blob: 215d9337462893df27c74be78c6a52b678683182 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkM44.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSurface.h"
#include "include/core/SkTypes.h"
#include "src/core/SkRectPriv.h"
#include "tests/Test.h"
#include <climits>
#include <initializer_list>
#include <string>
static bool has_green_pixels(const SkBitmap& bm) {
for (int j = 0; j < bm.height(); ++j) {
for (int i = 0; i < bm.width(); ++i) {
if (SkColorGetG(bm.getColor(i, j))) {
return true;
}
}
}
return false;
}
static void test_stroke_width_clipping(skiatest::Reporter* reporter) {
SkBitmap bm;
bm.allocN32Pixels(100, 10);
bm.eraseColor(SK_ColorTRANSPARENT);
SkCanvas canvas(bm);
SkPaint paint;
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(10);
paint.setColor(0xff00ff00);
// clip out the left half of our canvas
canvas.clipRect(SkRect::MakeXYWH(51, 0, 49, 100));
// no stroke bleed should be visible
canvas.drawRect(SkRect::MakeWH(44, 100), paint);
REPORTER_ASSERT(reporter, !has_green_pixels(bm));
// right stroke edge should bleed into the visible area
canvas.scale(2, 2);
canvas.drawRect(SkRect::MakeWH(22, 50), paint);
REPORTER_ASSERT(reporter, has_green_pixels(bm));
}
static void test_skbug4406(skiatest::Reporter* reporter) {
SkBitmap bm;
bm.allocN32Pixels(10, 10);
bm.eraseColor(SK_ColorTRANSPARENT);
SkCanvas canvas(bm);
const SkRect r = { 1.5f, 1, 3.5f, 3 };
// draw filled green rect first
SkPaint paint;
paint.setStyle(SkPaint::kFill_Style);
paint.setColor(0xff00ff00);
paint.setStrokeWidth(1);
paint.setAntiAlias(true);
canvas.drawRect(r, paint);
// paint black with stroke rect (that asserts in bug 4406)
// over the filled rect, it should cover it
paint.setStyle(SkPaint::kStroke_Style);
paint.setColor(0xff000000);
paint.setStrokeWidth(1);
canvas.drawRect(r, paint);
REPORTER_ASSERT(reporter, !has_green_pixels(bm));
// do it again with thinner stroke
paint.setStyle(SkPaint::kFill_Style);
paint.setColor(0xff00ff00);
paint.setStrokeWidth(1);
paint.setAntiAlias(true);
canvas.drawRect(r, paint);
// paint black with stroke rect (that asserts in bug 4406)
// over the filled rect, it doesnt cover it completelly with thinner stroke
paint.setStyle(SkPaint::kStroke_Style);
paint.setColor(0xff000000);
paint.setStrokeWidth(0.99f);
canvas.drawRect(r, paint);
REPORTER_ASSERT(reporter, has_green_pixels(bm));
}
DEF_TEST(Rect, reporter) {
test_stroke_width_clipping(reporter);
test_skbug4406(reporter);
}
DEF_TEST(Rect_grow, reporter) {
test_stroke_width_clipping(reporter);
test_skbug4406(reporter);
}
DEF_TEST(Rect_path_nan, reporter) {
SkRect r = { 0, 0, SK_ScalarNaN, 100 };
SkPath p;
p.addRect(r);
// path normally just jams its bounds to be r, but it must notice that r is non-finite
REPORTER_ASSERT(reporter, !p.isFinite());
}
DEF_TEST(Rect_largest, reporter) {
REPORTER_ASSERT(reporter, !SkRectPriv::MakeILarge().isEmpty());
REPORTER_ASSERT(reporter, SkRectPriv::MakeILargestInverted().isEmpty());
REPORTER_ASSERT(reporter, !SkRectPriv::MakeLargest().isEmpty());
REPORTER_ASSERT(reporter, !SkRectPriv::MakeLargeS32().isEmpty());
REPORTER_ASSERT(reporter, SkRectPriv::MakeLargestInverted().isEmpty());
}
/*
* Test the setBounds always handles non-finite values correctly:
* - setBoundsCheck should return false, and set the rect to all zeros
* - setBoundsNoCheck should ensure that rect.isFinite() is false (definitely NOT all zeros)
*/
DEF_TEST(Rect_setbounds, reporter) {
const SkPoint p0[] = { { SK_ScalarInfinity, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 } };
const SkPoint p1[] = { { 0, SK_ScalarInfinity }, { 1, 1 }, { 2, 2 }, { 3, 3 } };
const SkPoint p2[] = { { SK_ScalarNaN, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 } };
const SkPoint p3[] = { { 0, SK_ScalarNaN }, { 1, 1 }, { 2, 2 }, { 3, 3 } };
SkRect r;
const SkRect zeror = { 0, 0, 0, 0 };
for (const SkPoint* pts : { p0, p1, p2, p3 }) {
for (int n = 1; n <= 4; ++n) {
bool isfinite = r.setBoundsCheck(pts, n);
REPORTER_ASSERT(reporter, !isfinite);
REPORTER_ASSERT(reporter, r == zeror);
r.setBoundsNoCheck(pts, n);
if (r.isFinite())
r.setBoundsNoCheck(pts, n);
REPORTER_ASSERT(reporter, !r.isFinite());
}
}
}
static float make_big_value(skiatest::Reporter* reporter) {
// need to make a big value, one that will cause rect.width() to overflow to inf.
// however, the windows compiler wants about this if it can see the big value inlined.
// hence, this stupid trick to try to fool their compiler.
SkASSERT(reporter);
return reporter ? SK_ScalarMax * 0.75f : 0;
}
DEF_TEST(Rect_whOverflow, reporter) {
const SkScalar big = make_big_value(reporter);
const SkRect r = { -big, -big, big, big };
REPORTER_ASSERT(reporter, r.isFinite());
REPORTER_ASSERT(reporter, !SkScalarIsFinite(r.width()));
REPORTER_ASSERT(reporter, !SkScalarIsFinite(r.height()));
// ensure we can compute center even when the width/height might overflow
REPORTER_ASSERT(reporter, SkScalarIsFinite(r.centerX()));
REPORTER_ASSERT(reporter, SkScalarIsFinite(r.centerY()));
// ensure we can compute halfWidth and halfHeight even when width/height might overflow,
// i.e. for use computing the radii filling a rectangle.
REPORTER_ASSERT(reporter, SkScalarIsFinite(SkRectPriv::HalfWidth(r)));
REPORTER_ASSERT(reporter, SkScalarIsFinite(SkRectPriv::HalfHeight(r)));
}
DEF_TEST(Rect_subtract, reporter) {
struct Expectation {
SkIRect fA;
SkIRect fB;
SkIRect fExpected;
bool fExact;
};
SkIRect a = SkIRect::MakeLTRB(2, 3, 12, 15);
Expectation tests[] = {
// B contains A == empty rect
{a, a.makeOutset(2, 2), SkIRect::MakeEmpty(), true},
// A contains B, producing 4x12 (left), 2x12 (right), 4x10(top), and 5x10(bottom)
{a, {6, 6, 10, 10}, {2, 10, 12, 15}, false},
// A is empty, B is not == empty rect
{SkIRect::MakeEmpty(), a, SkIRect::MakeEmpty(), true},
// A is not empty, B is empty == a
{a, SkIRect::MakeEmpty(), a, true},
// A and B are empty == empty
{SkIRect::MakeEmpty(), SkIRect::MakeEmpty(), SkIRect::MakeEmpty(), true},
// A and B do not intersect == a
{a, {15, 17, 20, 40}, a, true},
// B cuts off left side of A, producing 6x12 (right)
{a, {0, 0, 6, 20}, {6, 3, 12, 15}, true},
// B cuts off right side of A, producing 4x12 (left)
{a, {6, 0, 20, 20}, {2, 3, 6, 15}, true},
// B cuts off top side of A, producing 10x9 (bottom)
{a, {0, 0, 20, 6}, {2, 6, 12, 15}, true},
// B cuts off bottom side of A, producing 10x7 (top)
{a, {0, 10, 20, 20}, {2, 3, 12, 10}, true},
// B splits A horizontally, producing 10x3 (top) or 10x5 (bottom)
{a, {0, 6, 20, 10}, {2, 10, 12, 15}, false},
// B splits A vertically, producing 4x12 (left) or 2x12 (right)
{a, {6, 0, 10, 20}, {2, 3, 6, 15}, false},
// B cuts top-left of A, producing 8x12 (right) or 10x11 (bottom)
{a, {0, 0, 4, 4}, {2, 4, 12, 15}, false},
// B cuts top-right of A, producing 8x12 (left) or 10x8 (bottom)
{a, {10, 0, 14, 7}, {2, 3, 10, 15}, false},
// B cuts bottom-left of A, producing 7x12 (right) or 10x9 (top)
{a, {0, 12, 5, 20}, {2, 3, 12, 12}, false},
// B cuts bottom-right of A, producing 8x12 (left) or 10x9 (top)
{a, {10, 12, 20, 20}, {2, 3, 10, 15}, false},
// B crosses the left of A, producing 4x12 (right) or 10x3 (top) or 10x5 (bottom)
{a, {0, 6, 8, 10}, {2, 10, 12, 15}, false},
// B crosses the right side of A, producing 6x12 (left) or 10x3 (top) or 10x5 (bottom)
{a, {8, 6, 20, 10}, {2, 3, 8, 15}, false},
// B crosses the top side of A, producing 4x12 (left) or 2x12 (right) or 10x8 (bottom)
{a, {6, 0, 10, 7}, {2, 7, 12, 15}, false},
// B crosses the bottom side of A, producing 1x12 (left) or 4x12 (right) or 10x3 (top)
{a, {4, 6, 8, 20}, {8, 3, 12, 15}, false}
};
for (const Expectation& e : tests) {
SkIRect difference;
bool exact = SkRectPriv::Subtract(e.fA, e.fB, &difference);
REPORTER_ASSERT(reporter, exact == e.fExact);
REPORTER_ASSERT(reporter, difference == e.fExpected);
// Generate equivalent tests for the SkRect case by moving the input rects by 0.5px
SkRect af = SkRect::Make(e.fA);
SkRect bf = SkRect::Make(e.fB);
SkRect ef = SkRect::Make(e.fExpected);
af.offset(0.5f, 0.5f);
bf.offset(0.5f, 0.5f);
ef.offset(0.5f, 0.5f);
SkRect df;
exact = SkRectPriv::Subtract(af, bf, &df);
REPORTER_ASSERT(reporter, exact == e.fExact);
REPORTER_ASSERT(reporter, (df.isEmpty() && ef.isEmpty()) || (df == ef));
}
}
DEF_TEST(Rect_subtract_overflow, reporter) {
// This rectangle is sorted but whose int32 width overflows and appears negative (so
// isEmpty() returns true).
SkIRect reallyBig = SkIRect::MakeLTRB(-INT_MAX + 1000, 0, INT_MAX - 1000, 100);
// However, because it's sorted, an intersection with a reasonably sized rectangle is still
// valid so the assumption that SkIRect::Intersects() returns false when either input is
// empty is invalid, leading to incorrect use of negative width (see crbug.com/1243206)
SkIRect reasonable = SkIRect::MakeLTRB(-50, -5, 50, 125);
// Ignoring overflow, "reallyBig - reasonable" should report exact = false and select either the
// left or right portion of 'reallyBig' that excludes 'reasonable', e.g.
// {-INT_MAX+1000, 0, -50, 100} or {150, 0, INT_MAX-1000, 100}.
// This used to assert, but now it should be detected that 'reallyBig' overflows and is
// technically empty, so the result should be itself and exact.
SkIRect difference;
bool exact = SkRectPriv::Subtract(reallyBig, reasonable, &difference);
REPORTER_ASSERT(reporter, exact);
REPORTER_ASSERT(reporter, difference == reallyBig);
// Similarly, if we subtract 'reallyBig', since it's technically empty then we expect the
// answer to remain 'reasonable'.
exact = SkRectPriv::Subtract(reasonable, reallyBig, &difference);
REPORTER_ASSERT(reporter, exact);
REPORTER_ASSERT(reporter, difference == reasonable);
}
DEF_TEST(Rect_QuadContainsRect, reporter) {
struct TestCase {
std::string label;
bool expect;
SkMatrix m;
SkIRect a;
SkIRect b;
};
TestCase tests[] = {
{ "Identity matrix contains success", /*expect=*/true,
/*m=*/SkMatrix::I(), /*a=*/{0,0,15,15}, /*b=*/{2,2,10,10} },
{ "Identity matrix contains failure", /*expect=*/false,
/*m=*/SkMatrix::I(), /*a=*/{0,0,15,15}, /*b=*/{-2,-2,10,10} },
{ "Identity mapped rect contains itself", /*expect=*/true,
/*m=*/SkMatrix::I(), /*a=*/{0,0,10,10}, /*b=*/{ 0,0,10,10} },
{ "Scaled rect contains success", /*expect=*/true,
/*m=*/SkMatrix::Scale(2.f, 3.4f), /*a=*/{0,0,4,4}, /*b=*/{1,1,6,6}},
{ "Scaled rect contains failure", /*expect=*/false,
/*m=*/SkMatrix::Scale(0.25f, 0.3f), /*a=*/{0,0,8,8}, /*b=*/{0,0,5,5}},
{ "Rotate rect contains success", /*expect=*/true,
/*m=*/SkMatrix::RotateDeg(45.f, {10.f, 10.f}), /*a=*/{0,0,20,20}, /*b=*/{3,3,17,17}},
{ "Rotate rect contains failure", /*expect=*/false,
/*m=*/SkMatrix::RotateDeg(45.f, {10.f, 10.f}), /*a=*/{0,0,20,20}, /*b=*/{2,2,18,18}},
{ "Negative scale contains success", /*expect=*/true,
/*m=*/SkMatrix::Scale(-1.f, 1.f), /*a=*/{0,0,10,10}, /*b=*/{-9,1,-1,9}},
{ "Empty rect contains nothing", /*expect=*/false,
/*m=*/SkMatrix::RotateDeg(45.f, {0.f, 0.f}), /*a=*/{10,10,10,20}, /*b=*/{10,14,10,16}},
{ "MakeEmpty() contains nothing", /*expect=*/false,
/*m=*/SkMatrix::RotateDeg(45.f, {0.f, 0.f}), /*a=*/SkIRect::MakeEmpty(), /*b=*/{0,0,1,1}},
{ "Unsorted rect contains nothing", /*expect=*/false,
/*m=*/SkMatrix::I(), /*a=*/{10,10,0,0}, /*b=*/{2,2,8,8}},
{ "Unsorted rect is contained", /*expect=*/true,
/*m=*/SkMatrix::I(), /*a=*/{0,0,10,10}, /*b=*/{8,8,2,2}},
};
for (const TestCase& t : tests) {
skiatest::ReporterContext c{reporter, t.label};
REPORTER_ASSERT(reporter, SkRectPriv::QuadContainsRect(t.m, t.a, t.b) == t.expect);
// Generate equivalent tests for SkRect and SkM44 by translating a by 1/2px and 'b' by
// 1/2px in post-transform space
SkVector bOffset = t.m.mapVector(0.5f, 0.5f);
SkRect af = SkRect::Make(t.a).makeOffset(0.5f, 0.5f);
SkRect bf = SkRect::Make(t.b).makeOffset(bOffset.fX, bOffset.fY);
REPORTER_ASSERT(reporter, SkRectPriv::QuadContainsRect(SkM44(t.m), af, bf) == t.expect);
}
// Test some more complicated scenarios with perspective that don't fit into the TestCase
// structure as nicely.
const SkRect a = SkRect::MakeLTRB(1.83f, -0.48f, 15.53f, 30.68f); // arbitrary
// Perspective matrix where the mapped A has all corners' W > 0
{
skiatest::ReporterContext c{reporter, "Perspective, W > 0"};
SkM44 p = SkM44::Perspective(0.01f, 10.f, SK_ScalarPI / 3.f);
p.preTranslate(0.f, 5.f, -0.1f);
p.preConcat(SkM44::Rotate({0.f, 1.f, 0.f}, 0.008f /* radians */));
REPORTER_ASSERT(reporter, SkRectPriv::QuadContainsRect(p, a, {4.f,10.f,20.f,45.f}));
REPORTER_ASSERT(reporter, !SkRectPriv::QuadContainsRect(p, a, {2.f,6.f,23.f,50.f}));
}
// Perspective matrix where the mapped A has some corners' W < 0
{
skiatest::ReporterContext c{reporter, "Perspective, some W > 0"};
SkM44 p;
p.setRow(3, {-.2f, -.6f, 0.f, 8.f});
REPORTER_ASSERT(reporter, SkRectPriv::QuadContainsRect(p, a, {10.f,50.f,20.f,60.f}));
REPORTER_ASSERT(reporter, !SkRectPriv::QuadContainsRect(p, a, {0.f,1.f,10.f,10.f}));
}
// Perspective matrix where the mapped A has all corners' W < 0)
// For B, we use the previous success contains query above; a rectangle that is inside the
// convex hull of the mapped corners of A, projecting each corner with its negative W; and a
// rectangle that contains said convex hull.
{
skiatest::ReporterContext c{reporter, "Perspective, no W > 0"};
SkM44 p;
p.setRow(3, {-.2f, -.6f, 0.f, 8.f});
const SkRect na = a.makeOffset(16.f, 31.f);
REPORTER_ASSERT(reporter, !SkRectPriv::QuadContainsRect(p, na, {10.f,50.f,20.f,60.f}));
REPORTER_ASSERT(reporter, !SkRectPriv::QuadContainsRect(p, na, {-1.1f,-1.8f,-1.f,-1.79f}));
REPORTER_ASSERT(reporter, !SkRectPriv::QuadContainsRect(p, na, {-1.9f,-2.3f,-0.4f,-1.6f}));
}
}
DEF_TEST(Rect_ClosestDisjointEdge, r) {
struct TestCase {
std::string label;
SkIRect dst;
SkIRect expect;
};
// All test cases will use this rect for the src, so dst can be conveniently relative to it.
static constexpr SkIRect kSrc = {0,0,10,10};
TestCase tests[] = {
{ "src left edge", /*dst=*/{-15, -5, -2, 15}, /*expected=*/{0, 0, 1, 10}},
{ "src left edge clipped to dst", /*dst=*/{-15, 2, -2, 8}, /*expected=*/{0, 2, 1, 8}},
{ "src top-left corner", /*dst=*/{-15,-15, -2, -2}, /*expected=*/{0, 0, 1, 1}},
{ "src top edge", /*dst=*/{ -5,-10, 15, -2}, /*expected=*/{0, 0, 10, 1}},
{ "src top edge clipped to dst", /*dst=*/{ 2,-10, 8, -2}, /*expected=*/{2, 0, 8, 1}},
{ "src top-right corner", /*dst=*/{ 15,-15, 20, -2}, /*expected=*/{9, 0, 10, 1}},
{ "src right edge", /*dst=*/{ 15, -5, 20, 15}, /*expected=*/{9, 0, 10, 10}},
{ "src right edge clipped to dst", /*dst=*/{ 15, 2, 20, 8}, /*expected=*/{9, 2, 10, 8}},
{ "src bottom-right corner", /*dst=*/{ 15, 15, 20, 20}, /*expected=*/{9, 9, 10, 10}},
{ "src bottom edge", /*dst=*/{ -5, 15, 15, 20}, /*expected=*/{0, 9, 10, 10}},
{ "src bottom edge clipped to dst", /*dst=*/{ 2, 15, 8, 20}, /*expected=*/{2, 9, 8, 10}},
{ "src bottom-left corner", /*dst=*/{-15, 15, -2, 20}, /*expected=*/{0, 9, 1, 10}},
{ "src intersects dst high", /*dst=*/{ 2, 2, 15, 15}, /*expected=*/{2, 2, 10, 10}},
{ "src intersects dst low", /*dst=*/{ -5, -5, 8, 8}, /*expected=*/{0, 0, 8, 8}},
{ "src contains dst", /*dst=*/{ 2, 2, 8, 8}, /*expected=*/{2, 2, 8, 8}},
{ "src contained in dst", /*dst=*/{ -5, -5, 15, 15}, /*expected=*/{0, 0, 10, 10}}
};
for (const TestCase& t : tests) {
skiatest::ReporterContext c{r, t.label};
SkIRect actual = SkRectPriv::ClosestDisjointEdge(kSrc, t.dst);
REPORTER_ASSERT(r, actual == t.expect);
}
// Test emptiness of src and dst
REPORTER_ASSERT(r, SkRectPriv::ClosestDisjointEdge(SkIRect::MakeEmpty(), {0,0,8,8}).isEmpty());
REPORTER_ASSERT(r, SkRectPriv::ClosestDisjointEdge({0,0,8,8}, SkIRect::MakeEmpty()).isEmpty());
REPORTER_ASSERT(r, SkRectPriv::ClosestDisjointEdge({10,10,-1,2}, {15,8,-2,20}).isEmpty());
}
// Before the fix, this sequence would trigger a release_assert in the Tiler
// in SkBitmapDevice.cpp
DEF_TEST(big_tiled_rect_crbug_927075, reporter) {
// since part of the regression test allocates a huge buffer, don't bother trying on
// 32-bit devices (e.g. chromecast) so we avoid them failing to allocated.
if (sizeof(void*) == 8) {
const int w = 67108863;
const int h = 1;
const auto info = SkImageInfo::MakeN32Premul(w, h);
auto surf = SkSurfaces::Raster(info);
auto canvas = surf->getCanvas();
const SkRect r = { 257, 213, 67109120, 214 };
SkPaint paint;
paint.setAntiAlias(true);
canvas->translate(-r.fLeft, -r.fTop);
canvas->drawRect(r, paint);
}
}