blob: 8b86721c7c10f0c9e2221404bf7004fdb0bebcda [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTypes.h"
#if defined(SK_BUILD_FOR_ANDROID) && __ANDROID_API__ >= 26
#define GL_GLEXT_PROTOTYPES
#define EGL_EGLEXT_PROTOTYPES
#include "vk/GrVkVulkan.h"
#include "GrAHardwareBufferImageGenerator.h"
#include <android/hardware_buffer.h>
#include "GrBackendSurface.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrProxyProvider.h"
#include "GrResourceCache.h"
#include "GrResourceProvider.h"
#include "GrResourceProviderPriv.h"
#include "GrTexture.h"
#include "GrTextureProxy.h"
#include "SkMessageBus.h"
#include "gl/GrGLDefines.h"
#include "gl/GrGLTypes.h"
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES/gl.h>
#include <GLES/glext.h>
#ifdef SK_VULKAN
#include "vk/GrVkExtensions.h"
#include "vk/GrVkGpu.h"
#endif
#define PROT_CONTENT_EXT_STR "EGL_EXT_protected_content"
#define EGL_PROTECTED_CONTENT_EXT 0x32C0
static bool can_import_protected_content_eglimpl() {
EGLDisplay dpy = eglGetDisplay(EGL_DEFAULT_DISPLAY);
const char* exts = eglQueryString(dpy, EGL_EXTENSIONS);
size_t cropExtLen = strlen(PROT_CONTENT_EXT_STR);
size_t extsLen = strlen(exts);
bool equal = !strcmp(PROT_CONTENT_EXT_STR, exts);
bool atStart = !strncmp(PROT_CONTENT_EXT_STR " ", exts, cropExtLen+1);
bool atEnd = (cropExtLen+1) < extsLen
&& !strcmp(" " PROT_CONTENT_EXT_STR,
exts + extsLen - (cropExtLen+1));
bool inMiddle = strstr(exts, " " PROT_CONTENT_EXT_STR " ");
return equal || atStart || atEnd || inMiddle;
}
static bool can_import_protected_content(GrContext* context) {
if (GrBackendApi::kOpenGL == context->contextPriv().getBackend()) {
// Only compute whether the extension is present once the first time this
// function is called.
static bool hasIt = can_import_protected_content_eglimpl();
return hasIt;
}
return false;
}
std::unique_ptr<SkImageGenerator> GrAHardwareBufferImageGenerator::Make(
AHardwareBuffer* graphicBuffer, SkAlphaType alphaType, sk_sp<SkColorSpace> colorSpace,
GrSurfaceOrigin surfaceOrigin) {
AHardwareBuffer_Desc bufferDesc;
AHardwareBuffer_describe(graphicBuffer, &bufferDesc);
SkColorType colorType;
switch (bufferDesc.format) {
case AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM:
case AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM:
colorType = kRGBA_8888_SkColorType;
break;
case AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT:
colorType = kRGBA_F16_SkColorType;
break;
case AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM:
colorType = kRGB_565_SkColorType;
break;
case AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM:
colorType = kRGB_888x_SkColorType;
break;
case AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM:
colorType = kRGBA_1010102_SkColorType;
break;
default:
// Given that we only use this texture as a source, colorType will not impact how Skia uses
// the texture. The only potential affect this is anticipated to have is that for some
// format types if we are not bound as an OES texture we may get invalid results for SKP
// capture if we read back the texture.
colorType = kRGBA_8888_SkColorType;
break;
}
SkImageInfo info = SkImageInfo::Make(bufferDesc.width, bufferDesc.height, colorType,
alphaType, std::move(colorSpace));
bool createProtectedImage = 0 != (bufferDesc.usage & AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT);
return std::unique_ptr<SkImageGenerator>(new GrAHardwareBufferImageGenerator(
info, graphicBuffer, alphaType, createProtectedImage,
bufferDesc.format, surfaceOrigin));
}
GrAHardwareBufferImageGenerator::GrAHardwareBufferImageGenerator(const SkImageInfo& info,
AHardwareBuffer* hardwareBuffer, SkAlphaType alphaType, bool isProtectedContent,
uint32_t bufferFormat, GrSurfaceOrigin surfaceOrigin)
: INHERITED(info)
, fHardwareBuffer(hardwareBuffer)
, fBufferFormat(bufferFormat)
, fIsProtectedContent(isProtectedContent)
, fSurfaceOrigin(surfaceOrigin) {
AHardwareBuffer_acquire(fHardwareBuffer);
}
GrAHardwareBufferImageGenerator::~GrAHardwareBufferImageGenerator() {
AHardwareBuffer_release(fHardwareBuffer);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef SK_VULKAN
class VulkanCleanupHelper {
public:
VulkanCleanupHelper(GrVkGpu* gpu, VkImage image, VkDeviceMemory memory)
: fDevice(gpu->device())
, fImage(image)
, fMemory(memory)
, fDestroyImage(gpu->vkInterface()->fFunctions.fDestroyImage)
, fFreeMemory(gpu->vkInterface()->fFunctions.fFreeMemory) {}
~VulkanCleanupHelper() {
fDestroyImage(fDevice, fImage, nullptr);
fFreeMemory(fDevice, fMemory, nullptr);
}
private:
VkDevice fDevice;
VkImage fImage;
VkDeviceMemory fMemory;
PFN_vkDestroyImage fDestroyImage;
PFN_vkFreeMemory fFreeMemory;
};
void GrAHardwareBufferImageGenerator::DeleteVkImage(void* context) {
VulkanCleanupHelper* cleanupHelper = static_cast<VulkanCleanupHelper*>(context);
delete cleanupHelper;
}
#define VK_CALL(X) gpu->vkInterface()->fFunctions.f##X;
static GrBackendTexture make_vk_backend_texture(
GrContext* context, AHardwareBuffer* hardwareBuffer,
int width, int height, GrPixelConfig config,
GrAHardwareBufferImageGenerator::DeleteImageProc* deleteProc,
GrAHardwareBufferImageGenerator::DeleteImageCtx* deleteCtx,
bool isProtectedContent,
const GrBackendFormat& backendFormat) {
SkASSERT(context->contextPriv().getBackend() == GrBackendApi::kVulkan);
GrVkGpu* gpu = static_cast<GrVkGpu*>(context->contextPriv().getGpu());
VkPhysicalDevice physicalDevice = gpu->physicalDevice();
VkDevice device = gpu->device();
SkASSERT(gpu);
if (!gpu->vkCaps().supportsAndroidHWBExternalMemory()) {
return GrBackendTexture();
}
SkASSERT(backendFormat.getVkFormat());
VkFormat format = *backendFormat.getVkFormat();
VkResult err;
VkAndroidHardwareBufferFormatPropertiesANDROID hwbFormatProps;
hwbFormatProps.sType = VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID;
hwbFormatProps.pNext = nullptr;
VkAndroidHardwareBufferPropertiesANDROID hwbProps;
hwbProps.sType = VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_PROPERTIES_ANDROID;
hwbProps.pNext = &hwbFormatProps;
err = VK_CALL(GetAndroidHardwareBufferProperties(device, hardwareBuffer, &hwbProps));
if (VK_SUCCESS != err) {
return GrBackendTexture();
}
VkExternalFormatANDROID externalFormat;
externalFormat.sType = VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID;
externalFormat.pNext = nullptr;
externalFormat.externalFormat = 0; // If this is zero it is as if we aren't using this struct.
const GrVkYcbcrConversionInfo* ycbcrConversion = backendFormat.getVkYcbcrConversionInfo();
if (!ycbcrConversion) {
return GrBackendTexture();
}
if (hwbFormatProps.format != VK_FORMAT_UNDEFINED) {
// TODO: We should not assume the transfer features here and instead should have a way for
// Ganesh's tracking of intenral images to report whether or not they support transfers.
SkASSERT(SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & hwbFormatProps.formatFeatures) &&
SkToBool(VK_FORMAT_FEATURE_TRANSFER_SRC_BIT & hwbFormatProps.formatFeatures) &&
SkToBool(VK_FORMAT_FEATURE_TRANSFER_DST_BIT & hwbFormatProps.formatFeatures));
SkASSERT(!ycbcrConversion->isValid());
} else {
SkASSERT(ycbcrConversion->isValid());
// We have an external only format
SkASSERT(SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & hwbFormatProps.formatFeatures));
SkASSERT(format == VK_FORMAT_UNDEFINED);
SkASSERT(hwbFormatProps.externalFormat == ycbcrConversion->fExternalFormat);
externalFormat.externalFormat = hwbFormatProps.externalFormat;
}
SkASSERT(format == hwbFormatProps.format);
const VkExternalMemoryImageCreateInfo externalMemoryImageInfo{
VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO, // sType
&externalFormat, // pNext
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, // handleTypes
};
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT;
if (format != VK_FORMAT_UNDEFINED) {
usageFlags = usageFlags |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
// TODO: Check the supported tilings vkGetPhysicalDeviceImageFormatProperties2 to see if we have
// to use linear. Add better linear support throughout Ganesh.
VkImageTiling tiling = VK_IMAGE_TILING_OPTIMAL;
const VkImageCreateInfo imageCreateInfo = {
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType
&externalMemoryImageInfo, // pNext
0, // VkImageCreateFlags
VK_IMAGE_TYPE_2D, // VkImageType
format, // VkFormat
{ (uint32_t)width, (uint32_t)height, 1 }, // VkExtent3D
1, // mipLevels
1, // arrayLayers
VK_SAMPLE_COUNT_1_BIT, // samples
tiling, // VkImageTiling
usageFlags, // VkImageUsageFlags
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode
0, // queueFamilyCount
0, // pQueueFamilyIndices
VK_IMAGE_LAYOUT_UNDEFINED, // initialLayout
};
VkImage image;
err = VK_CALL(CreateImage(device, &imageCreateInfo, nullptr, &image));
if (VK_SUCCESS != err) {
return GrBackendTexture();
}
VkPhysicalDeviceMemoryProperties2 phyDevMemProps;
phyDevMemProps.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2;
phyDevMemProps.pNext = nullptr;
uint32_t typeIndex = 0;
uint32_t heapIndex = 0;
bool foundHeap = false;
VK_CALL(GetPhysicalDeviceMemoryProperties2(physicalDevice, &phyDevMemProps));
uint32_t memTypeCnt = phyDevMemProps.memoryProperties.memoryTypeCount;
for (uint32_t i = 0; i < memTypeCnt && !foundHeap; ++i) {
if (hwbProps.memoryTypeBits & (1 << i)) {
const VkPhysicalDeviceMemoryProperties& pdmp = phyDevMemProps.memoryProperties;
uint32_t supportedFlags = pdmp.memoryTypes[i].propertyFlags &
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
if (supportedFlags == VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) {
typeIndex = i;
heapIndex = pdmp.memoryTypes[i].heapIndex;
foundHeap = true;
}
}
}
if (!foundHeap) {
VK_CALL(DestroyImage(device, image, nullptr));
return GrBackendTexture();
}
VkImportAndroidHardwareBufferInfoANDROID hwbImportInfo;
hwbImportInfo.sType = VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID;
hwbImportInfo.pNext = nullptr;
hwbImportInfo.buffer = hardwareBuffer;
VkMemoryDedicatedAllocateInfo dedicatedAllocInfo;
dedicatedAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO;
dedicatedAllocInfo.pNext = &hwbImportInfo;
dedicatedAllocInfo.image = image;
dedicatedAllocInfo.buffer = VK_NULL_HANDLE;
VkMemoryAllocateInfo allocInfo = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // sType
&dedicatedAllocInfo, // pNext
hwbProps.allocationSize, // allocationSize
typeIndex, // memoryTypeIndex
};
VkDeviceMemory memory;
err = VK_CALL(AllocateMemory(device, &allocInfo, nullptr, &memory));
if (VK_SUCCESS != err) {
VK_CALL(DestroyImage(device, image, nullptr));
return GrBackendTexture();
}
VkBindImageMemoryInfo bindImageInfo;
bindImageInfo.sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO;
bindImageInfo.pNext = nullptr;
bindImageInfo.image = image;
bindImageInfo.memory = memory;
bindImageInfo.memoryOffset = 0;
err = VK_CALL(BindImageMemory2(device, 1, &bindImageInfo));
if (VK_SUCCESS != err) {
VK_CALL(DestroyImage(device, image, nullptr));
VK_CALL(FreeMemory(device, memory, nullptr));
return GrBackendTexture();
}
GrVkImageInfo imageInfo;
imageInfo.fImage = image;
imageInfo.fAlloc = GrVkAlloc(memory, 0, hwbProps.allocationSize, 0);
imageInfo.fImageTiling = tiling;
imageInfo.fImageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageInfo.fFormat = format;
imageInfo.fLevelCount = 1;
// TODO: This should possibly be VK_QUEUE_FAMILY_FOREIGN_EXT but current Adreno devices do not
// support that extension. Or if we know the source of the AHardwareBuffer is not from a
// "foreign" device we can leave them as external.
imageInfo.fCurrentQueueFamily = VK_QUEUE_FAMILY_EXTERNAL;
imageInfo.fYcbcrConversionInfo = *ycbcrConversion;
*deleteProc = GrAHardwareBufferImageGenerator::DeleteVkImage;
*deleteCtx = new VulkanCleanupHelper(gpu, image, memory);
return GrBackendTexture(width, height, imageInfo);
}
#endif
class GLCleanupHelper {
public:
GLCleanupHelper(GrGLuint texID, EGLImageKHR image, EGLDisplay display)
: fTexID(texID)
, fImage(image)
, fDisplay(display) { }
~GLCleanupHelper() {
glDeleteTextures(1, &fTexID);
// eglDestroyImageKHR will remove a ref from the AHardwareBuffer
eglDestroyImageKHR(fDisplay, fImage);
}
private:
GrGLuint fTexID;
EGLImageKHR fImage;
EGLDisplay fDisplay;
};
void GrAHardwareBufferImageGenerator::DeleteGLTexture(void* context) {
GLCleanupHelper* cleanupHelper = static_cast<GLCleanupHelper*>(context);
delete cleanupHelper;
}
static GrBackendTexture make_gl_backend_texture(
GrContext* context, AHardwareBuffer* hardwareBuffer,
int width, int height, GrPixelConfig config,
GrAHardwareBufferImageGenerator::DeleteImageProc* deleteProc,
GrAHardwareBufferImageGenerator::DeleteImageCtx* deleteCtx,
bool isProtectedContent,
const GrBackendFormat& backendFormat) {
while (GL_NO_ERROR != glGetError()) {} //clear GL errors
EGLClientBuffer clientBuffer = eglGetNativeClientBufferANDROID(hardwareBuffer);
EGLint attribs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_TRUE,
isProtectedContent ? EGL_PROTECTED_CONTENT_EXT : EGL_NONE,
isProtectedContent ? EGL_TRUE : EGL_NONE,
EGL_NONE };
EGLDisplay display = eglGetCurrentDisplay();
// eglCreateImageKHR will add a ref to the AHardwareBuffer
EGLImageKHR image = eglCreateImageKHR(display, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID,
clientBuffer, attribs);
if (EGL_NO_IMAGE_KHR == image) {
SkDebugf("Could not create EGL image, err = (%#x)", (int) eglGetError() );
return GrBackendTexture();
}
GrGLuint texID;
glGenTextures(1, &texID);
if (!texID) {
eglDestroyImageKHR(display, image);
return GrBackendTexture();
}
glBindTexture(GL_TEXTURE_EXTERNAL_OES, texID);
GLenum status = GL_NO_ERROR;
if ((status = glGetError()) != GL_NO_ERROR) {
SkDebugf("glBindTexture failed (%#x)", (int) status);
glDeleteTextures(1, &texID);
eglDestroyImageKHR(display, image);
return GrBackendTexture();
}
glEGLImageTargetTexture2DOES(GL_TEXTURE_EXTERNAL_OES, image);
if ((status = glGetError()) != GL_NO_ERROR) {
SkDebugf("glEGLImageTargetTexture2DOES failed (%#x)", (int) status);
glDeleteTextures(1, &texID);
eglDestroyImageKHR(display, image);
return GrBackendTexture();
}
context->resetContext(kTextureBinding_GrGLBackendState);
GrGLTextureInfo textureInfo;
textureInfo.fID = texID;
SkASSERT(backendFormat.isValid());
textureInfo.fTarget = *backendFormat.getGLTarget();
textureInfo.fFormat = *backendFormat.getGLFormat();
*deleteProc = GrAHardwareBufferImageGenerator::DeleteGLTexture;
*deleteCtx = new GLCleanupHelper(texID, image, display);
return GrBackendTexture(width, height, GrMipMapped::kNo, textureInfo);
}
static GrBackendTexture make_backend_texture(
GrContext* context, AHardwareBuffer* hardwareBuffer,
int width, int height, GrPixelConfig config,
GrAHardwareBufferImageGenerator::DeleteImageProc* deleteProc,
GrAHardwareBufferImageGenerator::DeleteImageCtx* deleteCtx,
bool isProtectedContent,
const GrBackendFormat& backendFormat) {
if (context->abandoned()) {
return GrBackendTexture();
}
bool createProtectedImage = isProtectedContent && can_import_protected_content(context);
if (GrBackendApi::kOpenGL == context->contextPriv().getBackend()) {
return make_gl_backend_texture(context, hardwareBuffer, width, height, config, deleteProc,
deleteCtx, createProtectedImage, backendFormat);
} else {
SkASSERT(GrBackendApi::kVulkan == context->contextPriv().getBackend());
#ifdef SK_VULKAN
// Currently we don't support protected images on vulkan
SkASSERT(!createProtectedImage);
return make_vk_backend_texture(context, hardwareBuffer, width, height, config, deleteProc,
deleteCtx, createProtectedImage, backendFormat);
#else
return GrBackendTexture();
#endif
}
}
GrBackendFormat get_backend_format(GrContext* context, AHardwareBuffer* hardwareBuffer,
GrBackendApi backend, uint32_t bufferFormat) {
if (backend == GrBackendApi::kOpenGL) {
switch (bufferFormat) {
//TODO: find out if we can detect, which graphic buffers support GR_GL_TEXTURE_2D
case AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM:
case AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM:
return GrBackendFormat::MakeGL(GR_GL_RGBA8, GR_GL_TEXTURE_EXTERNAL);
case AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT:
return GrBackendFormat::MakeGL(GR_GL_RGBA16F, GR_GL_TEXTURE_EXTERNAL);
case AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM:
return GrBackendFormat::MakeGL(GR_GL_RGB565, GR_GL_TEXTURE_EXTERNAL);
case AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM:
return GrBackendFormat::MakeGL(GR_GL_RGB10_A2, GR_GL_TEXTURE_EXTERNAL);
case AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM:
return GrBackendFormat::MakeGL(GR_GL_RGB8, GR_GL_TEXTURE_EXTERNAL);
default:
return GrBackendFormat::MakeGL(GR_GL_RGBA8, GR_GL_TEXTURE_EXTERNAL);
}
} else if (backend == GrBackendApi::kVulkan) {
switch (bufferFormat) {
case AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM:
return GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM);
case AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT:
return GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT);
case AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM:
return GrBackendFormat::MakeVk(VK_FORMAT_R5G6B5_UNORM_PACK16);
case AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM:
return GrBackendFormat::MakeVk(VK_FORMAT_A2B10G10R10_UNORM_PACK32);
case AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM:
return GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM);
case AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM:
return GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8_UNORM);
default: {
GrVkGpu* gpu = static_cast<GrVkGpu*>(context->contextPriv().getGpu());
SkASSERT(gpu);
VkDevice device = gpu->device();
if (!gpu->vkCaps().supportsAndroidHWBExternalMemory()) {
return GrBackendFormat();
}
VkAndroidHardwareBufferFormatPropertiesANDROID hwbFormatProps;
hwbFormatProps.sType =
VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID;
hwbFormatProps.pNext = nullptr;
VkAndroidHardwareBufferPropertiesANDROID hwbProps;
hwbProps.sType = VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_PROPERTIES_ANDROID;
hwbProps.pNext = &hwbFormatProps;
VkResult err = VK_CALL(GetAndroidHardwareBufferProperties(device, hardwareBuffer,
&hwbProps));
if (VK_SUCCESS != err) {
return GrBackendFormat();
}
if (hwbFormatProps.format != VK_FORMAT_UNDEFINED) {
return GrBackendFormat();
}
GrVkYcbcrConversionInfo ycbcrConversion;
ycbcrConversion.fYcbcrModel = hwbFormatProps.suggestedYcbcrModel;
ycbcrConversion.fYcbcrRange = hwbFormatProps.suggestedYcbcrRange;
ycbcrConversion.fXChromaOffset = hwbFormatProps.suggestedXChromaOffset;
ycbcrConversion.fYChromaOffset = hwbFormatProps.suggestedYChromaOffset;
ycbcrConversion.fForceExplicitReconstruction = VK_FALSE;
ycbcrConversion.fExternalFormat = hwbFormatProps.externalFormat;
ycbcrConversion.fExternalFormatFeatures = hwbFormatProps.formatFeatures;
if (VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT &
hwbFormatProps.formatFeatures) {
ycbcrConversion.fChromaFilter = VK_FILTER_LINEAR;
} else {
ycbcrConversion.fChromaFilter = VK_FILTER_NEAREST;
}
return GrBackendFormat::MakeVk(ycbcrConversion);
}
}
}
return GrBackendFormat();
}
sk_sp<GrTextureProxy> GrAHardwareBufferImageGenerator::makeProxy(GrContext* context) {
if (context->abandoned()) {
return nullptr;
}
GrPixelConfig pixelConfig;
GrBackendFormat backendFormat = get_backend_format(context, fHardwareBuffer,
context->contextPriv().getBackend(),
fBufferFormat);
if (!context->contextPriv().caps()->getConfigFromBackendFormat(
backendFormat, this->getInfo().colorType(), &pixelConfig)) {
return nullptr;
}
int width = this->getInfo().width();
int height = this->getInfo().height();
GrSurfaceDesc desc;
desc.fWidth = width;
desc.fHeight = height;
desc.fConfig = pixelConfig;
GrTextureType textureType = GrTextureType::k2D;
if (context->contextPriv().getBackend() == GrBackendApi::kOpenGL) {
textureType = GrTextureType::kExternal;
} else if (context->contextPriv().getBackend() == GrBackendApi::kVulkan) {
const VkFormat* format = backendFormat.getVkFormat();
SkASSERT(format);
if (*format == VK_FORMAT_UNDEFINED) {
textureType = GrTextureType::kExternal;
}
}
auto proxyProvider = context->contextPriv().proxyProvider();
AHardwareBuffer* hardwareBuffer = fHardwareBuffer;
AHardwareBuffer_acquire(hardwareBuffer);
const bool isProtectedContent = fIsProtectedContent;
sk_sp<GrTextureProxy> texProxy = proxyProvider->createLazyProxy(
[context, hardwareBuffer, width, height, pixelConfig, isProtectedContent,
backendFormat](GrResourceProvider* resourceProvider) {
if (!resourceProvider) {
AHardwareBuffer_release(hardwareBuffer);
return sk_sp<GrTexture>();
}
DeleteImageProc deleteImageProc = nullptr;
DeleteImageCtx deleteImageCtx = nullptr;
GrBackendTexture backendTex = make_backend_texture(context, hardwareBuffer,
width, height, pixelConfig,
&deleteImageProc,
&deleteImageCtx,
isProtectedContent,
backendFormat);
if (!backendTex.isValid()) {
return sk_sp<GrTexture>();
}
SkASSERT(deleteImageProc && deleteImageCtx);
backendTex.fConfig = pixelConfig;
sk_sp<GrTexture> tex = resourceProvider->wrapBackendTexture(
backendTex, kBorrow_GrWrapOwnership, kRead_GrIOType);
if (!tex) {
deleteImageProc(deleteImageCtx);
return sk_sp<GrTexture>();
}
if (deleteImageProc) {
sk_sp<GrReleaseProcHelper> releaseProcHelper(
new GrReleaseProcHelper(deleteImageProc, deleteImageCtx));
tex->setRelease(releaseProcHelper);
}
return tex;
},
backendFormat, desc, fSurfaceOrigin, GrMipMapped::kNo,
GrInternalSurfaceFlags::kReadOnly, SkBackingFit::kExact, SkBudgeted::kNo);
if (!texProxy) {
AHardwareBuffer_release(hardwareBuffer);
}
return texProxy;
}
sk_sp<GrTextureProxy> GrAHardwareBufferImageGenerator::onGenerateTexture(
GrContext* context, const SkImageInfo& info, const SkIPoint& origin, bool willNeedMipMaps) {
sk_sp<GrTextureProxy> texProxy = this->makeProxy(context);
if (!texProxy) {
return nullptr;
}
if (0 == origin.fX && 0 == origin.fY &&
info.width() == this->getInfo().width() && info.height() == this->getInfo().height()) {
// If the caller wants the full texture we're done. The caller will handle making a copy for
// mip maps if that is required.
return texProxy;
}
// Otherwise, make a copy for the requested subset.
SkIRect subset = SkIRect::MakeXYWH(origin.fX, origin.fY, info.width(), info.height());
GrMipMapped mipMapped = willNeedMipMaps ? GrMipMapped::kYes : GrMipMapped::kNo;
return GrSurfaceProxy::Copy(context, texProxy.get(), mipMapped, subset, SkBudgeted::kYes);
}
bool GrAHardwareBufferImageGenerator::onIsValid(GrContext* context) const {
if (nullptr == context) {
return false; //CPU backend is not supported, because hardware buffer can be swizzled
}
return GrBackendApi::kOpenGL == context->contextPriv().getBackend() ||
GrBackendApi::kVulkan == context->contextPriv().getBackend();
}
#endif //SK_BUILD_FOR_ANDROID_FRAMEWORK