blob: d28597ec5fd1e20d8cad184ee70d1f54a712de43 [file] [log] [blame]
/*
* Copyright 2020 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/tessellate/GrStrokeTessellateOp.h"
#include "src/core/SkPathPriv.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/tessellate/GrFillPathShader.h"
#include "src/gpu/tessellate/GrStencilPathShader.h"
#include "src/gpu/tessellate/GrStrokeFixedCountTessellator.h"
#include "src/gpu/tessellate/GrStrokeHardwareTessellator.h"
#include "src/gpu/tessellate/GrStrokeIndirectTessellator.h"
using DynamicStroke = GrStrokeTessellateShader::DynamicStroke;
GrStrokeTessellateOp::GrStrokeTessellateOp(GrAAType aaType, const SkMatrix& viewMatrix,
const SkPath& path, const SkStrokeRec& stroke,
GrPaint&& paint)
: GrDrawOp(ClassID())
, fAAType(aaType)
, fViewMatrix(viewMatrix)
, fPathStrokeList(path, stroke, paint.getColor4f())
, fTotalCombinedVerbCnt(path.countVerbs())
, fProcessors(std::move(paint)) {
if (SkPathPriv::ConicWeightCnt(path) != 0) {
fShaderFlags |= ShaderFlags::kHasConics;
}
if (!this->headColor().fitsInBytes()) {
fShaderFlags |= ShaderFlags::kWideColor;
}
SkRect devBounds = path.getBounds();
float inflationRadius = stroke.getInflationRadius();
devBounds.outset(inflationRadius, inflationRadius);
viewMatrix.mapRect(&devBounds, devBounds);
this->setBounds(devBounds, HasAABloat::kNo, IsHairline::kNo);
}
void GrStrokeTessellateOp::visitProxies(const VisitProxyFunc& fn) const {
if (fFillProgram) {
fFillProgram->visitFPProxies(fn);
} else if (fStencilProgram) {
fStencilProgram->visitFPProxies(fn);
} else {
fProcessors.visitProxies(fn);
}
}
GrDrawOp::FixedFunctionFlags GrStrokeTessellateOp::fixedFunctionFlags() const {
// We might not actually end up needing stencil, but won't know for sure until finalize().
// Request it just in case we do end up needing it.
auto flags = FixedFunctionFlags::kUsesStencil;
if (GrAAType::kNone != fAAType) {
flags |= FixedFunctionFlags::kUsesHWAA;
}
return flags;
}
GrProcessorSet::Analysis GrStrokeTessellateOp::finalize(const GrCaps& caps,
const GrAppliedClip* clip,
GrClampType clampType) {
// Make sure the finalize happens before combining. We might change fNeedsStencil here.
SkASSERT(fPathStrokeList.fNext == nullptr);
const GrProcessorSet::Analysis& analysis = fProcessors.finalize(
this->headColor(), GrProcessorAnalysisCoverage::kNone, clip,
&GrUserStencilSettings::kUnused, caps, clampType, &this->headColor());
fNeedsStencil = !analysis.unaffectedByDstValue();
return analysis;
}
GrOp::CombineResult GrStrokeTessellateOp::onCombineIfPossible(GrOp* grOp, SkArenaAlloc* alloc,
const GrCaps& caps) {
SkASSERT(grOp->classID() == this->classID());
auto* op = static_cast<GrStrokeTessellateOp*>(grOp);
if (fNeedsStencil ||
op->fNeedsStencil ||
fViewMatrix != op->fViewMatrix ||
fAAType != op->fAAType ||
fProcessors != op->fProcessors ||
this->headStroke().isHairlineStyle() != op->headStroke().isHairlineStyle()) {
return CombineResult::kCannotCombine;
}
auto combinedFlags = fShaderFlags | op->fShaderFlags;
if (!(combinedFlags & ShaderFlags::kDynamicStroke) &&
!DynamicStroke::StrokesHaveEqualDynamicState(this->headStroke(), op->headStroke())) {
// The paths have different stroke properties. We will need to enable dynamic stroke if we
// still decide to combine them.
if (this->headStroke().isHairlineStyle()) {
return CombineResult::kCannotCombine; // Dynamic hairlines aren't supported.
}
combinedFlags |= ShaderFlags::kDynamicStroke;
}
if (!(combinedFlags & ShaderFlags::kDynamicColor) && this->headColor() != op->headColor()) {
// The paths have different colors. We will need to enable dynamic color if we still decide
// to combine them.
combinedFlags |= ShaderFlags::kDynamicColor;
}
// Don't actually enable new dynamic state on ops that already have lots of verbs.
constexpr static GrTFlagsMask<ShaderFlags> kDynamicStatesMask(ShaderFlags::kDynamicStroke |
ShaderFlags::kDynamicColor);
ShaderFlags neededDynamicStates = combinedFlags & kDynamicStatesMask;
if (neededDynamicStates != ShaderFlags::kNone) {
if (!this->shouldUseDynamicStates(neededDynamicStates) ||
!op->shouldUseDynamicStates(neededDynamicStates)) {
return CombineResult::kCannotCombine;
}
}
fShaderFlags = combinedFlags;
// Concat the op's PathStrokeList. Since the head element is allocated inside the op, we need to
// copy it.
auto* headCopy = alloc->make<PathStrokeList>(std::move(op->fPathStrokeList));
*fPathStrokeTail = headCopy;
fPathStrokeTail = (op->fPathStrokeTail == &op->fPathStrokeList.fNext) ? &headCopy->fNext
: op->fPathStrokeTail;
fTotalCombinedVerbCnt += op->fTotalCombinedVerbCnt;
return CombineResult::kMerged;
}
// Marks every stencil value as "1".
constexpr static GrUserStencilSettings kMarkStencil(
GrUserStencilSettings::StaticInit<
0x0001,
GrUserStencilTest::kLessIfInClip, // Match kTestAndResetStencil.
0x0000, // Always fail.
GrUserStencilOp::kZero,
GrUserStencilOp::kReplace,
0xffff>());
// Passes if the stencil value is nonzero. Also resets the stencil value to zero on pass. This is
// formulated to match kMarkStencil everywhere except the ref and compare mask. This will allow us
// to use the same pipeline for both stencil and fill if dynamic stencil state is supported.
constexpr static GrUserStencilSettings kTestAndResetStencil(
GrUserStencilSettings::StaticInit<
0x0000,
GrUserStencilTest::kLessIfInClip, // i.e., "not equal to zero, if in clip".
0x0001,
GrUserStencilOp::kZero,
GrUserStencilOp::kReplace,
0xffff>());
bool GrStrokeTessellateOp::canUseHardwareTessellation(int numVerbs, const GrCaps& caps) {
SkASSERT(!fStencilProgram && !fFillProgram); // Ensure we haven't std::moved fProcessors.
if (!caps.shaderCaps()->tessellationSupport()) {
return false;
}
if (fProcessors.usesVaryingCoords()) {
// Our back door for HW tessellation shaders isn't currently capable of passing varyings to
// the fragment shader, so if the processors have varyings, we need to use instanced draws
// instead.
return false;
}
#if GR_TEST_UTILS
if (caps.shaderCaps()->maxTessellationSegments() < 64) {
// If maxTessellationSegments is lower than the spec minimum, it means we've overriden it
// for testing. Always use hardware tessellation if this is the case.
return true;
}
#endif
// Only use hardware tessellation if we're drawing a somewhat large number of verbs. Otherwise
// we seem to be better off using instanced draws.
return numVerbs >= 50;
}
void GrStrokeTessellateOp::prePrepareTessellator(GrPathShader::ProgramArgs&& args,
GrAppliedClip&& clip) {
SkASSERT(!fTessellator);
SkASSERT(!fFillProgram);
SkASSERT(!fStencilProgram);
const GrCaps& caps = *args.fCaps;
SkArenaAlloc* arena = args.fArena;
if (this->canUseHardwareTessellation(fTotalCombinedVerbCnt, caps)) {
// Only use hardware tessellation if we're drawing a somewhat large number of verbs.
// Otherwise we seem to be better off using instanced draws.
fTessellator = arena->make<GrStrokeHardwareTessellator>(fShaderFlags, fViewMatrix,
&fPathStrokeList,
*caps.shaderCaps());
} else if (fTotalCombinedVerbCnt > 50 && !(fShaderFlags & ShaderFlags::kDynamicColor)) {
// Only use the log2 indirect tessellator if we're drawing a somewhat large number of verbs
// and the stroke doesn't use dynamic color. (The log2 indirect tessellator can't support
// dynamic color without a z-buffer, due to how it reorders strokes.)
fTessellator = arena->make<GrStrokeIndirectTessellator>(fShaderFlags, fViewMatrix,
&fPathStrokeList,
fTotalCombinedVerbCnt, arena);
} else {
fTessellator = arena->make<GrStrokeFixedCountTessellator>(fShaderFlags, fViewMatrix,
&fPathStrokeList);
}
auto* pipeline = GrFillPathShader::MakeFillPassPipeline(args, fAAType, std::move(clip),
std::move(fProcessors));
auto fillStencil = &GrUserStencilSettings::kUnused;
if (fNeedsStencil) {
fStencilProgram = GrPathShader::MakeProgram(args, fTessellator->shader(), pipeline,
&kMarkStencil);
fillStencil = &kTestAndResetStencil;
args.fXferBarrierFlags = GrXferBarrierFlags::kNone;
}
fFillProgram = GrPathShader::MakeProgram(args, fTessellator->shader(), pipeline, fillStencil);
}
void GrStrokeTessellateOp::onPrePrepare(GrRecordingContext* context,
const GrSurfaceProxyView& writeView, GrAppliedClip* clip,
const GrXferProcessor::DstProxyView& dstProxyView,
GrXferBarrierFlags renderPassXferBarriers, GrLoadOp
colorLoadOp) {
this->prePrepareTessellator({context->priv().recordTimeAllocator(), writeView, &dstProxyView,
renderPassXferBarriers, colorLoadOp, context->priv().caps()},
(clip) ? std::move(*clip) : GrAppliedClip::Disabled());
if (fStencilProgram) {
context->priv().recordProgramInfo(fStencilProgram);
}
if (fFillProgram) {
context->priv().recordProgramInfo(fFillProgram);
}
}
void GrStrokeTessellateOp::onPrepare(GrOpFlushState* flushState) {
if (!fTessellator) {
this->prePrepareTessellator({flushState->allocator(), flushState->writeView(),
&flushState->dstProxyView(), flushState->renderPassBarriers(),
flushState->colorLoadOp(), &flushState->caps()},
flushState->detachAppliedClip());
}
SkASSERT(fTessellator);
fTessellator->prepare(flushState, fTotalCombinedVerbCnt);
}
void GrStrokeTessellateOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
if (fStencilProgram) {
flushState->bindPipelineAndScissorClip(*fStencilProgram, chainBounds);
flushState->bindTextures(fStencilProgram->geomProc(), nullptr, fStencilProgram->pipeline());
fTessellator->draw(flushState);
}
if (fFillProgram) {
flushState->bindPipelineAndScissorClip(*fFillProgram, chainBounds);
flushState->bindTextures(fFillProgram->geomProc(), nullptr, fFillProgram->pipeline());
fTessellator->draw(flushState);
}
}