceptions.h"  // NO_G3_REWRITE | 
 | #include "dng_host.h"  // NO_G3_REWRITE | 
 | #include "dng_image.h"  // NO_G3_REWRITE | 
 | #include "dng_info.h"  // NO_G3_REWRITE | 
 | #include "dng_memory.h"  // NO_G3_REWRITE | 
 | #include "dng_mosaic_info.h"  // NO_G3_REWRITE | 
 | #include "dng_negative.h"  // NO_G3_REWRITE | 
 | #include "dng_pixel_buffer.h"  // NO_G3_REWRITE | 
 | #include "dng_point.h"  // NO_G3_REWRITE | 
 | #include "dng_rational.h"  // NO_G3_REWRITE | 
 | #include "dng_rect.h"  // NO_G3_REWRITE | 
 | #include "dng_render.h"  // NO_G3_REWRITE | 
 | #include "dng_sdk_limits.h"  // NO_G3_REWRITE | 
 | #include "dng_stream.h"  // NO_G3_REWRITE | 
 | #include "dng_tag_types.h"  // NO_G3_REWRITE | 
 | #include "dng_types.h"  // NO_G3_REWRITE | 
 | #include "dng_utils.h"  // NO_G3_REWRITE | 
 |  | 
 | #include "src/piex.h"  // NO_G3_REWRITE | 
 | #include "src/piex_types.h"  // NO_G3_REWRITE | 
 |  | 
 | using namespace skia_private; | 
 |  | 
 | template <typename T> struct sk_is_trivially_relocatable; | 
 | template <> struct sk_is_trivially_relocatable<dng_exception> : std::true_type {}; | 
 |  | 
 | namespace { | 
 |  | 
 | // Calculates the number of tiles of tile_size that fit into the area in vertical and horizontal | 
 | // directions. | 
 | dng_point num_tiles_in_area(const dng_point &areaSize, | 
 |                             const dng_point_real64 &tileSize) { | 
 |   // FIXME: Add a ceil_div() helper in SkCodecPriv.h | 
 |   return dng_point(static_cast<int32>((areaSize.v + tileSize.v - 1) / tileSize.v), | 
 |                    static_cast<int32>((areaSize.h + tileSize.h - 1) / tileSize.h)); | 
 | } | 
 |  | 
 | int num_tasks_required(const dng_point& tilesInTask, | 
 |                          const dng_point& tilesInArea) { | 
 |   return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) * | 
 |          ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h); | 
 | } | 
 |  | 
 | // Calculate the number of tiles to process per task, taking into account the maximum number of | 
 | // tasks. It prefers to increase horizontally for better locality of reference. | 
 | dng_point num_tiles_per_task(const int maxTasks, | 
 |                              const dng_point &tilesInArea) { | 
 |   dng_point tilesInTask = {1, 1}; | 
 |   while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) { | 
 |       if (tilesInTask.h < tilesInArea.h) { | 
 |           ++tilesInTask.h; | 
 |       } else if (tilesInTask.v < tilesInArea.v) { | 
 |           ++tilesInTask.v; | 
 |       } else { | 
 |           ThrowProgramError("num_tiles_per_task calculation is wrong."); | 
 |       } | 
 |   } | 
 |   return tilesInTask; | 
 | } | 
 |  | 
 | std::vector<dng_rect> compute_task_areas(const int maxTasks, const dng_rect& area, | 
 |                                          const dng_point& tileSize) { | 
 |   std::vector<dng_rect> taskAreas; | 
 |   const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize); | 
 |   const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea); | 
 |   const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v, | 
 |                                     tilesPerTask.h * tileSize.h}; | 
 |   for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) { | 
 |     for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) { | 
 |       dng_rect taskArea; | 
 |       taskArea.t = area.t + v * tileSize.v; | 
 |       taskArea.l = area.l + h * tileSize.h; | 
 |       taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b); | 
 |       taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r); | 
 |  | 
 |       taskAreas.push_back(taskArea); | 
 |     } | 
 |   } | 
 |   return taskAreas; | 
 | } | 
 |  | 
 | class SkDngHost : public dng_host { | 
 | public: | 
 |     explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {} | 
 |  | 
 |     void PerformAreaTask(dng_area_task& task, const dng_rect& area) override { | 
 |         SkTaskGroup taskGroup; | 
 |  | 
 |         // tileSize is typically 256x256 | 
 |         const dng_point tileSize(task.FindTileSize(area)); | 
 |         const std::vector<dng_rect> taskAreas = compute_task_areas(this->PerformAreaTaskThreads(), | 
 |                                                                    area, tileSize); | 
 |         const int numTasks = static_cast<int>(taskAreas.size()); | 
 |  | 
 |         SkMutex mutex; | 
 |         TArray<dng_exception> exceptions; | 
 |         task.Start(numTasks, tileSize, &Allocator(), Sniffer()); | 
 |         for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) { | 
 |             taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] { | 
 |                 try { | 
 |                     task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer()); | 
 |                 } catch (dng_exception& exception) { | 
 |                     SkAutoMutexExclusive lock(mutex); | 
 |                     exceptions.push_back(exception); | 
 |                 } catch (...) { | 
 |                     SkAutoMutexExclusive lock(mutex); | 
 |                     exceptions.push_back(dng_exception(dng_error_unknown)); | 
 |                 } | 
 |             }); | 
 |         } | 
 |  | 
 |         taskGroup.wait(); | 
 |         task.Finish(numTasks); | 
 |  | 
 |         // We only re-throw the first exception. | 
 |         if (!exceptions.empty()) { | 
 |             Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr); | 
 |         } | 
 |     } | 
 |  | 
 |     uint32 PerformAreaTaskThreads() override { | 
 | #ifdef SK_BUILD_FOR_ANDROID | 
 |         // Only use 1 thread. DNGs with the warp effect require a lot of memory, | 
 |         // and the amount of memory required scales linearly with the number of | 
 |         // threads. The sample used in CTS requires over 500 MB, so even two | 
 |         // threads is significantly expensive. There is no good way to tell | 
 |         // whether the image has the warp effect. | 
 |         return 1; | 
 | #else | 
 |         return kMaxMPThreads; | 
 | #endif | 
 |     } | 
 |  | 
 | private: | 
 |     using INHERITED = dng_host; | 
 | }; | 
 |  | 
 | // T must be unsigned type. | 
 | template <class T> | 
 | bool safe_add_to_size_t(T arg1, T arg2, size_t* result) { | 
 |     SkASSERT(arg1 >= 0); | 
 |     SkASSERT(arg2 >= 0); | 
 |     if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) { | 
 |         T sum = arg1 + arg2; | 
 |         if (sum <= std::numeric_limits<size_t>::max()) { | 
 |             *result = static_cast<size_t>(sum); | 
 |             return true; | 
 |         } | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | bool is_asset_stream(const SkStream& stream) { | 
 |     return stream.hasLength() && stream.hasPosition(); | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | class SkRawStream { | 
 | public: | 
 |     virtual ~SkRawStream() {} | 
 |  | 
 |    /* | 
 |     * Gets the length of the stream. Depending on the type of stream, this may require reading to | 
 |     * the end of the stream. | 
 |     */ | 
 |    virtual uint64 getLength() = 0; | 
 |  | 
 |    virtual bool read(void* data, size_t offset, size_t length) = 0; | 
 |  | 
 |     /* | 
 |      * Creates an SkMemoryStream from the offset with size. | 
 |      * Note: for performance reason, this function is destructive to the SkRawStream. One should | 
 |      *       abandon current object after the function call. | 
 |      */ | 
 |    virtual std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) = 0; | 
 | }; | 
 |  | 
 | class SkRawLimitedDynamicMemoryWStream : public SkDynamicMemoryWStream { | 
 | public: | 
 |     ~SkRawLimitedDynamicMemoryWStream() override {} | 
 |  | 
 |     bool write(const void* buffer, size_t size) override { | 
 |         size_t newSize; | 
 |         if (!safe_add_to_size_t(this->bytesWritten(), size, &newSize) || | 
 |             newSize > kMaxStreamSize) | 
 |         { | 
 |             SkCodecPrintf("Error: Stream size exceeds the limit.\n"); | 
 |             return false; | 
 |         } | 
 |         return this->INHERITED::write(buffer, size); | 
 |     } | 
 |  | 
 | private: | 
 |     // Most of valid RAW images will not be larger than 100MB. This limit is helpful to avoid | 
 |     // streaming too large data chunk. We can always adjust the limit here if we need. | 
 |     const size_t kMaxStreamSize = 100 * 1024 * 1024;  // 100MB | 
 |  | 
 |     using INHERITED = SkDynamicMemoryWStream; | 
 | }; | 
 |  | 
 | // Note: the maximum buffer size is 100MB (limited by SkRawLimitedDynamicMemoryWStream). | 
 | class SkRawBufferedStream : public SkRawStream { | 
 | public: | 
 |     explicit SkRawBufferedStream(std::unique_ptr<SkStream> stream) | 
 |         : fStream(std::move(stream)) | 
 |         , fWholeStreamRead(false) | 
 |     { | 
 |         // Only use SkRawBufferedStream when the stream is not an asset stream. | 
 |         SkASSERT(!is_asset_stream(*fStream)); | 
 |     } | 
 |  | 
 |     ~SkRawBufferedStream() override {} | 
 |  | 
 |     uint64 getLength() override { | 
 |         if (!this->bufferMoreData(kReadToEnd)) {  // read whole stream | 
 |             ThrowReadFile(); | 
 |         } | 
 |         return fStreamBuffer.bytesWritten(); | 
 |     } | 
 |  | 
 |     bool read(void* data, size_t offset, size_t length) override { | 
 |         if (length == 0) { | 
 |             return true; | 
 |         } | 
 |  | 
 |         size_t sum; | 
 |         if (!safe_add_to_size_t(offset, length, &sum)) { | 
 |             return false; | 
 |         } | 
 |  | 
 |         return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length); | 
 |     } | 
 |  | 
 |     std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) override { | 
 |         sk_sp<SkData> data(SkData::MakeUninitialized(size)); | 
 |         if (offset > fStreamBuffer.bytesWritten()) { | 
 |             // If the offset is not buffered, read from fStream directly and skip the buffering. | 
 |             const size_t skipLength = offset - fStreamBuffer.bytesWritten(); | 
 |             if (fStream->skip(skipLength) != skipLength) { | 
 |                 return nullptr; | 
 |             } | 
 |             const size_t bytesRead = fStream->read(data->writable_data(), size); | 
 |             if (bytesRead < size) { | 
 |                 data = SkData::MakeSubset(data.get(), 0, bytesRead); | 
 |             } | 
 |         } else { | 
 |             const size_t alreadyBuffered = std::min(fStreamBuffer.bytesWritten() - offset, size); | 
 |             if (alreadyBuffered > 0 && | 
 |                 !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) { | 
 |                 return nullptr; | 
 |             } | 
 |  | 
 |             const size_t remaining = size - alreadyBuffered; | 
 |             if (remaining) { | 
 |                 auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered; | 
 |                 const size_t bytesRead = fStream->read(dst, remaining); | 
 |                 size_t newSize; | 
 |                 if (bytesRead < remaining) { | 
 |                     if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) { | 
 |                         return nullptr; | 
 |                     } | 
 |                     data = SkData::MakeSubset(data.get(), 0, newSize); | 
 |                 } | 
 |             } | 
 |         } | 
 |         return SkMemoryStream::Make(data); | 
 |     } | 
 |  | 
 | private: | 
 |     // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream. | 
 |     bool bufferMoreData(size_t newSize) { | 
 |         if (newSize == kReadToEnd) { | 
 |             if (fWholeStreamRead) {  // already read-to-end. | 
 |                 return true; | 
 |             } | 
 |  | 
 |             // TODO: optimize for the special case when the input is SkMemoryStream. | 
 |             return SkStreamCopy(&fStreamBuffer, fStream.get()); | 
 |         } | 
 |  | 
 |         if (newSize <= fStreamBuffer.bytesWritten()) {  // already buffered to newSize | 
 |             return true; | 
 |         } | 
 |         if (fWholeStreamRead) {  // newSize is larger than the whole stream. | 
 |             return false; | 
 |         } | 
 |  | 
 |         // Try to read at least 8192 bytes to avoid to many small reads. | 
 |         const size_t kMinSizeToRead = 8192; | 
 |         const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten(); | 
 |         const size_t sizeToRead = std::max(kMinSizeToRead, sizeRequested); | 
 |         AutoSTMalloc<kMinSizeToRead, uint8> tempBuffer(sizeToRead); | 
 |         const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead); | 
 |         if (bytesRead < sizeRequested) { | 
 |             return false; | 
 |         } | 
 |         return fStreamBuffer.write(tempBuffer.get(), bytesRead); | 
 |     } | 
 |  | 
 |     std::unique_ptr<SkStream> fStream; | 
 |     bool fWholeStreamRead; | 
 |  | 
 |     // Use a size-limited stream to avoid holding too huge buffer. | 
 |     SkRawLimitedDynamicMemoryWStream fStreamBuffer; | 
 |  | 
 |     const size_t kReadToEnd = 0; | 
 | }; | 
 |  | 
 | class SkRawAssetStream : public SkRawStream { | 
 | public: | 
 |     explicit SkRawAssetStream(std::unique_ptr<SkStream> stream) | 
 |         : fStream(std::move(stream)) | 
 |     { | 
 |         // Only use SkRawAssetStream when the stream is an asset stream. | 
 |         SkASSERT(is_asset_stream(*fStream)); | 
 |     } | 
 |  | 
 |     ~SkRawAssetStream() override {} | 
 |  | 
 |     uint64 getLength() override { | 
 |         return fStream->getLength(); | 
 |     } | 
 |  | 
 |  | 
 |     bool read(void* data, size_t offset, size_t length) override { | 
 |         if (length == 0) { | 
 |             return true; | 
 |         } | 
 |  | 
 |         size_t sum; | 
 |         if (!safe_add_to_size_t(offset, length, &sum)) { | 
 |             return false; | 
 |         } | 
 |  | 
 |         return fStream->seek(offset) && (fStream->read(data, length) == length); | 
 |     } | 
 |  | 
 |     std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) override { | 
 |         if (fStream->getLength() < offset) { | 
 |             return nullptr; | 
 |         } | 
 |  | 
 |         size_t sum; | 
 |         if (!safe_add_to_size_t(offset, size, &sum)) { | 
 |             return nullptr; | 
 |         } | 
 |  | 
 |         // This will allow read less than the requested "size", because the JPEG codec wants to | 
 |         // handle also a partial JPEG file. | 
 |         const size_t bytesToRead = std::min(sum, fStream->getLength()) - offset; | 
 |         if (bytesToRead == 0) { | 
 |             return nullptr; | 
 |         } | 
 |  | 
 |         if (fStream->getMemoryBase()) {  // directly copy if getMemoryBase() is available. | 
 |             sk_sp<SkData> data(SkData::MakeWithCopy( | 
 |                 static_cast<const uint8_t*>(fStream->getMemoryBase()) + offset, bytesToRead)); | 
 |             fStream.reset(); | 
 |             return SkMemoryStream::Make(data); | 
 |         } else { | 
 |             sk_sp<SkData> data(SkData::MakeUninitialized(bytesToRead)); | 
 |             if (!fStream->seek(offset)) { | 
 |                 return nullptr; | 
 |             } | 
 |             const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead); | 
 |             if (bytesRead < bytesToRead) { | 
 |                 data = SkData::MakeSubset(data.get(), 0, bytesRead); | 
 |             } | 
 |             return SkMemoryStream::Make(data); | 
 |         } | 
 |     } | 
 | private: | 
 |     std::unique_ptr<SkStream> fStream; | 
 | }; | 
 |  | 
 | class SkPiexStream : public ::piex::StreamInterface { | 
 | public: | 
 |     // Will NOT take the ownership of the stream. | 
 |     explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {} | 
 |  | 
 |     ~SkPiexStream() override {} | 
 |  | 
 |     ::piex::Error GetData(const size_t offset, const size_t length, | 
 |                           uint8* data) override { | 
 |         return fStream->read(static_cast<void*>(data), offset, length) ? | 
 |             ::piex::Error::kOk : ::piex::Error::kFail; | 
 |     } | 
 |  | 
 | private: | 
 |     SkRawStream* fStream; | 
 | }; | 
 |  | 
 | class SkDngStream : public dng_stream { | 
 | public: | 
 |     // Will NOT take the ownership of the stream. | 
 |     SkDngStream(SkRawStream* stream) : fStream(stream) {} | 
 |  | 
 |     ~SkDngStream() override {} | 
 |  | 
 |     uint64 DoGetLength() override { return fStream->getLength(); } | 
 |  | 
 |     void DoRead(void* data, uint32 count, uint64 offset) override { | 
 |         size_t sum; | 
 |         if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) || | 
 |             !fStream->read(data, static_cast<size_t>(offset), static_cast<size_t>(count))) { | 
 |             ThrowReadFile(); | 
 |         } | 
 |     } | 
 |  | 
 | private: | 
 |     SkRawStream* fStream; | 
 | }; | 
 |  | 
 | class SkDngImage { | 
 | public: | 
 |     /* | 
 |      * Initializes the object with the information from Piex in a first attempt. This way it can | 
 |      * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern | 
 |      * which is essential for the demosaicing of the sensor image. | 
 |      * Note: this will take the ownership of the stream. | 
 |      */ | 
 |     static SkDngImage* NewFromStream(SkRawStream* stream) { | 
 |         std::unique_ptr<SkDngImage> dngImage(new SkDngImage(stream)); | 
 | #if defined(SK_BUILD_FOR_LIBFUZZER) | 
 |         // Libfuzzer easily runs out of memory after here. To avoid that | 
 |         // We just pretend all streams are invalid. Our AFL-fuzzer | 
 |         // should still exercise this code; it's more resistant to OOM. | 
 |         return nullptr; | 
 | #else | 
 |         if (!dngImage->initFromPiex() && !dngImage->readDng()) { | 
 |             return nullptr; | 
 |         } | 
 |  | 
 |         return dngImage.release(); | 
 | #endif | 
 |     } | 
 |  | 
 |     /* | 
 |      * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors | 
 |      * down to 80 pixels on the short edge. The rendered image will be close to the specified size, | 
 |      * but there is no guarantee that any of the edges will match the requested size. E.g. | 
 |      *   100% size:              4000 x 3000 | 
 |      *   requested size:         1600 x 1200 | 
 |      *   returned size could be: 2000 x 1500 | 
 |      */ | 
 |     dng_image* render(int width, int height) { | 
 |         if (!fHost || !fInfo || !fNegative || !fDngStream) { | 
 |             if (!this->readDng()) { | 
 |                 return nullptr; | 
 |             } | 
 |         } | 
 |  | 
 |         // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension. | 
 |         const int preferredSize = std::max(width, height); | 
 |         try { | 
 |             // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available. | 
 |             std::unique_ptr<dng_host> host(fHost.release()); | 
 |             std::unique_ptr<dng_info> info(fInfo.release()); | 
 |             std::unique_ptr<dng_negative> negative(fNegative.release()); | 
 |             std::unique_ptr<dng_stream> dngStream(fDngStream.release()); | 
 |  | 
 |             host->SetPreferredSize(preferredSize); | 
 |             host->ValidateSizes(); | 
 |  | 
 |             negative->ReadStage1Image(*host, *dngStream, *info); | 
 |  | 
 |             if (info->fMaskIndex != -1) { | 
 |                 negative->ReadTransparencyMask(*host, *dngStream, *info); | 
 |             } | 
 |  | 
 |             negative->ValidateRawImageDigest(*host); | 
 |             if (negative->IsDamaged()) { | 
 |                 return nullptr; | 
 |             } | 
 |  | 
 |             const int32 kMosaicPlane = -1; | 
 |             negative->BuildStage2Image(*host); | 
 |             negative->BuildStage3Image(*host, kMosaicPlane); | 
 |  | 
 |             dng_render render(*host, *negative); | 
 |             render.SetFinalSpace(dng_space_sRGB::Get()); | 
 |             render.SetFinalPixelType(ttByte); | 
 |  | 
 |             dng_point stage3_size = negative->Stage3Image()->Size(); | 
 |             render.SetMaximumSize(std::max(stage3_size.h, stage3_size.v)); | 
 |  | 
 |             return render.Render(); | 
 |         } catch (...) { | 
 |             return nullptr; | 
 |         } | 
 |     } | 
 |  | 
 |     int width() const { | 
 |         return fWidth; | 
 |     } | 
 |  | 
 |     int height() const { | 
 |         return fHeight; | 
 |     } | 
 |  | 
 |     bool isScalable() const { | 
 |         return fIsScalable; | 
 |     } | 
 |  | 
 |     bool isXtransImage() const { | 
 |         return fIsXtransImage; | 
 |     } | 
 |  | 
 |     // Quick check if the image contains a valid TIFF header as requested by DNG format. | 
 |     // Does not affect ownership of stream. | 
 |     static bool IsTiffHeaderValid(SkRawStream* stream) { | 
 |         const size_t kHeaderSize = 4; | 
 |         unsigned char header[kHeaderSize]; | 
 |         if (!stream->read(header, 0 /* offset */, kHeaderSize)) { | 
 |             return false; | 
 |         } | 
 |  | 
 |         // Check if the header is valid (endian info and magic number "42"). | 
 |         bool littleEndian; | 
 |         if (!is_valid_endian_marker(header, &littleEndian)) { | 
 |             return false; | 
 |         } | 
 |  | 
 |         return 0x2A == get_endian_short(header + 2, littleEndian); | 
 |     } | 
 |  | 
 | private: | 
 |     bool init(int width, int height, const dng_point& cfaPatternSize) { | 
 |         fWidth = width; | 
 |         fHeight = height; | 
 |  | 
 |         // The DNG SDK scales only during demosaicing, so scaling is only possible when | 
 |         // a mosaic info is available. | 
 |         fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0; | 
 |         fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false; | 
 |  | 
 |         return width > 0 && height > 0; | 
 |     } | 
 |  | 
 |     bool initFromPiex() { | 
 |         // Does not take the ownership of rawStream. | 
 |         SkPiexStream piexStream(fStream.get()); | 
 |         ::piex::PreviewImageData imageData; | 
 |         if (::piex::IsRaw(&piexStream) | 
 |             && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk) | 
 |         { | 
 |             dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]); | 
 |             return this->init(static_cast<int>(imageData.full_width), | 
 |                               static_cast<int>(imageData.full_height), cfaPatternSize); | 
 |         } | 
 |         return false; | 
 |     } | 
 |  | 
 |     bool readDng() { | 
 |         try { | 
 |             // Due to the limit of DNG SDK, we need to reset host and info. | 
 |             fHost = std::make_unique<SkDngHost>(&fAllocator); | 
 |             fInfo = std::make_unique<dng_info>(); | 
 |             fDngStream = std::make_unique<SkDngStream>(fStream.get()); | 
 |  | 
 |             fHost->ValidateSizes(); | 
 |             fInfo->Parse(*fHost, *fDngStream); | 
 |             fInfo->PostParse(*fHost); | 
 |             if (!fInfo->IsValidDNG()) { | 
 |                 return false; | 
 |             } | 
 |  | 
 |             fNegative.reset(fHost->Make_dng_negative()); | 
 |             fNegative->Parse(*fHost, *fDngStream, *fInfo); | 
 |             fNegative->PostParse(*fHost, *fDngStream, *fInfo); | 
 |             fNegative->SynchronizeMetadata(); | 
 |  | 
 |             dng_point cfaPatternSize(0, 0); | 
 |             if (fNegative->GetMosaicInfo() != nullptr) { | 
 |                 cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize; | 
 |             } | 
 |             return this->init(static_cast<int>(fNegative->DefaultCropSizeH().As_real64()), | 
 |                               static_cast<int>(fNegative->DefaultCropSizeV().As_real64()), | 
 |                               cfaPatternSize); | 
 |         } catch (...) { | 
 |             return false; | 
 |         } | 
 |     } | 
 |  | 
 |     SkDngImage(SkRawStream* stream) | 
 |         : fStream(stream) | 
 |     {} | 
 |  | 
 |     dng_memory_allocator fAllocator; | 
 |     std::unique_ptr<SkRawStream> fStream; | 
 |     std::unique_ptr<dng_host> fHost; | 
 |     std::unique_ptr<dng_info> fInfo; | 
 |     std::unique_ptr<dng_negative> fNegative; | 
 |     std::unique_ptr<dng_stream> fDngStream; | 
 |  | 
 |     int fWidth; | 
 |     int fHeight; | 
 |     bool fIsScalable; | 
 |     bool fIsXtransImage; | 
 | }; | 
 |  | 
 | /* | 
 |  * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a | 
 |  * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases, | 
 |  * fallback to create SkRawCodec for DNG images. | 
 |  */ | 
 | std::unique_ptr<SkCodec> SkRawCodec::MakeFromStream(std::unique_ptr<SkStream> stream, | 
 |                                                     Result* result) { | 
 |     SkASSERT(result); | 
 |     if (!stream) { | 
 |         *result = SkCodec::kInvalidInput; | 
 |         return nullptr; | 
 |     } | 
 |     std::unique_ptr<SkRawStream> rawStream; | 
 |     if (is_asset_stream(*stream)) { | 
 |         rawStream = std::make_unique<SkRawAssetStream>(std::move(stream)); | 
 |     } else { | 
 |         rawStream = std::make_unique<SkRawBufferedStream>(std::move(stream)); | 
 |     } | 
 |  | 
 |     // Does not take the ownership of rawStream. | 
 |     SkPiexStream piexStream(rawStream.get()); | 
 |     ::piex::PreviewImageData imageData; | 
 |     if (::piex::IsRaw(&piexStream)) { | 
 |         ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData); | 
 |         if (error == ::piex::Error::kFail) { | 
 |             *result = kInvalidInput; | 
 |             return nullptr; | 
 |         } | 
 |  | 
 |         std::unique_ptr<SkEncodedInfo::ICCProfile> profile; | 
 |         if (imageData.color_space == ::piex::PreviewImageData::kAdobeRgb) { | 
 |             skcms_ICCProfile skcmsProfile; | 
 |             skcms_Init(&skcmsProfile); | 
 |             skcms_SetTransferFunction(&skcmsProfile, &SkNamedTransferFn::k2Dot2); | 
 |             skcms_SetXYZD50(&skcmsProfile, &SkNamedGamut::kAdobeRGB); | 
 |             profile = SkEncodedInfo::ICCProfile::Make(skcmsProfile); | 
 |         } | 
 |  | 
 |         //  Theoretically PIEX can return JPEG compressed image or uncompressed RGB image. We only | 
 |         //  handle the JPEG compressed preview image here. | 
 |         if (error == ::piex::Error::kOk && imageData.preview.length > 0 && | 
 |             imageData.preview.format == ::piex::Image::kJpegCompressed) | 
 |         { | 
 |             // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this | 
 |             // function call. | 
 |             // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream. | 
 |             auto memoryStream = rawStream->transferBuffer(imageData.preview.offset, | 
 |                                                           imageData.preview.length); | 
 |             if (!memoryStream) { | 
 |                 *result = kInvalidInput; | 
 |                 return nullptr; | 
 |             } | 
 |             return SkJpegCodec::MakeFromStream(std::move(memoryStream), result, | 
 |                                                std::move(profile)); | 
 |         } | 
 |     } | 
 |  | 
 |     if (!SkDngImage::IsTiffHeaderValid(rawStream.get())) { | 
 |         *result = kUnimplemented; | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     // Takes the ownership of the rawStream. | 
 |     std::unique_ptr<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release())); | 
 |     if (!dngImage) { | 
 |         *result = kInvalidInput; | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     *result = kSuccess; | 
 |     return std::unique_ptr<SkCodec>(new SkRawCodec(dngImage.release())); | 
 | } | 
 |  | 
 | SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, | 
 |                                         size_t dstRowBytes, const Options& options, | 
 |                                         int* rowsDecoded) { | 
 |     const int width = dstInfo.width(); | 
 |     const int height = dstInfo.height(); | 
 |     std::unique_ptr<dng_image> image(fDngImage->render(width, height)); | 
 |     if (!image) { | 
 |         return kInvalidInput; | 
 |     } | 
 |  | 
 |     // Because the DNG SDK can not guarantee to render to requested size, we allow a small | 
 |     // difference. Only the overlapping region will be converted. | 
 |     const float maxDiffRatio = 1.03f; | 
 |     const dng_point& imageSize = image->Size(); | 
 |     if (imageSize.h / (float) width > maxDiffRatio || imageSize.h < width || | 
 |         imageSize.v / (float) height > maxDiffRatio || imageSize.v < height) { | 
 |         return SkCodec::kInvalidScale; | 
 |     } | 
 |  | 
 |     void* dstRow = dst; | 
 |     AutoTMalloc<uint8_t> srcRow(width * 3); | 
 |  | 
 |     dng_pixel_buffer buffer; | 
 |     buffer.fData = &srcRow[0]; | 
 |     buffer.fPlane = 0; | 
 |     buffer.fPlanes = 3; | 
 |     buffer.fColStep = buffer.fPlanes; | 
 |     buffer.fPlaneStep = 1; | 
 |     buffer.fPixelType = ttByte; | 
 |     buffer.fPixelSize = sizeof(uint8_t); | 
 |     buffer.fRowStep = width * 3; | 
 |  | 
 |     constexpr auto srcFormat = skcms_PixelFormat_RGB_888; | 
 |     skcms_PixelFormat dstFormat; | 
 |     if (!sk_select_xform_format(dstInfo.colorType(), false, &dstFormat)) { | 
 |         return kInvalidConversion; | 
 |     } | 
 |  | 
 |     const skcms_ICCProfile* const srcProfile = this->getEncodedInfo().profile(); | 
 |     skcms_ICCProfile dstProfileStorage; | 
 |     const skcms_ICCProfile* dstProfile = nullptr; | 
 |     if (auto cs = dstInfo.colorSpace()) { | 
 |         cs->toProfile(&dstProfileStorage); | 
 |         dstProfile = &dstProfileStorage; | 
 |     } | 
 |  | 
 |     for (int i = 0; i < height; ++i) { | 
 |         buffer.fArea = dng_rect(i, 0, i + 1, width); | 
 |  | 
 |         try { | 
 |             image->Get(buffer, dng_image::edge_zero); | 
 |         } catch (...) { | 
 |             *rowsDecoded = i; | 
 |             return kIncompleteInput; | 
 |         } | 
 |  | 
 |         if (!skcms_Transform(&srcRow[0], srcFormat, skcms_AlphaFormat_Unpremul, srcProfile, | 
 |                              dstRow,     dstFormat, skcms_AlphaFormat_Unpremul, dstProfile, | 
 |                              dstInfo.width())) { | 
 |             SkDebugf("failed to transform\n"); | 
 |             *rowsDecoded = i; | 
 |             return kInternalError; | 
 |         } | 
 |  | 
 |         dstRow = SkTAddOffset<void>(dstRow, dstRowBytes); | 
 |     } | 
 |     return kSuccess; | 
 | } | 
 |  | 
 | SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const { | 
 |     SkASSERT(desiredScale <= 1.f); | 
 |  | 
 |     const SkISize dim = this->dimensions(); | 
 |     SkASSERT(dim.fWidth != 0 && dim.fHeight != 0); | 
 |  | 
 |     if (!fDngImage->isScalable()) { | 
 |         return dim; | 
 |     } | 
 |  | 
 |     // Limits the minimum size to be 80 on the short edge. | 
 |     const float shortEdge = static_cast<float>(std::min(dim.fWidth, dim.fHeight)); | 
 |     if (desiredScale < 80.f / shortEdge) { | 
 |         desiredScale = 80.f / shortEdge; | 
 |     } | 
 |  | 
 |     // For Xtrans images, the integer-factor scaling does not support the half-size scaling case | 
 |     // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead. | 
 |     if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) { | 
 |         desiredScale = 1.f / 3.f; | 
 |     } | 
 |  | 
 |     // Round to integer-factors. | 
 |     const float finalScale = std::floor(1.f/ desiredScale); | 
 |     return SkISize::Make(static_cast<int32_t>(std::floor(dim.fWidth / finalScale)), | 
 |                          static_cast<int32_t>(std::floor(dim.fHeight / finalScale))); | 
 | } | 
 |  | 
 | bool SkRawCodec::onDimensionsSupported(const SkISize& dim) { | 
 |     const SkISize fullDim = this->dimensions(); | 
 |     const float fullShortEdge = static_cast<float>(std::min(fullDim.fWidth, fullDim.fHeight)); | 
 |     const float shortEdge = static_cast<float>(std::min(dim.fWidth, dim.fHeight)); | 
 |  | 
 |     SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge)); | 
 |     SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge)); | 
 |     return sizeFloor == dim || sizeCeil == dim; | 
 | } | 
 |  | 
 | SkRawCodec::~SkRawCodec() {} | 
 |  | 
 | SkRawCodec::SkRawCodec(SkDngImage* dngImage) | 
 |     : INHERITED(SkEncodedInfo::Make(dngImage->width(), dngImage->height(), | 
 |                                     SkEncodedInfo::kRGB_Color, | 
 |                                     SkEncodedInfo::kOpaque_Alpha, 8), | 
 |                 skcms_PixelFormat_RGBA_8888, nullptr) | 
 |     , fDngImage(dngImage) {} | 
 |  | 
 | namespace SkRawDecoder { | 
 |  | 
 | std::unique_ptr<SkCodec> Decode(std::unique_ptr<SkStream> stream, | 
 |                                 SkCodec::Result* outResult, | 
 |                                 SkCodecs::DecodeContext) { | 
 |     SkCodec::Result resultStorage; | 
 |     if (!outResult) { | 
 |         outResult = &resultStorage; | 
 |     } | 
 |     return SkRawCodec::MakeFromStream(std::move(stream), outResult); | 
 | } | 
 |  | 
 | std::unique_ptr<SkCodec> Decode(sk_sp<SkData> data, | 
 |                                 SkCodec::Result* outResult, | 
 |                                 SkCodecs::DecodeContext) { | 
 |     if (!data) { | 
 |         if (outResult) { | 
 |             *outResult = SkCodec::kInvalidInput; | 
 |         } | 
 |         return nullptr; | 
 |     } | 
 |     return Decode(SkMemoryStream::Make(std::move(data)), outResult, nullptr); | 
 | } | 
 | }  // namespace SkRawDecoder |