|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #ifndef SkPathOpsCubic_DEFINED | 
|  | #define SkPathOpsCubic_DEFINED | 
|  |  | 
|  | #include "SkPath.h" | 
|  | #include "SkPathOpsPoint.h" | 
|  |  | 
|  | struct SkDCubicPair { | 
|  | const SkDCubic& first() const { return (const SkDCubic&) pts[0]; } | 
|  | const SkDCubic& second() const { return (const SkDCubic&) pts[3]; } | 
|  | SkDPoint pts[7]; | 
|  | }; | 
|  |  | 
|  | struct SkDCubic { | 
|  | static const int kPointCount = 4; | 
|  | static const int kPointLast = kPointCount - 1; | 
|  | static const int kMaxIntersections = 9; | 
|  |  | 
|  | enum SearchAxis { | 
|  | kXAxis, | 
|  | kYAxis | 
|  | }; | 
|  |  | 
|  | bool collapsed() const { | 
|  | return fPts[0].approximatelyEqual(fPts[1]) && fPts[0].approximatelyEqual(fPts[2]) | 
|  | && fPts[0].approximatelyEqual(fPts[3]); | 
|  | } | 
|  |  | 
|  | bool controlsInside() const { | 
|  | SkDVector v01 = fPts[0] - fPts[1]; | 
|  | SkDVector v02 = fPts[0] - fPts[2]; | 
|  | SkDVector v03 = fPts[0] - fPts[3]; | 
|  | SkDVector v13 = fPts[1] - fPts[3]; | 
|  | SkDVector v23 = fPts[2] - fPts[3]; | 
|  | return v03.dot(v01) > 0 && v03.dot(v02) > 0 && v03.dot(v13) > 0 && v03.dot(v23) > 0; | 
|  | } | 
|  |  | 
|  | static bool IsConic() { return false; } | 
|  |  | 
|  | const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; } | 
|  | SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; } | 
|  |  | 
|  | void align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const; | 
|  | double binarySearch(double min, double max, double axisIntercept, SearchAxis xAxis) const; | 
|  | double calcPrecision() const; | 
|  | SkDCubicPair chopAt(double t) const; | 
|  | static void Coefficients(const double* cubic, double* A, double* B, double* C, double* D); | 
|  | static bool ComplexBreak(const SkPoint pts[4], SkScalar* t); | 
|  | int convexHull(char order[kPointCount]) const; | 
|  |  | 
|  | void debugInit() { | 
|  | sk_bzero(fPts, sizeof(fPts)); | 
|  | } | 
|  |  | 
|  | void dump() const;  // callable from the debugger when the implementation code is linked in | 
|  | void dumpID(int id) const; | 
|  | void dumpInner() const; | 
|  | SkDVector dxdyAtT(double t) const; | 
|  | bool endsAreExtremaInXOrY() const; | 
|  | static int FindExtrema(const double src[], double tValue[2]); | 
|  | int findInflections(double tValues[2]) const; | 
|  |  | 
|  | static int FindInflections(const SkPoint a[kPointCount], double tValues[2]) { | 
|  | SkDCubic cubic; | 
|  | return cubic.set(a).findInflections(tValues); | 
|  | } | 
|  |  | 
|  | int findMaxCurvature(double tValues[]) const; | 
|  | bool hullIntersects(const SkDCubic& c2, bool* isLinear) const; | 
|  | bool hullIntersects(const SkDConic& c, bool* isLinear) const; | 
|  | bool hullIntersects(const SkDQuad& c2, bool* isLinear) const; | 
|  | bool hullIntersects(const SkDPoint* pts, int ptCount, bool* isLinear) const; | 
|  | bool isLinear(int startIndex, int endIndex) const; | 
|  | bool monotonicInX() const; | 
|  | bool monotonicInY() const; | 
|  | void otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const; | 
|  | SkDPoint ptAtT(double t) const; | 
|  | static int RootsReal(double A, double B, double C, double D, double t[3]); | 
|  | static int RootsValidT(const double A, const double B, const double C, double D, double s[3]); | 
|  |  | 
|  | int searchRoots(double extremes[6], int extrema, double axisIntercept, | 
|  | SearchAxis xAxis, double* validRoots) const; | 
|  |  | 
|  | /** | 
|  | *  Return the number of valid roots (0 < root < 1) for this cubic intersecting the | 
|  | *  specified horizontal line. | 
|  | */ | 
|  | int horizontalIntersect(double yIntercept, double roots[3]) const; | 
|  | /** | 
|  | *  Return the number of valid roots (0 < root < 1) for this cubic intersecting the | 
|  | *  specified vertical line. | 
|  | */ | 
|  | int verticalIntersect(double xIntercept, double roots[3]) const; | 
|  |  | 
|  | const SkDCubic& set(const SkPoint pts[kPointCount]) { | 
|  | fPts[0] = pts[0]; | 
|  | fPts[1] = pts[1]; | 
|  | fPts[2] = pts[2]; | 
|  | fPts[3] = pts[3]; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | SkDCubic subDivide(double t1, double t2) const; | 
|  |  | 
|  | static SkDCubic SubDivide(const SkPoint a[kPointCount], double t1, double t2) { | 
|  | SkDCubic cubic; | 
|  | return cubic.set(a).subDivide(t1, t2); | 
|  | } | 
|  |  | 
|  | void subDivide(const SkDPoint& a, const SkDPoint& d, double t1, double t2, SkDPoint p[2]) const; | 
|  |  | 
|  | static void SubDivide(const SkPoint pts[kPointCount], const SkDPoint& a, const SkDPoint& d, double t1, | 
|  | double t2, SkDPoint p[2]) { | 
|  | SkDCubic cubic; | 
|  | cubic.set(pts).subDivide(a, d, t1, t2, p); | 
|  | } | 
|  |  | 
|  | double top(const SkDCubic& dCurve, double startT, double endT, SkDPoint*topPt) const; | 
|  | SkDQuad toQuad() const; | 
|  |  | 
|  | static const int gPrecisionUnit; | 
|  |  | 
|  | SkDPoint fPts[kPointCount]; | 
|  | }; | 
|  |  | 
|  | /* Given the set [0, 1, 2, 3], and two of the four members, compute an XOR mask | 
|  | that computes the other two. Note that: | 
|  |  | 
|  | one ^ two == 3 for (0, 3), (1, 2) | 
|  | one ^ two <  3 for (0, 1), (0, 2), (1, 3), (2, 3) | 
|  | 3 - (one ^ two) is either 0, 1, or 2 | 
|  | 1 >> (3 - (one ^ two)) is either 0 or 1 | 
|  | thus: | 
|  | returned == 2 for (0, 3), (1, 2) | 
|  | returned == 3 for (0, 1), (0, 2), (1, 3), (2, 3) | 
|  | given that: | 
|  | (0, 3) ^ 2 -> (2, 1)  (1, 2) ^ 2 -> (3, 0) | 
|  | (0, 1) ^ 3 -> (3, 2)  (0, 2) ^ 3 -> (3, 1)  (1, 3) ^ 3 -> (2, 0)  (2, 3) ^ 3 -> (1, 0) | 
|  | */ | 
|  | inline int other_two(int one, int two) { | 
|  | return 1 >> (3 - (one ^ two)) ^ 3; | 
|  | } | 
|  |  | 
|  | #endif |