| /* | 
 |  * Copyright 2011 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #include "SkMatrix44.h" | 
 |  | 
 | static inline bool eq4(const SkMScalar* SK_RESTRICT a, | 
 |                       const SkMScalar* SK_RESTRICT b) { | 
 |     return (a[0] == b[0]) & (a[1] == b[1]) & (a[2] == b[2]) & (a[3] == b[3]); | 
 | } | 
 |  | 
 | bool SkMatrix44::operator==(const SkMatrix44& other) const { | 
 |     if (this == &other) { | 
 |         return true; | 
 |     } | 
 |  | 
 |     if (this->isTriviallyIdentity() && other.isTriviallyIdentity()) { | 
 |         return true; | 
 |     } | 
 |  | 
 |     const SkMScalar* SK_RESTRICT a = &fMat[0][0]; | 
 |     const SkMScalar* SK_RESTRICT b = &other.fMat[0][0]; | 
 |  | 
 | #if 0 | 
 |     for (int i = 0; i < 16; ++i) { | 
 |         if (a[i] != b[i]) { | 
 |             return false; | 
 |         } | 
 |     } | 
 |     return true; | 
 | #else | 
 |     // to reduce branch instructions, we compare 4 at a time. | 
 |     // see bench/Matrix44Bench.cpp for test. | 
 |     if (!eq4(&a[0], &b[0])) { | 
 |         return false; | 
 |     } | 
 |     if (!eq4(&a[4], &b[4])) { | 
 |         return false; | 
 |     } | 
 |     if (!eq4(&a[8], &b[8])) { | 
 |         return false; | 
 |     } | 
 |     return eq4(&a[12], &b[12]); | 
 | #endif | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | int SkMatrix44::computeTypeMask() const { | 
 |     unsigned mask = 0; | 
 |  | 
 |     if (0 != perspX() || 0 != perspY() || 0 != perspZ() || 1 != fMat[3][3]) { | 
 |         return kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask; | 
 |     } | 
 |  | 
 |     if (0 != transX() || 0 != transY() || 0 != transZ()) { | 
 |         mask |= kTranslate_Mask; | 
 |     } | 
 |  | 
 |     if (1 != scaleX() || 1 != scaleY() || 1 != scaleZ()) { | 
 |         mask |= kScale_Mask; | 
 |     } | 
 |  | 
 |     if (0 != fMat[1][0] || 0 != fMat[0][1] || 0 != fMat[0][2] || | 
 |         0 != fMat[2][0] || 0 != fMat[1][2] || 0 != fMat[2][1]) { | 
 |             mask |= kAffine_Mask; | 
 |     } | 
 |  | 
 |     return mask; | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | void SkMatrix44::asColMajorf(float dst[]) const { | 
 |     const SkMScalar* src = &fMat[0][0]; | 
 | #ifdef SK_MSCALAR_IS_DOUBLE | 
 |     for (int i = 0; i < 16; ++i) { | 
 |         dst[i] = SkMScalarToFloat(src[i]); | 
 |     } | 
 | #elif defined SK_MSCALAR_IS_FLOAT | 
 |     memcpy(dst, src, 16 * sizeof(float)); | 
 | #endif | 
 | } | 
 |  | 
 | void SkMatrix44::as4x3ColMajorf(float dst[]) const { | 
 |     const SkMScalar* src = &fMat[0][0]; | 
 | #ifdef SK_MSCALAR_IS_DOUBLE | 
 |     for (int i = 0; i < 12; ++i) { | 
 |         dst[i] = SkMScalarToFloat(src[i]); | 
 |     } | 
 | #elif defined SK_MSCALAR_IS_FLOAT | 
 |     memcpy(dst, src, 12 * sizeof(float)); | 
 | #endif | 
 | } | 
 |  | 
 | void SkMatrix44::asColMajord(double dst[]) const { | 
 |     const SkMScalar* src = &fMat[0][0]; | 
 | #ifdef SK_MSCALAR_IS_DOUBLE | 
 |     memcpy(dst, src, 16 * sizeof(double)); | 
 | #elif defined SK_MSCALAR_IS_FLOAT | 
 |     for (int i = 0; i < 16; ++i) { | 
 |         dst[i] = SkMScalarToDouble(src[i]); | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 | void SkMatrix44::asRowMajorf(float dst[]) const { | 
 |     const SkMScalar* src = &fMat[0][0]; | 
 |     for (int i = 0; i < 4; ++i) { | 
 |         dst[0] = SkMScalarToFloat(src[0]); | 
 |         dst[4] = SkMScalarToFloat(src[1]); | 
 |         dst[8] = SkMScalarToFloat(src[2]); | 
 |         dst[12] = SkMScalarToFloat(src[3]); | 
 |         src += 4; | 
 |         dst += 1; | 
 |     } | 
 | } | 
 |  | 
 | void SkMatrix44::asRowMajord(double dst[]) const { | 
 |     const SkMScalar* src = &fMat[0][0]; | 
 |     for (int i = 0; i < 4; ++i) { | 
 |         dst[0] = SkMScalarToDouble(src[0]); | 
 |         dst[4] = SkMScalarToDouble(src[1]); | 
 |         dst[8] = SkMScalarToDouble(src[2]); | 
 |         dst[12] = SkMScalarToDouble(src[3]); | 
 |         src += 4; | 
 |         dst += 1; | 
 |     } | 
 | } | 
 |  | 
 | void SkMatrix44::setColMajorf(const float src[]) { | 
 |     SkMScalar* dst = &fMat[0][0]; | 
 | #ifdef SK_MSCALAR_IS_DOUBLE | 
 |     for (int i = 0; i < 16; ++i) { | 
 |         dst[i] = SkMScalarToFloat(src[i]); | 
 |     } | 
 | #elif defined SK_MSCALAR_IS_FLOAT | 
 |     memcpy(dst, src, 16 * sizeof(float)); | 
 | #endif | 
 |  | 
 |     this->dirtyTypeMask(); | 
 | } | 
 |  | 
 | void SkMatrix44::setColMajord(const double src[]) { | 
 |     SkMScalar* dst = &fMat[0][0]; | 
 | #ifdef SK_MSCALAR_IS_DOUBLE | 
 |     memcpy(dst, src, 16 * sizeof(double)); | 
 | #elif defined SK_MSCALAR_IS_FLOAT | 
 |     for (int i = 0; i < 16; ++i) { | 
 |         dst[i] = SkDoubleToMScalar(src[i]); | 
 |     } | 
 | #endif | 
 |  | 
 |     this->dirtyTypeMask(); | 
 | } | 
 |  | 
 | void SkMatrix44::setRowMajorf(const float src[]) { | 
 |     SkMScalar* dst = &fMat[0][0]; | 
 |     for (int i = 0; i < 4; ++i) { | 
 |         dst[0] = SkMScalarToFloat(src[0]); | 
 |         dst[4] = SkMScalarToFloat(src[1]); | 
 |         dst[8] = SkMScalarToFloat(src[2]); | 
 |         dst[12] = SkMScalarToFloat(src[3]); | 
 |         src += 4; | 
 |         dst += 1; | 
 |     } | 
 |     this->dirtyTypeMask(); | 
 | } | 
 |  | 
 | void SkMatrix44::setRowMajord(const double src[]) { | 
 |     SkMScalar* dst = &fMat[0][0]; | 
 |     for (int i = 0; i < 4; ++i) { | 
 |         dst[0] = SkDoubleToMScalar(src[0]); | 
 |         dst[4] = SkDoubleToMScalar(src[1]); | 
 |         dst[8] = SkDoubleToMScalar(src[2]); | 
 |         dst[12] = SkDoubleToMScalar(src[3]); | 
 |         src += 4; | 
 |         dst += 1; | 
 |     } | 
 |     this->dirtyTypeMask(); | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | const SkMatrix44& SkMatrix44::I() { | 
 |     static constexpr SkMatrix44 gIdentity44(kIdentity_Constructor); | 
 |     return gIdentity44; | 
 | } | 
 |  | 
 | void SkMatrix44::setIdentity() { | 
 |     fMat[0][0] = 1; | 
 |     fMat[0][1] = 0; | 
 |     fMat[0][2] = 0; | 
 |     fMat[0][3] = 0; | 
 |     fMat[1][0] = 0; | 
 |     fMat[1][1] = 1; | 
 |     fMat[1][2] = 0; | 
 |     fMat[1][3] = 0; | 
 |     fMat[2][0] = 0; | 
 |     fMat[2][1] = 0; | 
 |     fMat[2][2] = 1; | 
 |     fMat[2][3] = 0; | 
 |     fMat[3][0] = 0; | 
 |     fMat[3][1] = 0; | 
 |     fMat[3][2] = 0; | 
 |     fMat[3][3] = 1; | 
 |     this->setTypeMask(kIdentity_Mask); | 
 | } | 
 |  | 
 | void SkMatrix44::set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02, | 
 |                         SkMScalar m10, SkMScalar m11, SkMScalar m12, | 
 |                         SkMScalar m20, SkMScalar m21, SkMScalar m22) { | 
 |     fMat[0][0] = m00; fMat[0][1] = m01; fMat[0][2] = m02; fMat[0][3] = 0; | 
 |     fMat[1][0] = m10; fMat[1][1] = m11; fMat[1][2] = m12; fMat[1][3] = 0; | 
 |     fMat[2][0] = m20; fMat[2][1] = m21; fMat[2][2] = m22; fMat[2][3] = 0; | 
 |     fMat[3][0] = 0;   fMat[3][1] = 0;   fMat[3][2] = 0;   fMat[3][3] = 1; | 
 |     this->dirtyTypeMask(); | 
 | } | 
 |  | 
 | void SkMatrix44::set3x3RowMajorf(const float src[]) { | 
 |     fMat[0][0] = src[0]; fMat[0][1] = src[3]; fMat[0][2] = src[6]; fMat[0][3] = 0; | 
 |     fMat[1][0] = src[1]; fMat[1][1] = src[4]; fMat[1][2] = src[7]; fMat[1][3] = 0; | 
 |     fMat[2][0] = src[2]; fMat[2][1] = src[5]; fMat[2][2] = src[8]; fMat[2][3] = 0; | 
 |     fMat[3][0] = 0;      fMat[3][1] = 0;      fMat[3][2] = 0;      fMat[3][3] = 1; | 
 |     this->dirtyTypeMask(); | 
 | } | 
 |  | 
 | void SkMatrix44::set4x3ColMajorf(const float src[]) { | 
 |     fMat[0][0] = src[0]; fMat[0][1] = src[1]; fMat[0][2] = src[2];  fMat[0][3] = src[3]; | 
 |     fMat[1][0] = src[4]; fMat[1][1] = src[5]; fMat[1][2] = src[6];  fMat[1][3] = src[7]; | 
 |     fMat[2][0] = src[8]; fMat[2][1] = src[9]; fMat[2][2] = src[10]; fMat[2][3] = src[11]; | 
 |     fMat[3][0] = 0;      fMat[3][1] = 0;      fMat[3][2] = 0;       fMat[3][3] = 1; | 
 |     this->dirtyTypeMask(); | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | void SkMatrix44::setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz) { | 
 |     this->setIdentity(); | 
 |  | 
 |     if (!dx && !dy && !dz) { | 
 |         return; | 
 |     } | 
 |  | 
 |     fMat[3][0] = dx; | 
 |     fMat[3][1] = dy; | 
 |     fMat[3][2] = dz; | 
 |     this->setTypeMask(kTranslate_Mask); | 
 | } | 
 |  | 
 | void SkMatrix44::preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz) { | 
 |     if (!dx && !dy && !dz) { | 
 |         return; | 
 |     } | 
 |  | 
 |     for (int i = 0; i < 4; ++i) { | 
 |         fMat[3][i] = fMat[0][i] * dx + fMat[1][i] * dy + fMat[2][i] * dz + fMat[3][i]; | 
 |     } | 
 |     this->dirtyTypeMask(); | 
 | } | 
 |  | 
 | void SkMatrix44::postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz) { | 
 |     if (!dx && !dy && !dz) { | 
 |         return; | 
 |     } | 
 |  | 
 |     if (this->getType() & kPerspective_Mask) { | 
 |         for (int i = 0; i < 4; ++i) { | 
 |             fMat[i][0] += fMat[i][3] * dx; | 
 |             fMat[i][1] += fMat[i][3] * dy; | 
 |             fMat[i][2] += fMat[i][3] * dz; | 
 |         } | 
 |     } else { | 
 |         fMat[3][0] += dx; | 
 |         fMat[3][1] += dy; | 
 |         fMat[3][2] += dz; | 
 |         this->dirtyTypeMask(); | 
 |     } | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | void SkMatrix44::setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz) { | 
 |     this->setIdentity(); | 
 |  | 
 |     if (1 == sx && 1 == sy && 1 == sz) { | 
 |         return; | 
 |     } | 
 |  | 
 |     fMat[0][0] = sx; | 
 |     fMat[1][1] = sy; | 
 |     fMat[2][2] = sz; | 
 |     this->setTypeMask(kScale_Mask); | 
 | } | 
 |  | 
 | void SkMatrix44::preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz) { | 
 |     if (1 == sx && 1 == sy && 1 == sz) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // The implementation matrix * pureScale can be shortcut | 
 |     // by knowing that pureScale components effectively scale | 
 |     // the columns of the original matrix. | 
 |     for (int i = 0; i < 4; i++) { | 
 |         fMat[0][i] *= sx; | 
 |         fMat[1][i] *= sy; | 
 |         fMat[2][i] *= sz; | 
 |     } | 
 |     this->dirtyTypeMask(); | 
 | } | 
 |  | 
 | void SkMatrix44::postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz) { | 
 |     if (1 == sx && 1 == sy && 1 == sz) { | 
 |         return; | 
 |     } | 
 |  | 
 |     for (int i = 0; i < 4; i++) { | 
 |         fMat[i][0] *= sx; | 
 |         fMat[i][1] *= sy; | 
 |         fMat[i][2] *= sz; | 
 |     } | 
 |     this->dirtyTypeMask(); | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | void SkMatrix44::setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z, | 
 |                                 SkMScalar radians) { | 
 |     double len2 = (double)x * x + (double)y * y + (double)z * z; | 
 |     if (1 != len2) { | 
 |         if (0 == len2) { | 
 |             this->setIdentity(); | 
 |             return; | 
 |         } | 
 |         double scale = 1 / sqrt(len2); | 
 |         x = SkDoubleToMScalar(x * scale); | 
 |         y = SkDoubleToMScalar(y * scale); | 
 |         z = SkDoubleToMScalar(z * scale); | 
 |     } | 
 |     this->setRotateAboutUnit(x, y, z, radians); | 
 | } | 
 |  | 
 | void SkMatrix44::setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z, | 
 |                                     SkMScalar radians) { | 
 |     double c = cos(radians); | 
 |     double s = sin(radians); | 
 |     double C = 1 - c; | 
 |     double xs = x * s; | 
 |     double ys = y * s; | 
 |     double zs = z * s; | 
 |     double xC = x * C; | 
 |     double yC = y * C; | 
 |     double zC = z * C; | 
 |     double xyC = x * yC; | 
 |     double yzC = y * zC; | 
 |     double zxC = z * xC; | 
 |  | 
 |     // if you're looking at wikipedia, remember that we're column major. | 
 |     this->set3x3(SkDoubleToMScalar(x * xC + c),     // scale x | 
 |                  SkDoubleToMScalar(xyC + zs),       // skew x | 
 |                  SkDoubleToMScalar(zxC - ys),       // trans x | 
 |  | 
 |                  SkDoubleToMScalar(xyC - zs),       // skew y | 
 |                  SkDoubleToMScalar(y * yC + c),     // scale y | 
 |                  SkDoubleToMScalar(yzC + xs),       // trans y | 
 |  | 
 |                  SkDoubleToMScalar(zxC + ys),       // persp x | 
 |                  SkDoubleToMScalar(yzC - xs),       // persp y | 
 |                  SkDoubleToMScalar(z * zC + c));    // persp 2 | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | static bool bits_isonly(int value, int mask) { | 
 |     return 0 == (value & ~mask); | 
 | } | 
 |  | 
 | void SkMatrix44::setConcat(const SkMatrix44& a, const SkMatrix44& b) { | 
 |     const SkMatrix44::TypeMask a_mask = a.getType(); | 
 |     const SkMatrix44::TypeMask b_mask = b.getType(); | 
 |  | 
 |     if (kIdentity_Mask == a_mask) { | 
 |         *this = b; | 
 |         return; | 
 |     } | 
 |     if (kIdentity_Mask == b_mask) { | 
 |         *this = a; | 
 |         return; | 
 |     } | 
 |  | 
 |     bool useStorage = (this == &a || this == &b); | 
 |     SkMScalar storage[16]; | 
 |     SkMScalar* result = useStorage ? storage : &fMat[0][0]; | 
 |  | 
 |     // Both matrices are at most scale+translate | 
 |     if (bits_isonly(a_mask | b_mask, kScale_Mask | kTranslate_Mask)) { | 
 |         result[0] = a.fMat[0][0] * b.fMat[0][0]; | 
 |         result[1] = result[2] = result[3] = result[4] = 0; | 
 |         result[5] = a.fMat[1][1] * b.fMat[1][1]; | 
 |         result[6] = result[7] = result[8] = result[9] = 0; | 
 |         result[10] = a.fMat[2][2] * b.fMat[2][2]; | 
 |         result[11] = 0; | 
 |         result[12] = a.fMat[0][0] * b.fMat[3][0] + a.fMat[3][0]; | 
 |         result[13] = a.fMat[1][1] * b.fMat[3][1] + a.fMat[3][1]; | 
 |         result[14] = a.fMat[2][2] * b.fMat[3][2] + a.fMat[3][2]; | 
 |         result[15] = 1; | 
 |     } else { | 
 |         for (int j = 0; j < 4; j++) { | 
 |             for (int i = 0; i < 4; i++) { | 
 |                 double value = 0; | 
 |                 for (int k = 0; k < 4; k++) { | 
 |                     value += SkMScalarToDouble(a.fMat[k][i]) * b.fMat[j][k]; | 
 |                 } | 
 |                 *result++ = SkDoubleToMScalar(value); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     if (useStorage) { | 
 |         memcpy(fMat, storage, sizeof(storage)); | 
 |     } | 
 |     this->dirtyTypeMask(); | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | /** We always perform the calculation in doubles, to avoid prematurely losing | 
 |     precision along the way. This relies on the compiler automatically | 
 |     promoting our SkMScalar values to double (if needed). | 
 |  */ | 
 | double SkMatrix44::determinant() const { | 
 |     if (this->isIdentity()) { | 
 |         return 1; | 
 |     } | 
 |     if (this->isScaleTranslate()) { | 
 |         return fMat[0][0] * fMat[1][1] * fMat[2][2] * fMat[3][3]; | 
 |     } | 
 |  | 
 |     double a00 = fMat[0][0]; | 
 |     double a01 = fMat[0][1]; | 
 |     double a02 = fMat[0][2]; | 
 |     double a03 = fMat[0][3]; | 
 |     double a10 = fMat[1][0]; | 
 |     double a11 = fMat[1][1]; | 
 |     double a12 = fMat[1][2]; | 
 |     double a13 = fMat[1][3]; | 
 |     double a20 = fMat[2][0]; | 
 |     double a21 = fMat[2][1]; | 
 |     double a22 = fMat[2][2]; | 
 |     double a23 = fMat[2][3]; | 
 |     double a30 = fMat[3][0]; | 
 |     double a31 = fMat[3][1]; | 
 |     double a32 = fMat[3][2]; | 
 |     double a33 = fMat[3][3]; | 
 |  | 
 |     double b00 = a00 * a11 - a01 * a10; | 
 |     double b01 = a00 * a12 - a02 * a10; | 
 |     double b02 = a00 * a13 - a03 * a10; | 
 |     double b03 = a01 * a12 - a02 * a11; | 
 |     double b04 = a01 * a13 - a03 * a11; | 
 |     double b05 = a02 * a13 - a03 * a12; | 
 |     double b06 = a20 * a31 - a21 * a30; | 
 |     double b07 = a20 * a32 - a22 * a30; | 
 |     double b08 = a20 * a33 - a23 * a30; | 
 |     double b09 = a21 * a32 - a22 * a31; | 
 |     double b10 = a21 * a33 - a23 * a31; | 
 |     double b11 = a22 * a33 - a23 * a32; | 
 |  | 
 |     // Calculate the determinant | 
 |     return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | static bool is_matrix_finite(const SkMatrix44& matrix) { | 
 |     SkMScalar accumulator = 0; | 
 |     for (int row = 0; row < 4; ++row) { | 
 |         for (int col = 0; col < 4; ++col) { | 
 |             accumulator *= matrix.get(row, col); | 
 |         } | 
 |     } | 
 |     return accumulator == 0; | 
 | } | 
 |  | 
 | bool SkMatrix44::invert(SkMatrix44* storage) const { | 
 |     if (this->isIdentity()) { | 
 |         if (storage) { | 
 |             storage->setIdentity(); | 
 |         } | 
 |         return true; | 
 |     } | 
 |  | 
 |     if (this->isTranslate()) { | 
 |         if (storage) { | 
 |             storage->setTranslate(-fMat[3][0], -fMat[3][1], -fMat[3][2]); | 
 |         } | 
 |         return true; | 
 |     } | 
 |  | 
 |     SkMatrix44 tmp(kUninitialized_Constructor); | 
 |     // Use storage if it's available and distinct from this matrix. | 
 |     SkMatrix44* inverse = (storage && storage != this) ? storage : &tmp; | 
 |     if (this->isScaleTranslate()) { | 
 |         if (0 == fMat[0][0] * fMat[1][1] * fMat[2][2]) { | 
 |             return false; | 
 |         } | 
 |  | 
 |         double invXScale = 1 / fMat[0][0]; | 
 |         double invYScale = 1 / fMat[1][1]; | 
 |         double invZScale = 1 / fMat[2][2]; | 
 |  | 
 |         inverse->fMat[0][0] = SkDoubleToMScalar(invXScale); | 
 |         inverse->fMat[0][1] = 0; | 
 |         inverse->fMat[0][2] = 0; | 
 |         inverse->fMat[0][3] = 0; | 
 |  | 
 |         inverse->fMat[1][0] = 0; | 
 |         inverse->fMat[1][1] = SkDoubleToMScalar(invYScale); | 
 |         inverse->fMat[1][2] = 0; | 
 |         inverse->fMat[1][3] = 0; | 
 |  | 
 |         inverse->fMat[2][0] = 0; | 
 |         inverse->fMat[2][1] = 0; | 
 |         inverse->fMat[2][2] = SkDoubleToMScalar(invZScale); | 
 |         inverse->fMat[2][3] = 0; | 
 |  | 
 |         inverse->fMat[3][0] = SkDoubleToMScalar(-fMat[3][0] * invXScale); | 
 |         inverse->fMat[3][1] = SkDoubleToMScalar(-fMat[3][1] * invYScale); | 
 |         inverse->fMat[3][2] = SkDoubleToMScalar(-fMat[3][2] * invZScale); | 
 |         inverse->fMat[3][3] = 1; | 
 |  | 
 |         inverse->setTypeMask(this->getType()); | 
 |  | 
 |         if (!is_matrix_finite(*inverse)) { | 
 |             return false; | 
 |         } | 
 |         if (storage && inverse != storage) { | 
 |             *storage = *inverse; | 
 |         } | 
 |         return true; | 
 |     } | 
 |  | 
 |     double a00 = fMat[0][0]; | 
 |     double a01 = fMat[0][1]; | 
 |     double a02 = fMat[0][2]; | 
 |     double a03 = fMat[0][3]; | 
 |     double a10 = fMat[1][0]; | 
 |     double a11 = fMat[1][1]; | 
 |     double a12 = fMat[1][2]; | 
 |     double a13 = fMat[1][3]; | 
 |     double a20 = fMat[2][0]; | 
 |     double a21 = fMat[2][1]; | 
 |     double a22 = fMat[2][2]; | 
 |     double a23 = fMat[2][3]; | 
 |     double a30 = fMat[3][0]; | 
 |     double a31 = fMat[3][1]; | 
 |     double a32 = fMat[3][2]; | 
 |     double a33 = fMat[3][3]; | 
 |  | 
 |     if (!(this->getType() & kPerspective_Mask)) { | 
 |         // If we know the matrix has no perspective, then the perspective | 
 |         // component is (0, 0, 0, 1). We can use this information to save a lot | 
 |         // of arithmetic that would otherwise be spent to compute the inverse | 
 |         // of a general matrix. | 
 |  | 
 |         SkASSERT(a03 == 0); | 
 |         SkASSERT(a13 == 0); | 
 |         SkASSERT(a23 == 0); | 
 |         SkASSERT(a33 == 1); | 
 |  | 
 |         double b00 = a00 * a11 - a01 * a10; | 
 |         double b01 = a00 * a12 - a02 * a10; | 
 |         double b03 = a01 * a12 - a02 * a11; | 
 |         double b06 = a20 * a31 - a21 * a30; | 
 |         double b07 = a20 * a32 - a22 * a30; | 
 |         double b08 = a20; | 
 |         double b09 = a21 * a32 - a22 * a31; | 
 |         double b10 = a21; | 
 |         double b11 = a22; | 
 |  | 
 |         // Calculate the determinant | 
 |         double det = b00 * b11 - b01 * b10 + b03 * b08; | 
 |  | 
 |         double invdet = 1.0 / det; | 
 |         // If det is zero, we want to return false. However, we also want to return false | 
 |         // if 1/det overflows to infinity (i.e. det is denormalized). Both of these are | 
 |         // handled by checking that 1/det is finite. | 
 |         if (!sk_float_isfinite(invdet)) { | 
 |             return false; | 
 |         } | 
 |  | 
 |         b00 *= invdet; | 
 |         b01 *= invdet; | 
 |         b03 *= invdet; | 
 |         b06 *= invdet; | 
 |         b07 *= invdet; | 
 |         b08 *= invdet; | 
 |         b09 *= invdet; | 
 |         b10 *= invdet; | 
 |         b11 *= invdet; | 
 |  | 
 |         inverse->fMat[0][0] = SkDoubleToMScalar(a11 * b11 - a12 * b10); | 
 |         inverse->fMat[0][1] = SkDoubleToMScalar(a02 * b10 - a01 * b11); | 
 |         inverse->fMat[0][2] = SkDoubleToMScalar(b03); | 
 |         inverse->fMat[0][3] = 0; | 
 |         inverse->fMat[1][0] = SkDoubleToMScalar(a12 * b08 - a10 * b11); | 
 |         inverse->fMat[1][1] = SkDoubleToMScalar(a00 * b11 - a02 * b08); | 
 |         inverse->fMat[1][2] = SkDoubleToMScalar(-b01); | 
 |         inverse->fMat[1][3] = 0; | 
 |         inverse->fMat[2][0] = SkDoubleToMScalar(a10 * b10 - a11 * b08); | 
 |         inverse->fMat[2][1] = SkDoubleToMScalar(a01 * b08 - a00 * b10); | 
 |         inverse->fMat[2][2] = SkDoubleToMScalar(b00); | 
 |         inverse->fMat[2][3] = 0; | 
 |         inverse->fMat[3][0] = SkDoubleToMScalar(a11 * b07 - a10 * b09 - a12 * b06); | 
 |         inverse->fMat[3][1] = SkDoubleToMScalar(a00 * b09 - a01 * b07 + a02 * b06); | 
 |         inverse->fMat[3][2] = SkDoubleToMScalar(a31 * b01 - a30 * b03 - a32 * b00); | 
 |         inverse->fMat[3][3] = 1; | 
 |  | 
 |         inverse->setTypeMask(this->getType()); | 
 |         if (!is_matrix_finite(*inverse)) { | 
 |             return false; | 
 |         } | 
 |         if (storage && inverse != storage) { | 
 |             *storage = *inverse; | 
 |         } | 
 |         return true; | 
 |     } | 
 |  | 
 |     double b00 = a00 * a11 - a01 * a10; | 
 |     double b01 = a00 * a12 - a02 * a10; | 
 |     double b02 = a00 * a13 - a03 * a10; | 
 |     double b03 = a01 * a12 - a02 * a11; | 
 |     double b04 = a01 * a13 - a03 * a11; | 
 |     double b05 = a02 * a13 - a03 * a12; | 
 |     double b06 = a20 * a31 - a21 * a30; | 
 |     double b07 = a20 * a32 - a22 * a30; | 
 |     double b08 = a20 * a33 - a23 * a30; | 
 |     double b09 = a21 * a32 - a22 * a31; | 
 |     double b10 = a21 * a33 - a23 * a31; | 
 |     double b11 = a22 * a33 - a23 * a32; | 
 |  | 
 |     // Calculate the determinant | 
 |     double det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; | 
 |  | 
 |     double invdet = 1.0 / det; | 
 |     // If det is zero, we want to return false. However, we also want to return false | 
 |     // if 1/det overflows to infinity (i.e. det is denormalized). Both of these are | 
 |     // handled by checking that 1/det is finite. | 
 |     if (!sk_float_isfinite(invdet)) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     b00 *= invdet; | 
 |     b01 *= invdet; | 
 |     b02 *= invdet; | 
 |     b03 *= invdet; | 
 |     b04 *= invdet; | 
 |     b05 *= invdet; | 
 |     b06 *= invdet; | 
 |     b07 *= invdet; | 
 |     b08 *= invdet; | 
 |     b09 *= invdet; | 
 |     b10 *= invdet; | 
 |     b11 *= invdet; | 
 |  | 
 |     inverse->fMat[0][0] = SkDoubleToMScalar(a11 * b11 - a12 * b10 + a13 * b09); | 
 |     inverse->fMat[0][1] = SkDoubleToMScalar(a02 * b10 - a01 * b11 - a03 * b09); | 
 |     inverse->fMat[0][2] = SkDoubleToMScalar(a31 * b05 - a32 * b04 + a33 * b03); | 
 |     inverse->fMat[0][3] = SkDoubleToMScalar(a22 * b04 - a21 * b05 - a23 * b03); | 
 |     inverse->fMat[1][0] = SkDoubleToMScalar(a12 * b08 - a10 * b11 - a13 * b07); | 
 |     inverse->fMat[1][1] = SkDoubleToMScalar(a00 * b11 - a02 * b08 + a03 * b07); | 
 |     inverse->fMat[1][2] = SkDoubleToMScalar(a32 * b02 - a30 * b05 - a33 * b01); | 
 |     inverse->fMat[1][3] = SkDoubleToMScalar(a20 * b05 - a22 * b02 + a23 * b01); | 
 |     inverse->fMat[2][0] = SkDoubleToMScalar(a10 * b10 - a11 * b08 + a13 * b06); | 
 |     inverse->fMat[2][1] = SkDoubleToMScalar(a01 * b08 - a00 * b10 - a03 * b06); | 
 |     inverse->fMat[2][2] = SkDoubleToMScalar(a30 * b04 - a31 * b02 + a33 * b00); | 
 |     inverse->fMat[2][3] = SkDoubleToMScalar(a21 * b02 - a20 * b04 - a23 * b00); | 
 |     inverse->fMat[3][0] = SkDoubleToMScalar(a11 * b07 - a10 * b09 - a12 * b06); | 
 |     inverse->fMat[3][1] = SkDoubleToMScalar(a00 * b09 - a01 * b07 + a02 * b06); | 
 |     inverse->fMat[3][2] = SkDoubleToMScalar(a31 * b01 - a30 * b03 - a32 * b00); | 
 |     inverse->fMat[3][3] = SkDoubleToMScalar(a20 * b03 - a21 * b01 + a22 * b00); | 
 |     inverse->dirtyTypeMask(); | 
 |  | 
 |     inverse->setTypeMask(this->getType()); | 
 |     if (!is_matrix_finite(*inverse)) { | 
 |         return false; | 
 |     } | 
 |     if (storage && inverse != storage) { | 
 |         *storage = *inverse; | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | void SkMatrix44::transpose() { | 
 |     SkTSwap(fMat[0][1], fMat[1][0]); | 
 |     SkTSwap(fMat[0][2], fMat[2][0]); | 
 |     SkTSwap(fMat[0][3], fMat[3][0]); | 
 |     SkTSwap(fMat[1][2], fMat[2][1]); | 
 |     SkTSwap(fMat[1][3], fMat[3][1]); | 
 |     SkTSwap(fMat[2][3], fMat[3][2]); | 
 |  | 
 |     if (!this->isTriviallyIdentity()) { | 
 |         this->dirtyTypeMask(); | 
 |     } | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | void SkMatrix44::mapScalars(const SkScalar src[4], SkScalar dst[4]) const { | 
 |     SkScalar storage[4]; | 
 |     SkScalar* result = (src == dst) ? storage : dst; | 
 |  | 
 |     for (int i = 0; i < 4; i++) { | 
 |         SkMScalar value = 0; | 
 |         for (int j = 0; j < 4; j++) { | 
 |             value += fMat[j][i] * src[j]; | 
 |         } | 
 |         result[i] = SkMScalarToScalar(value); | 
 |     } | 
 |  | 
 |     if (storage == result) { | 
 |         memcpy(dst, storage, sizeof(storage)); | 
 |     } | 
 | } | 
 |  | 
 | #ifdef SK_MSCALAR_IS_DOUBLE | 
 |  | 
 | void SkMatrix44::mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const { | 
 |     SkMScalar storage[4]; | 
 |     SkMScalar* result = (src == dst) ? storage : dst; | 
 |  | 
 |     for (int i = 0; i < 4; i++) { | 
 |         SkMScalar value = 0; | 
 |         for (int j = 0; j < 4; j++) { | 
 |             value += fMat[j][i] * src[j]; | 
 |         } | 
 |         result[i] = value; | 
 |     } | 
 |  | 
 |     if (storage == result) { | 
 |         memcpy(dst, storage, sizeof(storage)); | 
 |     } | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | typedef void (*Map2Procf)(const SkMScalar mat[][4], const float src2[], int count, float dst4[]); | 
 | typedef void (*Map2Procd)(const SkMScalar mat[][4], const double src2[], int count, double dst4[]); | 
 |  | 
 | static void map2_if(const SkMScalar mat[][4], const float* SK_RESTRICT src2, | 
 |                     int count, float* SK_RESTRICT dst4) { | 
 |     for (int i = 0; i < count; ++i) { | 
 |         dst4[0] = src2[0]; | 
 |         dst4[1] = src2[1]; | 
 |         dst4[2] = 0; | 
 |         dst4[3] = 1; | 
 |         src2 += 2; | 
 |         dst4 += 4; | 
 |     } | 
 | } | 
 |  | 
 | static void map2_id(const SkMScalar mat[][4], const double* SK_RESTRICT src2, | 
 |                     int count, double* SK_RESTRICT dst4) { | 
 |     for (int i = 0; i < count; ++i) { | 
 |         dst4[0] = src2[0]; | 
 |         dst4[1] = src2[1]; | 
 |         dst4[2] = 0; | 
 |         dst4[3] = 1; | 
 |         src2 += 2; | 
 |         dst4 += 4; | 
 |     } | 
 | } | 
 |  | 
 | static void map2_tf(const SkMScalar mat[][4], const float* SK_RESTRICT src2, | 
 |                     int count, float* SK_RESTRICT dst4) { | 
 |     const float mat30 = SkMScalarToFloat(mat[3][0]); | 
 |     const float mat31 = SkMScalarToFloat(mat[3][1]); | 
 |     const float mat32 = SkMScalarToFloat(mat[3][2]); | 
 |     for (int n = 0; n < count; ++n) { | 
 |         dst4[0] = src2[0] + mat30; | 
 |         dst4[1] = src2[1] + mat31; | 
 |         dst4[2] = mat32; | 
 |         dst4[3] = 1; | 
 |         src2 += 2; | 
 |         dst4 += 4; | 
 |     } | 
 | } | 
 |  | 
 | static void map2_td(const SkMScalar mat[][4], const double* SK_RESTRICT src2, | 
 |                     int count, double* SK_RESTRICT dst4) { | 
 |     for (int n = 0; n < count; ++n) { | 
 |         dst4[0] = src2[0] + mat[3][0]; | 
 |         dst4[1] = src2[1] + mat[3][1]; | 
 |         dst4[2] = mat[3][2]; | 
 |         dst4[3] = 1; | 
 |         src2 += 2; | 
 |         dst4 += 4; | 
 |     } | 
 | } | 
 |  | 
 | static void map2_sf(const SkMScalar mat[][4], const float* SK_RESTRICT src2, | 
 |                     int count, float* SK_RESTRICT dst4) { | 
 |     const float mat32 = SkMScalarToFloat(mat[3][2]); | 
 |     for (int n = 0; n < count; ++n) { | 
 |         dst4[0] = SkMScalarToFloat(mat[0][0] * src2[0] + mat[3][0]); | 
 |         dst4[1] = SkMScalarToFloat(mat[1][1] * src2[1] + mat[3][1]); | 
 |         dst4[2] = mat32; | 
 |         dst4[3] = 1; | 
 |         src2 += 2; | 
 |         dst4 += 4; | 
 |     } | 
 | } | 
 |  | 
 | static void map2_sd(const SkMScalar mat[][4], const double* SK_RESTRICT src2, | 
 |                     int count, double* SK_RESTRICT dst4) { | 
 |     for (int n = 0; n < count; ++n) { | 
 |         dst4[0] = mat[0][0] * src2[0] + mat[3][0]; | 
 |         dst4[1] = mat[1][1] * src2[1] + mat[3][1]; | 
 |         dst4[2] = mat[3][2]; | 
 |         dst4[3] = 1; | 
 |         src2 += 2; | 
 |         dst4 += 4; | 
 |     } | 
 | } | 
 |  | 
 | static void map2_af(const SkMScalar mat[][4], const float* SK_RESTRICT src2, | 
 |                     int count, float* SK_RESTRICT dst4) { | 
 |     SkMScalar r; | 
 |     for (int n = 0; n < count; ++n) { | 
 |         SkMScalar sx = SkFloatToMScalar(src2[0]); | 
 |         SkMScalar sy = SkFloatToMScalar(src2[1]); | 
 |         r = mat[0][0] * sx + mat[1][0] * sy + mat[3][0]; | 
 |         dst4[0] = SkMScalarToFloat(r); | 
 |         r = mat[0][1] * sx + mat[1][1] * sy + mat[3][1]; | 
 |         dst4[1] = SkMScalarToFloat(r); | 
 |         r = mat[0][2] * sx + mat[1][2] * sy + mat[3][2]; | 
 |         dst4[2] = SkMScalarToFloat(r); | 
 |         dst4[3] = 1; | 
 |         src2 += 2; | 
 |         dst4 += 4; | 
 |     } | 
 | } | 
 |  | 
 | static void map2_ad(const SkMScalar mat[][4], const double* SK_RESTRICT src2, | 
 |                     int count, double* SK_RESTRICT dst4) { | 
 |     for (int n = 0; n < count; ++n) { | 
 |         double sx = src2[0]; | 
 |         double sy = src2[1]; | 
 |         dst4[0] = mat[0][0] * sx + mat[1][0] * sy + mat[3][0]; | 
 |         dst4[1] = mat[0][1] * sx + mat[1][1] * sy + mat[3][1]; | 
 |         dst4[2] = mat[0][2] * sx + mat[1][2] * sy + mat[3][2]; | 
 |         dst4[3] = 1; | 
 |         src2 += 2; | 
 |         dst4 += 4; | 
 |     } | 
 | } | 
 |  | 
 | static void map2_pf(const SkMScalar mat[][4], const float* SK_RESTRICT src2, | 
 |                     int count, float* SK_RESTRICT dst4) { | 
 |     SkMScalar r; | 
 |     for (int n = 0; n < count; ++n) { | 
 |         SkMScalar sx = SkFloatToMScalar(src2[0]); | 
 |         SkMScalar sy = SkFloatToMScalar(src2[1]); | 
 |         for (int i = 0; i < 4; i++) { | 
 |             r = mat[0][i] * sx + mat[1][i] * sy + mat[3][i]; | 
 |             dst4[i] = SkMScalarToFloat(r); | 
 |         } | 
 |         src2 += 2; | 
 |         dst4 += 4; | 
 |     } | 
 | } | 
 |  | 
 | static void map2_pd(const SkMScalar mat[][4], const double* SK_RESTRICT src2, | 
 |                     int count, double* SK_RESTRICT dst4) { | 
 |     for (int n = 0; n < count; ++n) { | 
 |         double sx = src2[0]; | 
 |         double sy = src2[1]; | 
 |         for (int i = 0; i < 4; i++) { | 
 |             dst4[i] = mat[0][i] * sx + mat[1][i] * sy + mat[3][i]; | 
 |         } | 
 |         src2 += 2; | 
 |         dst4 += 4; | 
 |     } | 
 | } | 
 |  | 
 | void SkMatrix44::map2(const float src2[], int count, float dst4[]) const { | 
 |     static const Map2Procf gProc[] = { | 
 |         map2_if, map2_tf, map2_sf, map2_sf, map2_af, map2_af, map2_af, map2_af | 
 |     }; | 
 |  | 
 |     TypeMask mask = this->getType(); | 
 |     Map2Procf proc = (mask & kPerspective_Mask) ? map2_pf : gProc[mask]; | 
 |     proc(fMat, src2, count, dst4); | 
 | } | 
 |  | 
 | void SkMatrix44::map2(const double src2[], int count, double dst4[]) const { | 
 |     static const Map2Procd gProc[] = { | 
 |         map2_id, map2_td, map2_sd, map2_sd, map2_ad, map2_ad, map2_ad, map2_ad | 
 |     }; | 
 |  | 
 |     TypeMask mask = this->getType(); | 
 |     Map2Procd proc = (mask & kPerspective_Mask) ? map2_pd : gProc[mask]; | 
 |     proc(fMat, src2, count, dst4); | 
 | } | 
 |  | 
 | bool SkMatrix44::preserves2dAxisAlignment (SkMScalar epsilon) const { | 
 |  | 
 |     // Can't check (mask & kPerspective_Mask) because Z isn't relevant here. | 
 |     if (0 != perspX() || 0 != perspY()) return false; | 
 |  | 
 |     // A matrix with two non-zeroish values in any of the upper right | 
 |     // rows or columns will skew.  If only one value in each row or | 
 |     // column is non-zeroish, we get a scale plus perhaps a 90-degree | 
 |     // rotation. | 
 |     int col0 = 0; | 
 |     int col1 = 0; | 
 |     int row0 = 0; | 
 |     int row1 = 0; | 
 |  | 
 |     // Must test against epsilon, not 0, because we can get values | 
 |     // around 6e-17 in the matrix that "should" be 0. | 
 |  | 
 |     if (SkMScalarAbs(fMat[0][0]) > epsilon) { | 
 |         col0++; | 
 |         row0++; | 
 |     } | 
 |     if (SkMScalarAbs(fMat[0][1]) > epsilon) { | 
 |         col1++; | 
 |         row0++; | 
 |     } | 
 |     if (SkMScalarAbs(fMat[1][0]) > epsilon) { | 
 |         col0++; | 
 |         row1++; | 
 |     } | 
 |     if (SkMScalarAbs(fMat[1][1]) > epsilon) { | 
 |         col1++; | 
 |         row1++; | 
 |     } | 
 |     if (col0 > 1 || col1 > 1 || row0 > 1 || row1 > 1) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | void SkMatrix44::dump() const { | 
 |     static const char* format = | 
 |         "[%g %g %g %g][%g %g %g %g][%g %g %g %g][%g %g %g %g]\n"; | 
 | #if 0 | 
 |     SkDebugf(format, | 
 |              fMat[0][0], fMat[1][0], fMat[2][0], fMat[3][0], | 
 |              fMat[0][1], fMat[1][1], fMat[2][1], fMat[3][1], | 
 |              fMat[0][2], fMat[1][2], fMat[2][2], fMat[3][2], | 
 |              fMat[0][3], fMat[1][3], fMat[2][3], fMat[3][3]); | 
 | #else | 
 |     SkDebugf(format, | 
 |              fMat[0][0], fMat[0][1], fMat[0][2], fMat[0][3], | 
 |              fMat[1][0], fMat[1][1], fMat[1][2], fMat[1][3], | 
 |              fMat[2][0], fMat[2][1], fMat[2][2], fMat[2][3], | 
 |              fMat[3][0], fMat[3][1], fMat[3][2], fMat[3][3]); | 
 | #endif | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | static void initFromMatrix(SkMScalar dst[4][4], const SkMatrix& src) { | 
 |     dst[0][0] = SkScalarToMScalar(src[SkMatrix::kMScaleX]); | 
 |     dst[1][0] = SkScalarToMScalar(src[SkMatrix::kMSkewX]); | 
 |     dst[2][0] = 0; | 
 |     dst[3][0] = SkScalarToMScalar(src[SkMatrix::kMTransX]); | 
 |     dst[0][1] = SkScalarToMScalar(src[SkMatrix::kMSkewY]); | 
 |     dst[1][1] = SkScalarToMScalar(src[SkMatrix::kMScaleY]); | 
 |     dst[2][1] = 0; | 
 |     dst[3][1] = SkScalarToMScalar(src[SkMatrix::kMTransY]); | 
 |     dst[0][2] = 0; | 
 |     dst[1][2] = 0; | 
 |     dst[2][2] = 1; | 
 |     dst[3][2] = 0; | 
 |     dst[0][3] = SkScalarToMScalar(src[SkMatrix::kMPersp0]); | 
 |     dst[1][3] = SkScalarToMScalar(src[SkMatrix::kMPersp1]); | 
 |     dst[2][3] = 0; | 
 |     dst[3][3] = SkScalarToMScalar(src[SkMatrix::kMPersp2]); | 
 | } | 
 |  | 
 | SkMatrix44::SkMatrix44(const SkMatrix& src) { | 
 |     this->operator=(src); | 
 | } | 
 |  | 
 | SkMatrix44& SkMatrix44::operator=(const SkMatrix& src) { | 
 |     initFromMatrix(fMat, src); | 
 |  | 
 |     if (src.isIdentity()) { | 
 |         this->setTypeMask(kIdentity_Mask); | 
 |     } else { | 
 |         this->dirtyTypeMask(); | 
 |     } | 
 |     return *this; | 
 | } | 
 |  | 
 | SkMatrix44::operator SkMatrix() const { | 
 |     SkMatrix dst; | 
 |  | 
 |     dst[SkMatrix::kMScaleX]  = SkMScalarToScalar(fMat[0][0]); | 
 |     dst[SkMatrix::kMSkewX]  = SkMScalarToScalar(fMat[1][0]); | 
 |     dst[SkMatrix::kMTransX] = SkMScalarToScalar(fMat[3][0]); | 
 |  | 
 |     dst[SkMatrix::kMSkewY]  = SkMScalarToScalar(fMat[0][1]); | 
 |     dst[SkMatrix::kMScaleY] = SkMScalarToScalar(fMat[1][1]); | 
 |     dst[SkMatrix::kMTransY] = SkMScalarToScalar(fMat[3][1]); | 
 |  | 
 |     dst[SkMatrix::kMPersp0] = SkMScalarToScalar(fMat[0][3]); | 
 |     dst[SkMatrix::kMPersp1] = SkMScalarToScalar(fMat[1][3]); | 
 |     dst[SkMatrix::kMPersp2] = SkMScalarToScalar(fMat[3][3]); | 
 |  | 
 |     return dst; | 
 | } |