blob: 5ded4d4b43de1888bcc16b8653f9919f5099370f [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrAALinearizingConvexPathRenderer.h"
#include "GrAAConvexTessellator.h"
#include "GrBatch.h"
#include "GrBatchTarget.h"
#include "GrBatchTest.h"
#include "GrContext.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrGeometryProcessor.h"
#include "GrInvariantOutput.h"
#include "GrPathUtils.h"
#include "GrProcessor.h"
#include "GrPipelineBuilder.h"
#include "GrStrokeInfo.h"
#include "SkGeometry.h"
#include "SkString.h"
#include "SkTraceEvent.h"
#include "gl/GrGLProcessor.h"
#include "gl/GrGLGeometryProcessor.h"
#include "gl/builders/GrGLProgramBuilder.h"
#define DEFAULT_BUFFER_SIZE 100
GrAALinearizingConvexPathRenderer::GrAALinearizingConvexPathRenderer() {
}
///////////////////////////////////////////////////////////////////////////////
bool GrAALinearizingConvexPathRenderer::canDrawPath(const GrDrawTarget* target,
const GrPipelineBuilder*,
const SkMatrix& viewMatrix,
const SkPath& path,
const GrStrokeInfo& stroke,
bool antiAlias) const {
return (antiAlias && stroke.isFillStyle() && !path.isInverseFillType() && path.isConvex());
}
// extract the result vertices and indices from the GrAAConvexTessellator
static void extract_verts(const GrAAConvexTessellator& tess,
void* vertices,
size_t vertexStride,
GrColor color,
uint16_t firstIndex,
uint16_t* idxs,
bool tweakAlphaForCoverage) {
intptr_t verts = reinterpret_cast<intptr_t>(vertices);
for (int i = 0; i < tess.numPts(); ++i) {
*((SkPoint*)((intptr_t)verts + i * vertexStride)) = tess.point(i);
}
// Make 'verts' point to the colors
verts += sizeof(SkPoint);
for (int i = 0; i < tess.numPts(); ++i) {
SkASSERT(tess.depth(i) >= -0.5f && tess.depth(i) <= 0.5f);
if (tweakAlphaForCoverage) {
SkASSERT(SkScalarRoundToInt(255.0f * (tess.depth(i) + 0.5f)) <= 255);
unsigned scale = SkScalarRoundToInt(255.0f * (tess.depth(i) + 0.5f));
GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale);
*reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor;
} else {
*reinterpret_cast<GrColor*>(verts + i * vertexStride) = color;
*reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) =
tess.depth(i) + 0.5f;
}
}
for (int i = 0; i < tess.numIndices(); ++i) {
idxs[i] = tess.index(i) + firstIndex;
}
}
static const GrGeometryProcessor* create_fill_gp(bool tweakAlphaForCoverage,
const SkMatrix& localMatrix,
bool usesLocalCoords,
bool coverageIgnored) {
uint32_t flags = GrDefaultGeoProcFactory::kColor_GPType;
if (!tweakAlphaForCoverage) {
flags |= GrDefaultGeoProcFactory::kCoverage_GPType;
}
return GrDefaultGeoProcFactory::Create(flags, GrColor_WHITE, usesLocalCoords, coverageIgnored,
SkMatrix::I(), localMatrix);
}
class AAFlatteningConvexPathBatch : public GrBatch {
public:
struct Geometry {
GrColor fColor;
SkMatrix fViewMatrix;
SkPath fPath;
};
static GrBatch* Create(const Geometry& geometry) {
return SkNEW_ARGS(AAFlatteningConvexPathBatch, (geometry));
}
const char* name() const override { return "AAConvexBatch"; }
void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
// When this is called on a batch, there is only one geometry bundle
out->setKnownFourComponents(fGeoData[0].fColor);
}
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
out->setUnknownSingleComponent();
}
void initBatchTracker(const GrPipelineInfo& init) override {
// Handle any color overrides
if (init.fColorIgnored) {
fGeoData[0].fColor = GrColor_ILLEGAL;
} else if (GrColor_ILLEGAL != init.fOverrideColor) {
fGeoData[0].fColor = init.fOverrideColor;
}
// setup batch properties
fBatch.fColorIgnored = init.fColorIgnored;
fBatch.fColor = fGeoData[0].fColor;
fBatch.fUsesLocalCoords = init.fUsesLocalCoords;
fBatch.fCoverageIgnored = init.fCoverageIgnored;
fBatch.fLinesOnly = SkPath::kLine_SegmentMask == fGeoData[0].fPath.getSegmentMasks();
fBatch.fCanTweakAlphaForCoverage = init.fCanTweakAlphaForCoverage;
}
void draw(GrBatchTarget* batchTarget, const GrPipeline* pipeline, int vertexCount,
size_t vertexStride, void* vertices, int indexCount, uint16_t* indices) {
if (vertexCount == 0 || indexCount == 0) {
return;
}
const GrVertexBuffer* vertexBuffer;
GrVertices info;
int firstVertex;
void* verts = batchTarget->makeVertSpace(vertexStride, vertexCount, &vertexBuffer,
&firstVertex);
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return;
}
memcpy(verts, vertices, vertexCount * vertexStride);
const GrIndexBuffer* indexBuffer;
int firstIndex;
uint16_t* idxs = batchTarget->makeIndexSpace(indexCount, &indexBuffer, &firstIndex);
if (!idxs) {
SkDebugf("Could not allocate indices\n");
return;
}
memcpy(idxs, indices, indexCount * sizeof(uint16_t));
info.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer, firstVertex,
firstIndex, vertexCount, indexCount);
batchTarget->draw(info);
}
void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override {
bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage();
SkMatrix invert;
if (this->usesLocalCoords() && !this->viewMatrix().invert(&invert)) {
SkDebugf("Could not invert viewmatrix\n");
return;
}
// Setup GrGeometryProcessor
SkAutoTUnref<const GrGeometryProcessor> gp(
create_fill_gp(canTweakAlphaForCoverage, invert,
this->usesLocalCoords(),
this->coverageIgnored()));
batchTarget->initDraw(gp, pipeline);
size_t vertexStride = gp->getVertexStride();
SkASSERT(canTweakAlphaForCoverage ?
vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) :
vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr));
GrAAConvexTessellator tess;
int instanceCount = fGeoData.count();
int vertexCount = 0;
int indexCount = 0;
int maxVertices = DEFAULT_BUFFER_SIZE;
int maxIndices = DEFAULT_BUFFER_SIZE;
uint8_t* vertices = (uint8_t*) malloc(maxVertices * vertexStride);
uint16_t* indices = (uint16_t*) malloc(maxIndices * sizeof(uint16_t));
for (int i = 0; i < instanceCount; i++) {
tess.rewind();
Geometry& args = fGeoData[i];
if (!tess.tessellate(args.fViewMatrix, args.fPath)) {
continue;
}
int currentIndices = tess.numIndices();
SkASSERT(currentIndices <= UINT16_MAX);
if (indexCount + currentIndices > UINT16_MAX) {
// if we added the current instance, we would overflow the indices we can store in a
// uint16_t. Draw what we've got so far and reset.
draw(batchTarget, pipeline, vertexCount, vertexStride, vertices, indexCount,
indices);
vertexCount = 0;
indexCount = 0;
}
int currentVertices = tess.numPts();
if (vertexCount + currentVertices > maxVertices) {
maxVertices = SkTMax(vertexCount + currentVertices, maxVertices * 2);
vertices = (uint8_t*) realloc(vertices, maxVertices * vertexStride);
}
if (indexCount + currentIndices > maxIndices) {
maxIndices = SkTMax(indexCount + currentIndices, maxIndices * 2);
indices = (uint16_t*) realloc(indices, maxIndices * sizeof(uint16_t));
}
extract_verts(tess, vertices + vertexStride * vertexCount, vertexStride, args.fColor,
vertexCount, indices + indexCount, canTweakAlphaForCoverage);
vertexCount += currentVertices;
indexCount += currentIndices;
}
draw(batchTarget, pipeline, vertexCount, vertexStride, vertices, indexCount, indices);
free(vertices);
free(indices);
}
SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
private:
AAFlatteningConvexPathBatch(const Geometry& geometry) {
this->initClassID<AAFlatteningConvexPathBatch>();
fGeoData.push_back(geometry);
// compute bounds
fBounds = geometry.fPath.getBounds();
geometry.fViewMatrix.mapRect(&fBounds);
}
bool onCombineIfPossible(GrBatch* t) override {
AAFlatteningConvexPathBatch* that = t->cast<AAFlatteningConvexPathBatch>();
SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
// In the event of two batches, one who can tweak, one who cannot, we just fall back to
// not tweaking
if (this->canTweakAlphaForCoverage() != that->canTweakAlphaForCoverage()) {
fBatch.fCanTweakAlphaForCoverage = false;
}
fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
this->joinBounds(that->bounds());
return true;
}
GrColor color() const { return fBatch.fColor; }
bool linesOnly() const { return fBatch.fLinesOnly; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
bool canTweakAlphaForCoverage() const { return fBatch.fCanTweakAlphaForCoverage; }
const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
bool coverageIgnored() const { return fBatch.fCoverageIgnored; }
struct BatchTracker {
GrColor fColor;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
bool fLinesOnly;
bool fCanTweakAlphaForCoverage;
};
BatchTracker fBatch;
SkSTArray<1, Geometry, true> fGeoData;
};
bool GrAALinearizingConvexPathRenderer::onDrawPath(GrDrawTarget* target,
GrPipelineBuilder* pipelineBuilder,
GrColor color,
const SkMatrix& vm,
const SkPath& path,
const GrStrokeInfo&,
bool antiAlias) {
if (path.isEmpty()) {
return true;
}
AAFlatteningConvexPathBatch::Geometry geometry;
geometry.fColor = color;
geometry.fViewMatrix = vm;
geometry.fPath = path;
SkAutoTUnref<GrBatch> batch(AAFlatteningConvexPathBatch::Create(geometry));
target->drawBatch(pipelineBuilder, batch);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GR_TEST_UTILS
BATCH_TEST_DEFINE(AAFlatteningConvexPathBatch) {
AAFlatteningConvexPathBatch::Geometry geometry;
geometry.fColor = GrRandomColor(random);
geometry.fViewMatrix = GrTest::TestMatrixInvertible(random);
geometry.fPath = GrTest::TestPathConvex(random);
return AAFlatteningConvexPathBatch::Create(geometry);
}
#endif