| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrVkCaps.h" |
| |
| #include "GrBackendSurface.h" |
| #include "GrRenderTargetProxy.h" |
| #include "GrShaderCaps.h" |
| #include "GrVkUtil.h" |
| #include "vk/GrVkBackendContext.h" |
| #include "vk/GrVkInterface.h" |
| |
| GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface, |
| VkPhysicalDevice physDev, uint32_t featureFlags, uint32_t extensionFlags) |
| : INHERITED(contextOptions) { |
| fCanUseGLSLForShaderModule = false; |
| fMustDoCopiesFromOrigin = false; |
| fSupportsCopiesAsDraws = true; |
| fMustSubmitCommandsBeforeCopyOp = false; |
| fMustSleepOnTearDown = false; |
| fNewCBOnPipelineChange = false; |
| fCanUseWholeSizeOnFlushMappedMemory = true; |
| |
| /************************************************************************** |
| * GrDrawTargetCaps fields |
| **************************************************************************/ |
| fMipMapSupport = true; // always available in Vulkan |
| fSRGBSupport = true; // always available in Vulkan |
| fSRGBDecodeDisableSupport = true; // always available in Vulkan |
| fNPOTTextureTileSupport = true; // always available in Vulkan |
| fDiscardRenderTargetSupport = true; |
| fReuseScratchTextures = true; //TODO: figure this out |
| fGpuTracingSupport = false; //TODO: figure this out |
| fOversizedStencilSupport = false; //TODO: figure this out |
| fInstanceAttribSupport = true; |
| |
| fBlacklistCoverageCounting = true; // blacklisting ccpr until we work through a few issues. |
| fFenceSyncSupport = true; // always available in Vulkan |
| fCrossContextTextureSupport = true; |
| |
| fMapBufferFlags = kNone_MapFlags; //TODO: figure this out |
| fBufferMapThreshold = SK_MaxS32; //TODO: figure this out |
| |
| fMaxRenderTargetSize = 4096; // minimum required by spec |
| fMaxTextureSize = 4096; // minimum required by spec |
| |
| fShaderCaps.reset(new GrShaderCaps(contextOptions)); |
| |
| this->init(contextOptions, vkInterface, physDev, featureFlags, extensionFlags); |
| } |
| |
| bool GrVkCaps::initDescForDstCopy(const GrRenderTargetProxy* src, GrSurfaceDesc* desc, |
| bool* rectsMustMatch, bool* disallowSubrect) const { |
| // Vk doesn't use rectsMustMatch or disallowSubrect. Always return false. |
| *rectsMustMatch = false; |
| *disallowSubrect = false; |
| |
| // We can always succeed here with either a CopyImage (none msaa src) or ResolveImage (msaa). |
| // For CopyImage we can make a simple texture, for ResolveImage we require the dst to be a |
| // render target as well. |
| desc->fOrigin = src->origin(); |
| desc->fConfig = src->config(); |
| if (src->numColorSamples() > 1 || (src->asTextureProxy() && this->supportsCopiesAsDraws())) { |
| desc->fFlags = kRenderTarget_GrSurfaceFlag; |
| } else { |
| // Just going to use CopyImage here |
| desc->fFlags = kNone_GrSurfaceFlags; |
| } |
| |
| return true; |
| } |
| |
| void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface, |
| VkPhysicalDevice physDev, uint32_t featureFlags, uint32_t extensionFlags) { |
| |
| VkPhysicalDeviceProperties properties; |
| GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties)); |
| |
| VkPhysicalDeviceMemoryProperties memoryProperties; |
| GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties)); |
| |
| this->initGrCaps(properties, memoryProperties, featureFlags); |
| this->initShaderCaps(properties, featureFlags); |
| |
| if (!contextOptions.fDisableDriverCorrectnessWorkarounds) { |
| #if defined(SK_CPU_X86) |
| // We need to do this before initing the config table since it uses fSRGBSupport |
| if (kImagination_VkVendor == properties.vendorID) { |
| fSRGBSupport = false; |
| } |
| #endif |
| } |
| |
| this->initConfigTable(vkInterface, physDev, properties); |
| this->initStencilFormat(vkInterface, physDev); |
| |
| if (!contextOptions.fDisableDriverCorrectnessWorkarounds) { |
| this->applyDriverCorrectnessWorkarounds(properties); |
| } |
| |
| this->applyOptionsOverrides(contextOptions); |
| fShaderCaps->applyOptionsOverrides(contextOptions); |
| } |
| |
| void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) { |
| if (kQualcomm_VkVendor == properties.vendorID) { |
| fMustDoCopiesFromOrigin = true; |
| } |
| |
| if (kNvidia_VkVendor == properties.vendorID) { |
| fMustSubmitCommandsBeforeCopyOp = true; |
| } |
| |
| if (kQualcomm_VkVendor == properties.vendorID || |
| kARM_VkVendor == properties.vendorID) { |
| fSupportsCopiesAsDraws = false; |
| // We require copies as draws to support cross context textures. |
| fCrossContextTextureSupport = false; |
| } |
| |
| #if defined(SK_BUILD_FOR_WIN) |
| if (kNvidia_VkVendor == properties.vendorID) { |
| fMustSleepOnTearDown = true; |
| } |
| #elif defined(SK_BUILD_FOR_ANDROID) |
| if (kImagination_VkVendor == properties.vendorID) { |
| fMustSleepOnTearDown = true; |
| } |
| #endif |
| |
| // AMD seems to have issues binding new VkPipelines inside a secondary command buffer. |
| // Current workaround is to use a different secondary command buffer for each new VkPipeline. |
| if (kAMD_VkVendor == properties.vendorID) { |
| fNewCBOnPipelineChange = true; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////// |
| // GrCaps workarounds |
| //////////////////////////////////////////////////////////////////////////// |
| |
| if (kARM_VkVendor == properties.vendorID) { |
| fInstanceAttribSupport = false; |
| } |
| |
| // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32. |
| if (kAMD_VkVendor == properties.vendorID) { |
| fMaxVertexAttributes = SkTMin(fMaxVertexAttributes, 32); |
| } |
| |
| if (kIntel_VkVendor == properties.vendorID) { |
| fCanUseWholeSizeOnFlushMappedMemory = false; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////// |
| // GrShaderCaps workarounds |
| //////////////////////////////////////////////////////////////////////////// |
| |
| if (kAMD_VkVendor == properties.vendorID) { |
| // Currently DualSourceBlending is not working on AMD. vkCreateGraphicsPipeline fails when |
| // using a draw with dual source. Looking into whether it is driver bug or issue with our |
| // SPIR-V. Bug skia:6405 |
| fShaderCaps->fDualSourceBlendingSupport = false; |
| } |
| |
| if (kImagination_VkVendor == properties.vendorID) { |
| fShaderCaps->fAtan2ImplementedAsAtanYOverX = true; |
| } |
| |
| } |
| |
| int get_max_sample_count(VkSampleCountFlags flags) { |
| SkASSERT(flags & VK_SAMPLE_COUNT_1_BIT); |
| if (!(flags & VK_SAMPLE_COUNT_2_BIT)) { |
| return 0; |
| } |
| if (!(flags & VK_SAMPLE_COUNT_4_BIT)) { |
| return 2; |
| } |
| if (!(flags & VK_SAMPLE_COUNT_8_BIT)) { |
| return 4; |
| } |
| if (!(flags & VK_SAMPLE_COUNT_16_BIT)) { |
| return 8; |
| } |
| if (!(flags & VK_SAMPLE_COUNT_32_BIT)) { |
| return 16; |
| } |
| if (!(flags & VK_SAMPLE_COUNT_64_BIT)) { |
| return 32; |
| } |
| return 64; |
| } |
| |
| void GrVkCaps::initGrCaps(const VkPhysicalDeviceProperties& properties, |
| const VkPhysicalDeviceMemoryProperties& memoryProperties, |
| uint32_t featureFlags) { |
| // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no |
| // need for us ever to support that amount, and it makes tests which tests all the vertex |
| // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if |
| // we ever find that need. |
| static const uint32_t kMaxVertexAttributes = 64; |
| fMaxVertexAttributes = SkTMin(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes); |
| |
| // We could actually query and get a max size for each config, however maxImageDimension2D will |
| // give the minimum max size across all configs. So for simplicity we will use that for now. |
| fMaxRenderTargetSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX); |
| fMaxTextureSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX); |
| |
| // Assuming since we will always map in the end to upload the data we might as well just map |
| // from the get go. There is no hard data to suggest this is faster or slower. |
| fBufferMapThreshold = 0; |
| |
| fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag; |
| |
| fOversizedStencilSupport = true; |
| fSampleShadingSupport = SkToBool(featureFlags & kSampleRateShading_GrVkFeatureFlag); |
| |
| |
| } |
| |
| void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties, uint32_t featureFlags) { |
| GrShaderCaps* shaderCaps = fShaderCaps.get(); |
| shaderCaps->fVersionDeclString = "#version 330\n"; |
| |
| |
| // fConfigOutputSwizzle will default to RGBA so we only need to set it for alpha only config. |
| for (int i = 0; i < kGrPixelConfigCnt; ++i) { |
| GrPixelConfig config = static_cast<GrPixelConfig>(i); |
| // Vulkan doesn't support a single channel format stored in alpha. |
| if (GrPixelConfigIsAlphaOnly(config) && |
| kAlpha_8_as_Alpha_GrPixelConfig != config) { |
| shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RRRR(); |
| shaderCaps->fConfigOutputSwizzle[i] = GrSwizzle::AAAA(); |
| } else { |
| if (kGray_8_GrPixelConfig == config || |
| kGray_8_as_Red_GrPixelConfig == config) { |
| shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RRRA(); |
| } else if (kRGBA_4444_GrPixelConfig == config) { |
| // The vulkan spec does not require R4G4B4A4 to be supported for texturing so we |
| // store the data in a B4G4R4A4 texture and then swizzle it when doing texture reads |
| // or writing to outputs. Since we're not actually changing the data at all, the |
| // only extra work is the swizzle in the shader for all operations. |
| shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::BGRA(); |
| shaderCaps->fConfigOutputSwizzle[i] = GrSwizzle::BGRA(); |
| } else { |
| shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RGBA(); |
| } |
| } |
| } |
| |
| // Vulkan is based off ES 3.0 so the following should all be supported |
| shaderCaps->fUsesPrecisionModifiers = true; |
| shaderCaps->fFlatInterpolationSupport = true; |
| // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed |
| // to be true with Vulkan as well. |
| shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID; |
| |
| // GrShaderCaps |
| |
| shaderCaps->fShaderDerivativeSupport = true; |
| |
| shaderCaps->fGeometryShaderSupport = SkToBool(featureFlags & kGeometryShader_GrVkFeatureFlag); |
| shaderCaps->fGSInvocationsSupport = shaderCaps->fGeometryShaderSupport; |
| |
| shaderCaps->fDualSourceBlendingSupport = SkToBool(featureFlags & kDualSrcBlend_GrVkFeatureFlag); |
| |
| shaderCaps->fIntegerSupport = true; |
| shaderCaps->fTexelBufferSupport = true; |
| shaderCaps->fTexelFetchSupport = true; |
| shaderCaps->fVertexIDSupport = true; |
| |
| // Assume the minimum precisions mandated by the SPIR-V spec. |
| shaderCaps->fFloatIs32Bits = true; |
| shaderCaps->fHalfIs32Bits = false; |
| |
| shaderCaps->fMaxVertexSamplers = |
| shaderCaps->fMaxGeometrySamplers = |
| shaderCaps->fMaxFragmentSamplers = SkTMin( |
| SkTMin(properties.limits.maxPerStageDescriptorSampledImages, |
| properties.limits.maxPerStageDescriptorSamplers), |
| (uint32_t)INT_MAX); |
| shaderCaps->fMaxCombinedSamplers = SkTMin( |
| SkTMin(properties.limits.maxDescriptorSetSampledImages, |
| properties.limits.maxDescriptorSetSamplers), |
| (uint32_t)INT_MAX); |
| } |
| |
| bool stencil_format_supported(const GrVkInterface* interface, |
| VkPhysicalDevice physDev, |
| VkFormat format) { |
| VkFormatProperties props; |
| memset(&props, 0, sizeof(VkFormatProperties)); |
| GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props)); |
| return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures); |
| } |
| |
| void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) { |
| // List of legal stencil formats (though perhaps not supported on |
| // the particular gpu/driver) from most preferred to least. We are guaranteed to have either |
| // VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT. VK_FORMAT_D32_SFLOAT_S8_UINT |
| // can optionally have 24 unused bits at the end so we assume the total bits is 64. |
| static const StencilFormat |
| // internal Format stencil bits total bits packed? |
| gS8 = { VK_FORMAT_S8_UINT, 8, 8, false }, |
| gD24S8 = { VK_FORMAT_D24_UNORM_S8_UINT, 8, 32, true }, |
| gD32S8 = { VK_FORMAT_D32_SFLOAT_S8_UINT, 8, 64, true }; |
| |
| if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) { |
| fPreferedStencilFormat = gS8; |
| } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) { |
| fPreferedStencilFormat = gD24S8; |
| } else { |
| SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT)); |
| fPreferedStencilFormat = gD32S8; |
| } |
| } |
| |
| void GrVkCaps::initConfigTable(const GrVkInterface* interface, VkPhysicalDevice physDev, |
| const VkPhysicalDeviceProperties& properties) { |
| for (int i = 0; i < kGrPixelConfigCnt; ++i) { |
| VkFormat format; |
| if (GrPixelConfigToVkFormat(static_cast<GrPixelConfig>(i), &format)) { |
| if (!GrPixelConfigIsSRGB(static_cast<GrPixelConfig>(i)) || fSRGBSupport) { |
| fConfigTable[i].init(interface, physDev, properties, format); |
| } |
| } |
| } |
| } |
| |
| void GrVkCaps::ConfigInfo::InitConfigFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) { |
| if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) && |
| SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) { |
| *flags = *flags | kTextureable_Flag; |
| |
| // Ganesh assumes that all renderable surfaces are also texturable |
| if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) { |
| *flags = *flags | kRenderable_Flag; |
| } |
| } |
| |
| if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) { |
| *flags = *flags | kBlitSrc_Flag; |
| } |
| |
| if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) { |
| *flags = *flags | kBlitDst_Flag; |
| } |
| } |
| |
| void GrVkCaps::ConfigInfo::initSampleCounts(const GrVkInterface* interface, |
| VkPhysicalDevice physDev, |
| const VkPhysicalDeviceProperties& physProps, |
| VkFormat format) { |
| VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| VK_IMAGE_USAGE_TRANSFER_DST_BIT | |
| VK_IMAGE_USAGE_SAMPLED_BIT | |
| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; |
| VkImageCreateFlags createFlags = GrVkFormatIsSRGB(format, nullptr) |
| ? VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT : 0; |
| VkImageFormatProperties properties; |
| GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev, |
| format, |
| VK_IMAGE_TYPE_2D, |
| VK_IMAGE_TILING_OPTIMAL, |
| usage, |
| createFlags, |
| &properties)); |
| VkSampleCountFlags flags = properties.sampleCounts; |
| if (flags & VK_SAMPLE_COUNT_1_BIT) { |
| fColorSampleCounts.push(1); |
| } |
| if (kImagination_VkVendor == physProps.vendorID) { |
| // MSAA does not work on imagination |
| return; |
| } |
| if (flags & VK_SAMPLE_COUNT_2_BIT) { |
| fColorSampleCounts.push(2); |
| } |
| if (flags & VK_SAMPLE_COUNT_4_BIT) { |
| fColorSampleCounts.push(4); |
| } |
| if (flags & VK_SAMPLE_COUNT_8_BIT) { |
| fColorSampleCounts.push(8); |
| } |
| if (flags & VK_SAMPLE_COUNT_16_BIT) { |
| fColorSampleCounts.push(16); |
| } |
| if (flags & VK_SAMPLE_COUNT_32_BIT) { |
| fColorSampleCounts.push(32); |
| } |
| if (flags & VK_SAMPLE_COUNT_64_BIT) { |
| fColorSampleCounts.push(64); |
| } |
| } |
| |
| void GrVkCaps::ConfigInfo::init(const GrVkInterface* interface, |
| VkPhysicalDevice physDev, |
| const VkPhysicalDeviceProperties& properties, |
| VkFormat format) { |
| VkFormatProperties props; |
| memset(&props, 0, sizeof(VkFormatProperties)); |
| GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props)); |
| InitConfigFlags(props.linearTilingFeatures, &fLinearFlags); |
| InitConfigFlags(props.optimalTilingFeatures, &fOptimalFlags); |
| if (fOptimalFlags & kRenderable_Flag) { |
| this->initSampleCounts(interface, physDev, properties, format); |
| } |
| } |
| |
| bool GrVkCaps::isConfigRenderable(GrPixelConfig config, bool withMSAA) const { |
| if (!SkToBool(ConfigInfo::kRenderable_Flag & fConfigTable[config].fOptimalFlags)) { |
| return false; |
| } |
| if (withMSAA && fConfigTable[config].fColorSampleCounts.count() < 2) { |
| // We expect any renderable config to support non-MSAA rendering. |
| SkASSERT(1 == fConfigTable[config].fColorSampleCounts.count()); |
| SkASSERT(1 == fConfigTable[config].fColorSampleCounts[0]); |
| return false; |
| } |
| return true; |
| } |
| |
| int GrVkCaps::getSampleCount(int requestedCount, GrPixelConfig config) const { |
| requestedCount = SkTMax(1, requestedCount); |
| int count = fConfigTable[config].fColorSampleCounts.count(); |
| |
| if (!count || !this->isConfigRenderable(config, requestedCount > 1)) { |
| return 0; |
| } |
| |
| if (1 == requestedCount) { |
| SkASSERT(fConfigTable[config].fColorSampleCounts.count() && |
| fConfigTable[config].fColorSampleCounts[0] == 1); |
| return 1; |
| } |
| |
| for (int i = 0; i < count; ++i) { |
| if (fConfigTable[config].fColorSampleCounts[i] >= requestedCount) { |
| return fConfigTable[config].fColorSampleCounts[i]; |
| } |
| } |
| return 0; |
| } |
| |
| bool validate_image_info(const GrVkImageInfo* imageInfo, SkColorType ct, GrPixelConfig* config) { |
| if (!imageInfo) { |
| return false; |
| } |
| VkFormat format = imageInfo->fFormat; |
| *config = kUnknown_GrPixelConfig; |
| |
| switch (ct) { |
| case kUnknown_SkColorType: |
| return false; |
| case kAlpha_8_SkColorType: |
| if (VK_FORMAT_R8_UNORM == format) { |
| *config = kAlpha_8_as_Red_GrPixelConfig; |
| } |
| break; |
| case kRGB_565_SkColorType: |
| if (VK_FORMAT_R5G6B5_UNORM_PACK16 == format) { |
| *config = kRGB_565_GrPixelConfig; |
| } |
| break; |
| case kARGB_4444_SkColorType: |
| if (VK_FORMAT_B4G4R4A4_UNORM_PACK16 == format) { |
| *config = kRGBA_4444_GrPixelConfig; |
| } |
| break; |
| case kRGBA_8888_SkColorType: |
| if (VK_FORMAT_R8G8B8A8_UNORM == format) { |
| *config = kRGBA_8888_GrPixelConfig; |
| } else if (VK_FORMAT_R8G8B8A8_SRGB == format) { |
| *config = kSRGBA_8888_GrPixelConfig; |
| } |
| break; |
| case kRGB_888x_SkColorType: |
| return false; |
| case kBGRA_8888_SkColorType: |
| if (VK_FORMAT_B8G8R8A8_UNORM == format) { |
| *config = kBGRA_8888_GrPixelConfig; |
| } else if (VK_FORMAT_B8G8R8A8_SRGB == format) { |
| *config = kSBGRA_8888_GrPixelConfig; |
| } |
| break; |
| case kRGBA_1010102_SkColorType: |
| return false; |
| case kRGB_101010x_SkColorType: |
| return false; |
| case kGray_8_SkColorType: |
| if (VK_FORMAT_R8_UNORM == format) { |
| *config = kGray_8_as_Red_GrPixelConfig; |
| } |
| break; |
| case kRGBA_F16_SkColorType: |
| if (VK_FORMAT_R16G16B16A16_SFLOAT == format) { |
| *config = kRGBA_half_GrPixelConfig; |
| } |
| break; |
| } |
| |
| return kUnknown_GrPixelConfig != *config; |
| } |
| |
| bool GrVkCaps::validateBackendTexture(const GrBackendTexture& tex, SkColorType ct, |
| GrPixelConfig* config) const { |
| return validate_image_info(tex.getVkImageInfo(), ct, config); |
| } |
| |
| bool GrVkCaps::validateBackendRenderTarget(const GrBackendRenderTarget& rt, SkColorType ct, |
| GrPixelConfig* config) const { |
| return validate_image_info(rt.getVkImageInfo(), ct, config); |
| } |
| |