|  | /* | 
|  | * Copyright 2011 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "SkCanvas.h" | 
|  | #include "SkPaint.h" | 
|  | #include "SkParse.h" | 
|  | #include "SkParsePath.h" | 
|  | #include "SkPath.h" | 
|  | #include "SkPathEffect.h" | 
|  | #include "SkRRect.h" | 
|  | #include "SkRandom.h" | 
|  | #include "SkReader32.h" | 
|  | #include "SkSize.h" | 
|  | #include "SkSurface.h" | 
|  | #include "SkTypes.h" | 
|  | #include "SkWriter32.h" | 
|  | #include "Test.h" | 
|  |  | 
|  | static void make_path_crbug364224(SkPath* path) { | 
|  | path->reset(); | 
|  | path->moveTo(3.747501373f, 2.724499941f); | 
|  | path->lineTo(3.747501373f, 3.75f); | 
|  | path->cubicTo(3.747501373f, 3.88774991f, 3.635501385f, 4.0f, 3.497501373f, 4.0f); | 
|  | path->lineTo(0.7475013733f, 4.0f); | 
|  | path->cubicTo(0.6095013618f, 4.0f, 0.4975013733f, 3.88774991f, 0.4975013733f, 3.75f); | 
|  | path->lineTo(0.4975013733f, 1.0f); | 
|  | path->cubicTo(0.4975013733f, 0.8622499704f, 0.6095013618f, 0.75f, 0.7475013733f,0.75f); | 
|  | path->lineTo(3.497501373f, 0.75f); | 
|  | path->cubicTo(3.50275135f, 0.75f, 3.5070014f, 0.7527500391f, 3.513001442f, 0.753000021f); | 
|  | path->lineTo(3.715001345f, 0.5512499809f); | 
|  | path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f); | 
|  | path->lineTo(0.7475013733f, 0.4999999702f); | 
|  | path->cubicTo(0.4715013802f, 0.4999999702f, 0.2475013733f, 0.7239999771f, 0.2475013733f, 1.0f); | 
|  | path->lineTo(0.2475013733f, 3.75f); | 
|  | path->cubicTo(0.2475013733f, 4.026000023f, 0.4715013504f, 4.25f, 0.7475013733f, 4.25f); | 
|  | path->lineTo(3.497501373f, 4.25f); | 
|  | path->cubicTo(3.773501396f, 4.25f, 3.997501373f, 4.026000023f, 3.997501373f, 3.75f); | 
|  | path->lineTo(3.997501373f, 2.474750042f); | 
|  | path->lineTo(3.747501373f, 2.724499941f); | 
|  | path->close(); | 
|  | } | 
|  |  | 
|  | static void make_path_crbug364224_simplified(SkPath* path) { | 
|  | path->moveTo(3.747501373f, 2.724499941f); | 
|  | path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f); | 
|  | path->close(); | 
|  | } | 
|  |  | 
|  | static void test_path_crbug364224() { | 
|  | SkPath path; | 
|  | SkPaint paint; | 
|  | SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterPMColor(84, 88)); | 
|  | SkCanvas* canvas = surface->getCanvas(); | 
|  |  | 
|  | make_path_crbug364224_simplified(&path); | 
|  | canvas->drawPath(path, paint); | 
|  |  | 
|  | make_path_crbug364224(&path); | 
|  | canvas->drawPath(path, paint); | 
|  | } | 
|  |  | 
|  | static void make_path0(SkPath* path) { | 
|  | // from  *  https://code.google.com/p/skia/issues/detail?id=1706 | 
|  |  | 
|  | path->moveTo(146.939f, 1012.84f); | 
|  | path->lineTo(181.747f, 1009.18f); | 
|  | path->lineTo(182.165f, 1013.16f); | 
|  | path->lineTo(147.357f, 1016.82f); | 
|  | path->lineTo(146.939f, 1012.84f); | 
|  | path->close(); | 
|  | } | 
|  |  | 
|  | static void make_path1(SkPath* path) { | 
|  | path->addRect(SkRect::MakeXYWH(10, 10, 10, 1)); | 
|  | } | 
|  |  | 
|  | typedef void (*PathProc)(SkPath*); | 
|  |  | 
|  | /* | 
|  | *  Regression test: we used to crash (overwrite internal storage) during | 
|  | *  construction of the region when the path was INVERSE. That is now fixed, | 
|  | *  so test these regions (which used to assert/crash). | 
|  | * | 
|  | *  https://code.google.com/p/skia/issues/detail?id=1706 | 
|  | */ | 
|  | static void test_path_to_region(skiatest::Reporter* reporter) { | 
|  | PathProc procs[] = { | 
|  | make_path0, | 
|  | make_path1, | 
|  | }; | 
|  |  | 
|  | SkRegion clip; | 
|  | clip.setRect(0, 0, 1255, 1925); | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(procs); ++i) { | 
|  | SkPath path; | 
|  | procs[i](&path); | 
|  |  | 
|  | SkRegion rgn; | 
|  | rgn.setPath(path, clip); | 
|  | path.toggleInverseFillType(); | 
|  | rgn.setPath(path, clip); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(WIN32) | 
|  | #define SUPPRESS_VISIBILITY_WARNING | 
|  | #else | 
|  | #define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden"))) | 
|  | #endif | 
|  |  | 
|  | static void test_path_close_issue1474(skiatest::Reporter* reporter) { | 
|  | // This test checks that r{Line,Quad,Conic,Cubic}To following a close() | 
|  | // are relative to the point we close to, not relative to the point we close from. | 
|  | SkPath path; | 
|  | SkPoint last; | 
|  |  | 
|  | // Test rLineTo(). | 
|  | path.rLineTo(0, 100); | 
|  | path.rLineTo(100, 0); | 
|  | path.close();          // Returns us back to 0,0. | 
|  | path.rLineTo(50, 50);  // This should go to 50,50. | 
|  |  | 
|  | path.getLastPt(&last); | 
|  | REPORTER_ASSERT(reporter, 50 == last.fX); | 
|  | REPORTER_ASSERT(reporter, 50 == last.fY); | 
|  |  | 
|  | // Test rQuadTo(). | 
|  | path.rewind(); | 
|  | path.rLineTo(0, 100); | 
|  | path.rLineTo(100, 0); | 
|  | path.close(); | 
|  | path.rQuadTo(50, 50, 75, 75); | 
|  |  | 
|  | path.getLastPt(&last); | 
|  | REPORTER_ASSERT(reporter, 75 == last.fX); | 
|  | REPORTER_ASSERT(reporter, 75 == last.fY); | 
|  |  | 
|  | // Test rConicTo(). | 
|  | path.rewind(); | 
|  | path.rLineTo(0, 100); | 
|  | path.rLineTo(100, 0); | 
|  | path.close(); | 
|  | path.rConicTo(50, 50, 85, 85, 2); | 
|  |  | 
|  | path.getLastPt(&last); | 
|  | REPORTER_ASSERT(reporter, 85 == last.fX); | 
|  | REPORTER_ASSERT(reporter, 85 == last.fY); | 
|  |  | 
|  | // Test rCubicTo(). | 
|  | path.rewind(); | 
|  | path.rLineTo(0, 100); | 
|  | path.rLineTo(100, 0); | 
|  | path.close(); | 
|  | path.rCubicTo(50, 50, 85, 85, 95, 95); | 
|  |  | 
|  | path.getLastPt(&last); | 
|  | REPORTER_ASSERT(reporter, 95 == last.fX); | 
|  | REPORTER_ASSERT(reporter, 95 == last.fY); | 
|  | } | 
|  |  | 
|  | static void test_android_specific_behavior(skiatest::Reporter* reporter) { | 
|  | #ifdef SK_BUILD_FOR_ANDROID | 
|  | // Make sure we treat fGenerationID and fSourcePath correctly for each of | 
|  | // copy, assign, rewind, reset, and swap. | 
|  | SkPath original, source, anotherSource; | 
|  | original.setSourcePath(&source); | 
|  | original.moveTo(0, 0); | 
|  | original.lineTo(1, 1); | 
|  | REPORTER_ASSERT(reporter, original.getSourcePath() == &source); | 
|  |  | 
|  | uint32_t copyID, assignID; | 
|  |  | 
|  | // Test copy constructor.  Copy generation ID, copy source path. | 
|  | SkPath copy(original); | 
|  | REPORTER_ASSERT(reporter, copy.getGenerationID() == original.getGenerationID()); | 
|  | REPORTER_ASSERT(reporter, copy.getSourcePath() == original.getSourcePath()); | 
|  |  | 
|  | // Test assigment operator.  Change generation ID, copy source path. | 
|  | SkPath assign; | 
|  | assignID = assign.getGenerationID(); | 
|  | assign = original; | 
|  | REPORTER_ASSERT(reporter, assign.getGenerationID() != assignID); | 
|  | REPORTER_ASSERT(reporter, assign.getSourcePath() == original.getSourcePath()); | 
|  |  | 
|  | // Test rewind.  Change generation ID, don't touch source path. | 
|  | copyID = copy.getGenerationID(); | 
|  | copy.rewind(); | 
|  | REPORTER_ASSERT(reporter, copy.getGenerationID() != copyID); | 
|  | REPORTER_ASSERT(reporter, copy.getSourcePath() == original.getSourcePath()); | 
|  |  | 
|  | // Test reset.  Change generation ID, don't touch source path. | 
|  | assignID = assign.getGenerationID(); | 
|  | assign.reset(); | 
|  | REPORTER_ASSERT(reporter, assign.getGenerationID() != assignID); | 
|  | REPORTER_ASSERT(reporter, assign.getSourcePath() == original.getSourcePath()); | 
|  |  | 
|  | // Test swap.  Swap the generation IDs, swap source paths. | 
|  | copy.reset(); | 
|  | copy.moveTo(2, 2); | 
|  | copy.setSourcePath(&anotherSource); | 
|  | copyID = copy.getGenerationID(); | 
|  | assign.moveTo(3, 3); | 
|  | assignID = assign.getGenerationID(); | 
|  | copy.swap(assign); | 
|  | REPORTER_ASSERT(reporter, copy.getGenerationID() != copyID); | 
|  | REPORTER_ASSERT(reporter, assign.getGenerationID() != assignID); | 
|  | REPORTER_ASSERT(reporter, copy.getSourcePath() == original.getSourcePath()); | 
|  | REPORTER_ASSERT(reporter, assign.getSourcePath() == &anotherSource); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void test_gen_id(skiatest::Reporter* reporter) { | 
|  | SkPath a, b; | 
|  | REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID()); | 
|  |  | 
|  | a.moveTo(0, 0); | 
|  | const uint32_t z = a.getGenerationID(); | 
|  | REPORTER_ASSERT(reporter, z != b.getGenerationID()); | 
|  |  | 
|  | a.reset(); | 
|  | REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID()); | 
|  |  | 
|  | a.moveTo(1, 1); | 
|  | const uint32_t y = a.getGenerationID(); | 
|  | REPORTER_ASSERT(reporter, z != y); | 
|  |  | 
|  | b.moveTo(2, 2); | 
|  | const uint32_t x = b.getGenerationID(); | 
|  | REPORTER_ASSERT(reporter, x != y && x != z); | 
|  |  | 
|  | a.swap(b); | 
|  | REPORTER_ASSERT(reporter, b.getGenerationID() == y && a.getGenerationID() == x); | 
|  |  | 
|  | b = a; | 
|  | REPORTER_ASSERT(reporter, b.getGenerationID() == x); | 
|  |  | 
|  | SkPath c(a); | 
|  | REPORTER_ASSERT(reporter, c.getGenerationID() == x); | 
|  |  | 
|  | c.lineTo(3, 3); | 
|  | const uint32_t w = c.getGenerationID(); | 
|  | REPORTER_ASSERT(reporter, b.getGenerationID() == x); | 
|  | REPORTER_ASSERT(reporter, a.getGenerationID() == x); | 
|  | REPORTER_ASSERT(reporter, w != x); | 
|  |  | 
|  | #ifdef SK_BUILD_FOR_ANDROID | 
|  | static bool kExpectGenIDToIgnoreFill = false; | 
|  | #else | 
|  | static bool kExpectGenIDToIgnoreFill = true; | 
|  | #endif | 
|  |  | 
|  | c.toggleInverseFillType(); | 
|  | const uint32_t v = c.getGenerationID(); | 
|  | REPORTER_ASSERT(reporter, (v == w) == kExpectGenIDToIgnoreFill); | 
|  |  | 
|  | c.rewind(); | 
|  | REPORTER_ASSERT(reporter, v != c.getGenerationID()); | 
|  | } | 
|  |  | 
|  | // This used to assert in the debug build, as the edges did not all line-up. | 
|  | static void test_bad_cubic_crbug234190() { | 
|  | SkPath path; | 
|  | path.moveTo(13.8509f, 3.16858f); | 
|  | path.cubicTo(-2.35893e+08f, -4.21044e+08f, | 
|  | -2.38991e+08f, -4.26573e+08f, | 
|  | -2.41016e+08f, -4.30188e+08f); | 
|  |  | 
|  | SkPaint paint; | 
|  | paint.setAntiAlias(true); | 
|  | SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterPMColor(84, 88)); | 
|  | surface->getCanvas()->drawPath(path, paint); | 
|  | } | 
|  |  | 
|  | static void test_bad_cubic_crbug229478() { | 
|  | const SkPoint pts[] = { | 
|  | { 4595.91064f,    -11596.9873f }, | 
|  | { 4597.2168f,    -11595.9414f }, | 
|  | { 4598.52344f,    -11594.8955f }, | 
|  | { 4599.83008f,    -11593.8496f }, | 
|  | }; | 
|  |  | 
|  | SkPath path; | 
|  | path.moveTo(pts[0]); | 
|  | path.cubicTo(pts[1], pts[2], pts[3]); | 
|  |  | 
|  | SkPaint paint; | 
|  | paint.setStyle(SkPaint::kStroke_Style); | 
|  | paint.setStrokeWidth(20); | 
|  |  | 
|  | SkPath dst; | 
|  | // Before the fix, this would infinite-recurse, and run out of stack | 
|  | // because we would keep trying to subdivide a degenerate cubic segment. | 
|  | paint.getFillPath(path, &dst, NULL); | 
|  | } | 
|  |  | 
|  | static void build_path_170666(SkPath& path) { | 
|  | path.moveTo(17.9459f, 21.6344f); | 
|  | path.lineTo(139.545f, -47.8105f); | 
|  | path.lineTo(139.545f, -47.8105f); | 
|  | path.lineTo(131.07f, -47.3888f); | 
|  | path.lineTo(131.07f, -47.3888f); | 
|  | path.lineTo(122.586f, -46.9532f); | 
|  | path.lineTo(122.586f, -46.9532f); | 
|  | path.lineTo(18076.6f, 31390.9f); | 
|  | path.lineTo(18076.6f, 31390.9f); | 
|  | path.lineTo(18085.1f, 31390.5f); | 
|  | path.lineTo(18085.1f, 31390.5f); | 
|  | path.lineTo(18076.6f, 31390.9f); | 
|  | path.lineTo(18076.6f, 31390.9f); | 
|  | path.lineTo(17955, 31460.3f); | 
|  | path.lineTo(17955, 31460.3f); | 
|  | path.lineTo(17963.5f, 31459.9f); | 
|  | path.lineTo(17963.5f, 31459.9f); | 
|  | path.lineTo(17971.9f, 31459.5f); | 
|  | path.lineTo(17971.9f, 31459.5f); | 
|  | path.lineTo(17.9551f, 21.6205f); | 
|  | path.lineTo(17.9551f, 21.6205f); | 
|  | path.lineTo(9.47091f, 22.0561f); | 
|  | path.lineTo(9.47091f, 22.0561f); | 
|  | path.lineTo(17.9459f, 21.6344f); | 
|  | path.lineTo(17.9459f, 21.6344f); | 
|  | path.close();path.moveTo(0.995934f, 22.4779f); | 
|  | path.lineTo(0.986725f, 22.4918f); | 
|  | path.lineTo(0.986725f, 22.4918f); | 
|  | path.lineTo(17955, 31460.4f); | 
|  | path.lineTo(17955, 31460.4f); | 
|  | path.lineTo(17971.9f, 31459.5f); | 
|  | path.lineTo(17971.9f, 31459.5f); | 
|  | path.lineTo(18093.6f, 31390.1f); | 
|  | path.lineTo(18093.6f, 31390.1f); | 
|  | path.lineTo(18093.6f, 31390); | 
|  | path.lineTo(18093.6f, 31390); | 
|  | path.lineTo(139.555f, -47.8244f); | 
|  | path.lineTo(139.555f, -47.8244f); | 
|  | path.lineTo(122.595f, -46.9671f); | 
|  | path.lineTo(122.595f, -46.9671f); | 
|  | path.lineTo(0.995934f, 22.4779f); | 
|  | path.lineTo(0.995934f, 22.4779f); | 
|  | path.close(); | 
|  | path.moveTo(5.43941f, 25.5223f); | 
|  | path.lineTo(798267, -28871.1f); | 
|  | path.lineTo(798267, -28871.1f); | 
|  | path.lineTo(3.12512e+06f, -113102); | 
|  | path.lineTo(3.12512e+06f, -113102); | 
|  | path.cubicTo(5.16324e+06f, -186882, 8.15247e+06f, -295092, 1.1957e+07f, -432813); | 
|  | path.cubicTo(1.95659e+07f, -708257, 3.04359e+07f, -1.10175e+06f, 4.34798e+07f, -1.57394e+06f); | 
|  | path.cubicTo(6.95677e+07f, -2.51831e+06f, 1.04352e+08f, -3.77748e+06f, 1.39135e+08f, -5.03666e+06f); | 
|  | path.cubicTo(1.73919e+08f, -6.29583e+06f, 2.08703e+08f, -7.555e+06f, 2.34791e+08f, -8.49938e+06f); | 
|  | path.cubicTo(2.47835e+08f, -8.97157e+06f, 2.58705e+08f, -9.36506e+06f, 2.66314e+08f, -9.6405e+06f); | 
|  | path.cubicTo(2.70118e+08f, -9.77823e+06f, 2.73108e+08f, -9.88644e+06f, 2.75146e+08f, -9.96022e+06f); | 
|  | path.cubicTo(2.76165e+08f, -9.99711e+06f, 2.76946e+08f, -1.00254e+07f, 2.77473e+08f, -1.00444e+07f); | 
|  | path.lineTo(2.78271e+08f, -1.00733e+07f); | 
|  | path.lineTo(2.78271e+08f, -1.00733e+07f); | 
|  | path.cubicTo(2.78271e+08f, -1.00733e+07f, 2.08703e+08f, -7.555e+06f, 135.238f, 23.3517f); | 
|  | path.cubicTo(131.191f, 23.4981f, 125.995f, 23.7976f, 123.631f, 24.0206f); | 
|  | path.cubicTo(121.267f, 24.2436f, 122.631f, 24.3056f, 126.677f, 24.1591f); | 
|  | path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f); | 
|  | path.lineTo(2.77473e+08f, -1.00444e+07f); | 
|  | path.lineTo(2.77473e+08f, -1.00444e+07f); | 
|  | path.cubicTo(2.76946e+08f, -1.00254e+07f, 2.76165e+08f, -9.99711e+06f, 2.75146e+08f, -9.96022e+06f); | 
|  | path.cubicTo(2.73108e+08f, -9.88644e+06f, 2.70118e+08f, -9.77823e+06f, 2.66314e+08f, -9.6405e+06f); | 
|  | path.cubicTo(2.58705e+08f, -9.36506e+06f, 2.47835e+08f, -8.97157e+06f, 2.34791e+08f, -8.49938e+06f); | 
|  | path.cubicTo(2.08703e+08f, -7.555e+06f, 1.73919e+08f, -6.29583e+06f, 1.39135e+08f, -5.03666e+06f); | 
|  | path.cubicTo(1.04352e+08f, -3.77749e+06f, 6.95677e+07f, -2.51831e+06f, 4.34798e+07f, -1.57394e+06f); | 
|  | path.cubicTo(3.04359e+07f, -1.10175e+06f, 1.95659e+07f, -708258, 1.1957e+07f, -432814); | 
|  | path.cubicTo(8.15248e+06f, -295092, 5.16324e+06f, -186883, 3.12513e+06f, -113103); | 
|  | path.lineTo(798284, -28872); | 
|  | path.lineTo(798284, -28872); | 
|  | path.lineTo(22.4044f, 24.6677f); | 
|  | path.lineTo(22.4044f, 24.6677f); | 
|  | path.cubicTo(22.5186f, 24.5432f, 18.8134f, 24.6337f, 14.1287f, 24.8697f); | 
|  | path.cubicTo(9.4439f, 25.1057f, 5.55359f, 25.3978f, 5.43941f, 25.5223f); | 
|  | path.close(); | 
|  | } | 
|  |  | 
|  | static void build_path_simple_170666(SkPath& path) { | 
|  | path.moveTo(126.677f, 24.1591f); | 
|  | path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f); | 
|  | } | 
|  |  | 
|  | // This used to assert in the SK_DEBUG build, as the clip step would fail with | 
|  | // too-few interations in our cubic-line intersection code. That code now runs | 
|  | // 24 interations (instead of 16). | 
|  | static void test_crbug_170666() { | 
|  | SkPath path; | 
|  | SkPaint paint; | 
|  | paint.setAntiAlias(true); | 
|  |  | 
|  | SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterPMColor(1000, 1000)); | 
|  |  | 
|  | build_path_simple_170666(path); | 
|  | surface->getCanvas()->drawPath(path, paint); | 
|  |  | 
|  | build_path_170666(path); | 
|  | surface->getCanvas()->drawPath(path, paint); | 
|  | } | 
|  |  | 
|  | static void test_addrect(skiatest::Reporter* reporter) { | 
|  | SkPath path; | 
|  | path.lineTo(0, 0); | 
|  | path.addRect(SkRect::MakeWH(50, 100)); | 
|  | REPORTER_ASSERT(reporter, path.isRect(NULL)); | 
|  |  | 
|  | path.reset(); | 
|  | path.lineTo(FLT_EPSILON, FLT_EPSILON); | 
|  | path.addRect(SkRect::MakeWH(50, 100)); | 
|  | REPORTER_ASSERT(reporter, !path.isRect(NULL)); | 
|  |  | 
|  | path.reset(); | 
|  | path.quadTo(0, 0, 0, 0); | 
|  | path.addRect(SkRect::MakeWH(50, 100)); | 
|  | REPORTER_ASSERT(reporter, !path.isRect(NULL)); | 
|  |  | 
|  | path.reset(); | 
|  | path.conicTo(0, 0, 0, 0, 0.5f); | 
|  | path.addRect(SkRect::MakeWH(50, 100)); | 
|  | REPORTER_ASSERT(reporter, !path.isRect(NULL)); | 
|  |  | 
|  | path.reset(); | 
|  | path.cubicTo(0, 0, 0, 0, 0, 0); | 
|  | path.addRect(SkRect::MakeWH(50, 100)); | 
|  | REPORTER_ASSERT(reporter, !path.isRect(NULL)); | 
|  | } | 
|  |  | 
|  | // Make sure we stay non-finite once we get there (unless we reset or rewind). | 
|  | static void test_addrect_isfinite(skiatest::Reporter* reporter) { | 
|  | SkPath path; | 
|  |  | 
|  | path.addRect(SkRect::MakeWH(50, 100)); | 
|  | REPORTER_ASSERT(reporter, path.isFinite()); | 
|  |  | 
|  | path.moveTo(0, 0); | 
|  | path.lineTo(SK_ScalarInfinity, 42); | 
|  | REPORTER_ASSERT(reporter, !path.isFinite()); | 
|  |  | 
|  | path.addRect(SkRect::MakeWH(50, 100)); | 
|  | REPORTER_ASSERT(reporter, !path.isFinite()); | 
|  |  | 
|  | path.reset(); | 
|  | REPORTER_ASSERT(reporter, path.isFinite()); | 
|  |  | 
|  | path.addRect(SkRect::MakeWH(50, 100)); | 
|  | REPORTER_ASSERT(reporter, path.isFinite()); | 
|  | } | 
|  |  | 
|  | static void build_big_path(SkPath* path, bool reducedCase) { | 
|  | if (reducedCase) { | 
|  | path->moveTo(577330, 1971.72f); | 
|  | path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f); | 
|  | } else { | 
|  | path->moveTo(60.1631f, 7.70567f); | 
|  | path->quadTo(60.1631f, 7.70567f, 0.99474f, 0.901199f); | 
|  | path->lineTo(577379, 1977.77f); | 
|  | path->quadTo(577364, 1979.57f, 577325, 1980.26f); | 
|  | path->quadTo(577286, 1980.95f, 577245, 1980.13f); | 
|  | path->quadTo(577205, 1979.3f, 577187, 1977.45f); | 
|  | path->quadTo(577168, 1975.6f, 577183, 1973.8f); | 
|  | path->quadTo(577198, 1972, 577238, 1971.31f); | 
|  | path->quadTo(577277, 1970.62f, 577317, 1971.45f); | 
|  | path->quadTo(577330, 1971.72f, 577341, 1972.11f); | 
|  | path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f); | 
|  | path->moveTo(306.718f, -32.912f); | 
|  | path->cubicTo(30.531f, 10.0005f, 1502.47f, 13.2804f, 84.3088f, 9.99601f); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_clipped_cubic() { | 
|  | SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterPMColor(640, 480)); | 
|  |  | 
|  | // This path used to assert, because our cubic-chopping code incorrectly | 
|  | // moved control points after the chop. This test should be run in SK_DEBUG | 
|  | // mode to ensure that we no long assert. | 
|  | SkPath path; | 
|  | for (int doReducedCase = 0; doReducedCase <= 1; ++doReducedCase) { | 
|  | build_big_path(&path, SkToBool(doReducedCase)); | 
|  |  | 
|  | SkPaint paint; | 
|  | for (int doAA = 0; doAA <= 1; ++doAA) { | 
|  | paint.setAntiAlias(SkToBool(doAA)); | 
|  | surface->getCanvas()->drawPath(path, paint); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/ | 
|  | // which triggered an assert, from a tricky cubic. This test replicates that | 
|  | // example, so we can ensure that we handle it (in SkEdge.cpp), and don't | 
|  | // assert in the SK_DEBUG build. | 
|  | static void test_tricky_cubic() { | 
|  | const SkPoint pts[] = { | 
|  | { SkDoubleToScalar(18.8943768),    SkDoubleToScalar(129.121277) }, | 
|  | { SkDoubleToScalar(18.8937435),    SkDoubleToScalar(129.121689) }, | 
|  | { SkDoubleToScalar(18.8950119),    SkDoubleToScalar(129.120422) }, | 
|  | { SkDoubleToScalar(18.5030727),    SkDoubleToScalar(129.13121)  }, | 
|  | }; | 
|  |  | 
|  | SkPath path; | 
|  | path.moveTo(pts[0]); | 
|  | path.cubicTo(pts[1], pts[2], pts[3]); | 
|  |  | 
|  | SkPaint paint; | 
|  | paint.setAntiAlias(true); | 
|  |  | 
|  | SkSurface* surface = SkSurface::NewRasterPMColor(19, 130); | 
|  | surface->getCanvas()->drawPath(path, paint); | 
|  | surface->unref(); | 
|  | } | 
|  |  | 
|  | // Inspired by http://code.google.com/p/chromium/issues/detail?id=141651 | 
|  | // | 
|  | static void test_isfinite_after_transform(skiatest::Reporter* reporter) { | 
|  | SkPath path; | 
|  | path.quadTo(157, 366, 286, 208); | 
|  | path.arcTo(37, 442, 315, 163, 957494590897113.0f); | 
|  |  | 
|  | SkMatrix matrix; | 
|  | matrix.setScale(1000*1000, 1000*1000); | 
|  |  | 
|  | // Be sure that path::transform correctly updates isFinite and the bounds | 
|  | // if the transformation overflows. The previous bug was that isFinite was | 
|  | // set to true in this case, but the bounds were not set to empty (which | 
|  | // they should be). | 
|  | while (path.isFinite()) { | 
|  | REPORTER_ASSERT(reporter, path.getBounds().isFinite()); | 
|  | REPORTER_ASSERT(reporter, !path.getBounds().isEmpty()); | 
|  | path.transform(matrix); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); | 
|  |  | 
|  | matrix.setTranslate(SK_Scalar1, SK_Scalar1); | 
|  | path.transform(matrix); | 
|  | // we need to still be non-finite | 
|  | REPORTER_ASSERT(reporter, !path.isFinite()); | 
|  | REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); | 
|  | } | 
|  |  | 
|  | static void add_corner_arc(SkPath* path, const SkRect& rect, | 
|  | SkScalar xIn, SkScalar yIn, | 
|  | int startAngle) | 
|  | { | 
|  |  | 
|  | SkScalar rx = SkMinScalar(rect.width(), xIn); | 
|  | SkScalar ry = SkMinScalar(rect.height(), yIn); | 
|  |  | 
|  | SkRect arcRect; | 
|  | arcRect.set(-rx, -ry, rx, ry); | 
|  | switch (startAngle) { | 
|  | case 0: | 
|  | arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom); | 
|  | break; | 
|  | case 90: | 
|  | arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom); | 
|  | break; | 
|  | case 180: | 
|  | arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop); | 
|  | break; | 
|  | case 270: | 
|  | arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false); | 
|  | } | 
|  |  | 
|  | static void make_arb_round_rect(SkPath* path, const SkRect& r, | 
|  | SkScalar xCorner, SkScalar yCorner) { | 
|  | // we are lazy here and use the same x & y for each corner | 
|  | add_corner_arc(path, r, xCorner, yCorner, 270); | 
|  | add_corner_arc(path, r, xCorner, yCorner, 0); | 
|  | add_corner_arc(path, r, xCorner, yCorner, 90); | 
|  | add_corner_arc(path, r, xCorner, yCorner, 180); | 
|  | path->close(); | 
|  | } | 
|  |  | 
|  | // Chrome creates its own round rects with each corner possibly being different. | 
|  | // Performance will suffer if they are not convex. | 
|  | // Note: PathBench::ArbRoundRectBench performs almost exactly | 
|  | // the same test (but with drawing) | 
|  | static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) { | 
|  | SkRandom rand; | 
|  | SkRect r; | 
|  |  | 
|  | for (int i = 0; i < 5000; ++i) { | 
|  |  | 
|  | SkScalar size = rand.nextUScalar1() * 30; | 
|  | if (size < SK_Scalar1) { | 
|  | continue; | 
|  | } | 
|  | r.fLeft = rand.nextUScalar1() * 300; | 
|  | r.fTop =  rand.nextUScalar1() * 300; | 
|  | r.fRight =  r.fLeft + 2 * size; | 
|  | r.fBottom = r.fTop + 2 * size; | 
|  |  | 
|  | SkPath temp; | 
|  |  | 
|  | make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, temp.isConvex()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Chrome will sometimes create a 0 radius round rect. The degenerate | 
|  | // quads prevent the path from being converted to a rect | 
|  | // Note: PathBench::ArbRoundRectBench performs almost exactly | 
|  | // the same test (but with drawing) | 
|  | static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) { | 
|  | SkRandom rand; | 
|  | SkRect r; | 
|  |  | 
|  | for (int i = 0; i < 5000; ++i) { | 
|  |  | 
|  | SkScalar size = rand.nextUScalar1() * 30; | 
|  | if (size < SK_Scalar1) { | 
|  | continue; | 
|  | } | 
|  | r.fLeft = rand.nextUScalar1() * 300; | 
|  | r.fTop =  rand.nextUScalar1() * 300; | 
|  | r.fRight =  r.fLeft + 2 * size; | 
|  | r.fBottom = r.fTop + 2 * size; | 
|  |  | 
|  | SkPath temp; | 
|  |  | 
|  | make_arb_round_rect(&temp, r, 0, 0); | 
|  |  | 
|  | SkRect result; | 
|  | REPORTER_ASSERT(reporter, temp.isRect(&result)); | 
|  | REPORTER_ASSERT(reporter, r == result); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_rect_isfinite(skiatest::Reporter* reporter) { | 
|  | const SkScalar inf = SK_ScalarInfinity; | 
|  | const SkScalar negInf = SK_ScalarNegativeInfinity; | 
|  | const SkScalar nan = SK_ScalarNaN; | 
|  |  | 
|  | SkRect r; | 
|  | r.setEmpty(); | 
|  | REPORTER_ASSERT(reporter, r.isFinite()); | 
|  | r.set(0, 0, inf, negInf); | 
|  | REPORTER_ASSERT(reporter, !r.isFinite()); | 
|  | r.set(0, 0, nan, 0); | 
|  | REPORTER_ASSERT(reporter, !r.isFinite()); | 
|  |  | 
|  | SkPoint pts[] = { | 
|  | { 0, 0 }, | 
|  | { SK_Scalar1, 0 }, | 
|  | { 0, SK_Scalar1 }, | 
|  | }; | 
|  |  | 
|  | bool isFine = r.setBoundsCheck(pts, 3); | 
|  | REPORTER_ASSERT(reporter, isFine); | 
|  | REPORTER_ASSERT(reporter, !r.isEmpty()); | 
|  |  | 
|  | pts[1].set(inf, 0); | 
|  | isFine = r.setBoundsCheck(pts, 3); | 
|  | REPORTER_ASSERT(reporter, !isFine); | 
|  | REPORTER_ASSERT(reporter, r.isEmpty()); | 
|  |  | 
|  | pts[1].set(nan, 0); | 
|  | isFine = r.setBoundsCheck(pts, 3); | 
|  | REPORTER_ASSERT(reporter, !isFine); | 
|  | REPORTER_ASSERT(reporter, r.isEmpty()); | 
|  | } | 
|  |  | 
|  | static void test_path_isfinite(skiatest::Reporter* reporter) { | 
|  | const SkScalar inf = SK_ScalarInfinity; | 
|  | const SkScalar negInf = SK_ScalarNegativeInfinity; | 
|  | const SkScalar nan = SK_ScalarNaN; | 
|  |  | 
|  | SkPath path; | 
|  | REPORTER_ASSERT(reporter, path.isFinite()); | 
|  |  | 
|  | path.reset(); | 
|  | REPORTER_ASSERT(reporter, path.isFinite()); | 
|  |  | 
|  | path.reset(); | 
|  | path.moveTo(SK_Scalar1, 0); | 
|  | REPORTER_ASSERT(reporter, path.isFinite()); | 
|  |  | 
|  | path.reset(); | 
|  | path.moveTo(inf, negInf); | 
|  | REPORTER_ASSERT(reporter, !path.isFinite()); | 
|  |  | 
|  | path.reset(); | 
|  | path.moveTo(nan, 0); | 
|  | REPORTER_ASSERT(reporter, !path.isFinite()); | 
|  | } | 
|  |  | 
|  | static void test_isfinite(skiatest::Reporter* reporter) { | 
|  | test_rect_isfinite(reporter); | 
|  | test_path_isfinite(reporter); | 
|  | } | 
|  |  | 
|  | // assert that we always | 
|  | //  start with a moveTo | 
|  | //  only have 1 moveTo | 
|  | //  only have Lines after that | 
|  | //  end with a single close | 
|  | //  only have (at most) 1 close | 
|  | // | 
|  | static void test_poly(skiatest::Reporter* reporter, const SkPath& path, | 
|  | const SkPoint srcPts[], bool expectClose) { | 
|  | SkPath::RawIter iter(path); | 
|  | SkPoint         pts[4]; | 
|  |  | 
|  | bool firstTime = true; | 
|  | bool foundClose = false; | 
|  | for (;;) { | 
|  | switch (iter.next(pts)) { | 
|  | case SkPath::kMove_Verb: | 
|  | REPORTER_ASSERT(reporter, firstTime); | 
|  | REPORTER_ASSERT(reporter, pts[0] == srcPts[0]); | 
|  | srcPts++; | 
|  | firstTime = false; | 
|  | break; | 
|  | case SkPath::kLine_Verb: | 
|  | REPORTER_ASSERT(reporter, !firstTime); | 
|  | REPORTER_ASSERT(reporter, pts[1] == srcPts[0]); | 
|  | srcPts++; | 
|  | break; | 
|  | case SkPath::kQuad_Verb: | 
|  | REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected quad verb"); | 
|  | break; | 
|  | case SkPath::kConic_Verb: | 
|  | REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected conic verb"); | 
|  | break; | 
|  | case SkPath::kCubic_Verb: | 
|  | REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected cubic verb"); | 
|  | break; | 
|  | case SkPath::kClose_Verb: | 
|  | REPORTER_ASSERT(reporter, !firstTime); | 
|  | REPORTER_ASSERT(reporter, !foundClose); | 
|  | REPORTER_ASSERT(reporter, expectClose); | 
|  | foundClose = true; | 
|  | break; | 
|  | case SkPath::kDone_Verb: | 
|  | goto DONE; | 
|  | } | 
|  | } | 
|  | DONE: | 
|  | REPORTER_ASSERT(reporter, foundClose == expectClose); | 
|  | } | 
|  |  | 
|  | static void test_addPoly(skiatest::Reporter* reporter) { | 
|  | SkPoint pts[32]; | 
|  | SkRandom rand; | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) { | 
|  | pts[i].fX = rand.nextSScalar1(); | 
|  | pts[i].fY = rand.nextSScalar1(); | 
|  | } | 
|  |  | 
|  | for (int doClose = 0; doClose <= 1; ++doClose) { | 
|  | for (size_t count = 1; count <= SK_ARRAY_COUNT(pts); ++count) { | 
|  | SkPath path; | 
|  | path.addPoly(pts, count, SkToBool(doClose)); | 
|  | test_poly(reporter, path, pts, SkToBool(doClose)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_strokerec(skiatest::Reporter* reporter) { | 
|  | SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); | 
|  | REPORTER_ASSERT(reporter, rec.isFillStyle()); | 
|  |  | 
|  | rec.setHairlineStyle(); | 
|  | REPORTER_ASSERT(reporter, rec.isHairlineStyle()); | 
|  |  | 
|  | rec.setStrokeStyle(SK_Scalar1, false); | 
|  | REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle()); | 
|  |  | 
|  | rec.setStrokeStyle(SK_Scalar1, true); | 
|  | REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle()); | 
|  |  | 
|  | rec.setStrokeStyle(0, false); | 
|  | REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle()); | 
|  |  | 
|  | rec.setStrokeStyle(0, true); | 
|  | REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle()); | 
|  | } | 
|  |  | 
|  | // Set this for paths that don't have a consistent direction such as a bowtie. | 
|  | // (cheapComputeDirection is not expected to catch these.) | 
|  | static const SkPath::Direction kDontCheckDir = static_cast<SkPath::Direction>(-1); | 
|  |  | 
|  | static void check_direction(skiatest::Reporter* reporter, const SkPath& path, | 
|  | SkPath::Direction expected) { | 
|  | if (expected == kDontCheckDir) { | 
|  | return; | 
|  | } | 
|  | SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. | 
|  |  | 
|  | SkPath::Direction dir; | 
|  | if (copy.cheapComputeDirection(&dir)) { | 
|  | REPORTER_ASSERT(reporter, dir == expected); | 
|  | } else { | 
|  | REPORTER_ASSERT(reporter, SkPath::kUnknown_Direction == expected); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_direction(skiatest::Reporter* reporter) { | 
|  | size_t i; | 
|  | SkPath path; | 
|  | REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL)); | 
|  | REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCW_Direction)); | 
|  | REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCCW_Direction)); | 
|  | REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kUnknown_Direction)); | 
|  |  | 
|  | static const char* gDegen[] = { | 
|  | "M 10 10", | 
|  | "M 10 10 M 20 20", | 
|  | "M 10 10 L 20 20", | 
|  | "M 10 10 L 10 10 L 10 10", | 
|  | "M 10 10 Q 10 10 10 10", | 
|  | "M 10 10 C 10 10 10 10 10 10", | 
|  | }; | 
|  | for (i = 0; i < SK_ARRAY_COUNT(gDegen); ++i) { | 
|  | path.reset(); | 
|  | bool valid = SkParsePath::FromSVGString(gDegen[i], &path); | 
|  | REPORTER_ASSERT(reporter, valid); | 
|  | REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL)); | 
|  | } | 
|  |  | 
|  | static const char* gCW[] = { | 
|  | "M 10 10 L 10 10 Q 20 10 20 20", | 
|  | "M 10 10 C 20 10 20 20 20 20", | 
|  | "M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max | 
|  | // rect with top two corners replaced by cubics with identical middle | 
|  | // control points | 
|  | "M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10", | 
|  | "M 20 10 L 0 10 Q 10 10 20 0",  // left, degenerate serif | 
|  | }; | 
|  | for (i = 0; i < SK_ARRAY_COUNT(gCW); ++i) { | 
|  | path.reset(); | 
|  | bool valid = SkParsePath::FromSVGString(gCW[i], &path); | 
|  | REPORTER_ASSERT(reporter, valid); | 
|  | check_direction(reporter, path, SkPath::kCW_Direction); | 
|  | } | 
|  |  | 
|  | static const char* gCCW[] = { | 
|  | "M 10 10 L 10 10 Q 20 10 20 -20", | 
|  | "M 10 10 C 20 10 20 -20 20 -20", | 
|  | "M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max | 
|  | // rect with top two corners replaced by cubics with identical middle | 
|  | // control points | 
|  | "M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10", | 
|  | "M 10 10 L 30 10 Q 20 10 10 0",  // right, degenerate serif | 
|  | }; | 
|  | for (i = 0; i < SK_ARRAY_COUNT(gCCW); ++i) { | 
|  | path.reset(); | 
|  | bool valid = SkParsePath::FromSVGString(gCCW[i], &path); | 
|  | REPORTER_ASSERT(reporter, valid); | 
|  | check_direction(reporter, path, SkPath::kCCW_Direction); | 
|  | } | 
|  |  | 
|  | // Test two donuts, each wound a different direction. Only the outer contour | 
|  | // determines the cheap direction | 
|  | path.reset(); | 
|  | path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCW_Direction); | 
|  | path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCCW_Direction); | 
|  | check_direction(reporter, path, SkPath::kCW_Direction); | 
|  |  | 
|  | path.reset(); | 
|  | path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCW_Direction); | 
|  | path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCCW_Direction); | 
|  | check_direction(reporter, path, SkPath::kCCW_Direction); | 
|  |  | 
|  | // triangle with one point really far from the origin. | 
|  | path.reset(); | 
|  | // the first point is roughly 1.05e10, 1.05e10 | 
|  | path.moveTo(SkBits2Float(0x501c7652), SkBits2Float(0x501c7652)); | 
|  | path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1); | 
|  | path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1); | 
|  | check_direction(reporter, path, SkPath::kCCW_Direction); | 
|  |  | 
|  | path.reset(); | 
|  | path.conicTo(20, 0, 20, 20, 0.5f); | 
|  | path.close(); | 
|  | check_direction(reporter, path, SkPath::kCW_Direction); | 
|  |  | 
|  | path.reset(); | 
|  | path.lineTo(1, 1e7f); | 
|  | path.lineTo(1e7f, 2e7f); | 
|  | path.close(); | 
|  | REPORTER_ASSERT(reporter, SkPath::kConvex_Convexity == path.getConvexity()); | 
|  | check_direction(reporter, path, SkPath::kCCW_Direction); | 
|  | } | 
|  |  | 
|  | static void add_rect(SkPath* path, const SkRect& r) { | 
|  | path->moveTo(r.fLeft, r.fTop); | 
|  | path->lineTo(r.fRight, r.fTop); | 
|  | path->lineTo(r.fRight, r.fBottom); | 
|  | path->lineTo(r.fLeft, r.fBottom); | 
|  | path->close(); | 
|  | } | 
|  |  | 
|  | static void test_bounds(skiatest::Reporter* reporter) { | 
|  | static const SkRect rects[] = { | 
|  | { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) }, | 
|  | { SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) }, | 
|  | { SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) }, | 
|  | { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) }, | 
|  | }; | 
|  |  | 
|  | SkPath path0, path1; | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(rects); ++i) { | 
|  | path0.addRect(rects[i]); | 
|  | add_rect(&path1, rects[i]); | 
|  | } | 
|  |  | 
|  | REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds()); | 
|  | } | 
|  |  | 
|  | static void stroke_cubic(const SkPoint pts[4]) { | 
|  | SkPath path; | 
|  | path.moveTo(pts[0]); | 
|  | path.cubicTo(pts[1], pts[2], pts[3]); | 
|  |  | 
|  | SkPaint paint; | 
|  | paint.setStyle(SkPaint::kStroke_Style); | 
|  | paint.setStrokeWidth(SK_Scalar1 * 2); | 
|  |  | 
|  | SkPath fill; | 
|  | paint.getFillPath(path, &fill); | 
|  | } | 
|  |  | 
|  | // just ensure this can run w/o any SkASSERTS firing in the debug build | 
|  | // we used to assert due to differences in how we determine a degenerate vector | 
|  | // but that was fixed with the introduction of SkPoint::CanNormalize | 
|  | static void stroke_tiny_cubic() { | 
|  | SkPoint p0[] = { | 
|  | { 372.0f,   92.0f }, | 
|  | { 372.0f,   92.0f }, | 
|  | { 372.0f,   92.0f }, | 
|  | { 372.0f,   92.0f }, | 
|  | }; | 
|  |  | 
|  | stroke_cubic(p0); | 
|  |  | 
|  | SkPoint p1[] = { | 
|  | { 372.0f,       92.0f }, | 
|  | { 372.0007f,    92.000755f }, | 
|  | { 371.99927f,   92.003922f }, | 
|  | { 371.99826f,   92.003899f }, | 
|  | }; | 
|  |  | 
|  | stroke_cubic(p1); | 
|  | } | 
|  |  | 
|  | static void check_close(skiatest::Reporter* reporter, const SkPath& path) { | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | SkPath::Iter iter(path, SkToBool(i)); | 
|  | SkPoint mv; | 
|  | SkPoint pts[4]; | 
|  | SkPath::Verb v; | 
|  | int nMT = 0; | 
|  | int nCL = 0; | 
|  | mv.set(0, 0); | 
|  | while (SkPath::kDone_Verb != (v = iter.next(pts))) { | 
|  | switch (v) { | 
|  | case SkPath::kMove_Verb: | 
|  | mv = pts[0]; | 
|  | ++nMT; | 
|  | break; | 
|  | case SkPath::kClose_Verb: | 
|  | REPORTER_ASSERT(reporter, mv == pts[0]); | 
|  | ++nCL; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | // if we force a close on the interator we should have a close | 
|  | // for every moveTo | 
|  | REPORTER_ASSERT(reporter, !i || nMT == nCL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_close(skiatest::Reporter* reporter) { | 
|  | SkPath closePt; | 
|  | closePt.moveTo(0, 0); | 
|  | closePt.close(); | 
|  | check_close(reporter, closePt); | 
|  |  | 
|  | SkPath openPt; | 
|  | openPt.moveTo(0, 0); | 
|  | check_close(reporter, openPt); | 
|  |  | 
|  | SkPath empty; | 
|  | check_close(reporter, empty); | 
|  | empty.close(); | 
|  | check_close(reporter, empty); | 
|  |  | 
|  | SkPath rect; | 
|  | rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); | 
|  | check_close(reporter, rect); | 
|  | rect.close(); | 
|  | check_close(reporter, rect); | 
|  |  | 
|  | SkPath quad; | 
|  | quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); | 
|  | check_close(reporter, quad); | 
|  | quad.close(); | 
|  | check_close(reporter, quad); | 
|  |  | 
|  | SkPath cubic; | 
|  | quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, | 
|  | 10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1); | 
|  | check_close(reporter, cubic); | 
|  | cubic.close(); | 
|  | check_close(reporter, cubic); | 
|  |  | 
|  | SkPath line; | 
|  | line.moveTo(SK_Scalar1, SK_Scalar1); | 
|  | line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1); | 
|  | check_close(reporter, line); | 
|  | line.close(); | 
|  | check_close(reporter, line); | 
|  |  | 
|  | SkPath rect2; | 
|  | rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); | 
|  | rect2.close(); | 
|  | rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); | 
|  | check_close(reporter, rect2); | 
|  | rect2.close(); | 
|  | check_close(reporter, rect2); | 
|  |  | 
|  | SkPath oval3; | 
|  | oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100)); | 
|  | oval3.close(); | 
|  | oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200)); | 
|  | check_close(reporter, oval3); | 
|  | oval3.close(); | 
|  | check_close(reporter, oval3); | 
|  |  | 
|  | SkPath moves; | 
|  | moves.moveTo(SK_Scalar1, SK_Scalar1); | 
|  | moves.moveTo(5 * SK_Scalar1, SK_Scalar1); | 
|  | moves.moveTo(SK_Scalar1, 10 * SK_Scalar1); | 
|  | moves.moveTo(10 *SK_Scalar1, SK_Scalar1); | 
|  | check_close(reporter, moves); | 
|  |  | 
|  | stroke_tiny_cubic(); | 
|  | } | 
|  |  | 
|  | static void check_convexity(skiatest::Reporter* reporter, const SkPath& path, | 
|  | SkPath::Convexity expected) { | 
|  | SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. | 
|  | SkPath::Convexity c = copy.getConvexity(); | 
|  | REPORTER_ASSERT(reporter, c == expected); | 
|  | } | 
|  |  | 
|  | static void test_convexity2(skiatest::Reporter* reporter) { | 
|  | SkPath pt; | 
|  | pt.moveTo(0, 0); | 
|  | pt.close(); | 
|  | check_convexity(reporter, pt, SkPath::kConvex_Convexity); | 
|  | check_direction(reporter, pt, SkPath::kUnknown_Direction); | 
|  |  | 
|  | SkPath line; | 
|  | line.moveTo(12*SK_Scalar1, 20*SK_Scalar1); | 
|  | line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1); | 
|  | line.close(); | 
|  | check_convexity(reporter, line, SkPath::kConvex_Convexity); | 
|  | check_direction(reporter, line, SkPath::kUnknown_Direction); | 
|  |  | 
|  | SkPath triLeft; | 
|  | triLeft.moveTo(0, 0); | 
|  | triLeft.lineTo(SK_Scalar1, 0); | 
|  | triLeft.lineTo(SK_Scalar1, SK_Scalar1); | 
|  | triLeft.close(); | 
|  | check_convexity(reporter, triLeft, SkPath::kConvex_Convexity); | 
|  | check_direction(reporter, triLeft, SkPath::kCW_Direction); | 
|  |  | 
|  | SkPath triRight; | 
|  | triRight.moveTo(0, 0); | 
|  | triRight.lineTo(-SK_Scalar1, 0); | 
|  | triRight.lineTo(SK_Scalar1, SK_Scalar1); | 
|  | triRight.close(); | 
|  | check_convexity(reporter, triRight, SkPath::kConvex_Convexity); | 
|  | check_direction(reporter, triRight, SkPath::kCCW_Direction); | 
|  |  | 
|  | SkPath square; | 
|  | square.moveTo(0, 0); | 
|  | square.lineTo(SK_Scalar1, 0); | 
|  | square.lineTo(SK_Scalar1, SK_Scalar1); | 
|  | square.lineTo(0, SK_Scalar1); | 
|  | square.close(); | 
|  | check_convexity(reporter, square, SkPath::kConvex_Convexity); | 
|  | check_direction(reporter, square, SkPath::kCW_Direction); | 
|  |  | 
|  | SkPath redundantSquare; | 
|  | redundantSquare.moveTo(0, 0); | 
|  | redundantSquare.lineTo(0, 0); | 
|  | redundantSquare.lineTo(0, 0); | 
|  | redundantSquare.lineTo(SK_Scalar1, 0); | 
|  | redundantSquare.lineTo(SK_Scalar1, 0); | 
|  | redundantSquare.lineTo(SK_Scalar1, 0); | 
|  | redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); | 
|  | redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); | 
|  | redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); | 
|  | redundantSquare.lineTo(0, SK_Scalar1); | 
|  | redundantSquare.lineTo(0, SK_Scalar1); | 
|  | redundantSquare.lineTo(0, SK_Scalar1); | 
|  | redundantSquare.close(); | 
|  | check_convexity(reporter, redundantSquare, SkPath::kConvex_Convexity); | 
|  | check_direction(reporter, redundantSquare, SkPath::kCW_Direction); | 
|  |  | 
|  | SkPath bowTie; | 
|  | bowTie.moveTo(0, 0); | 
|  | bowTie.lineTo(0, 0); | 
|  | bowTie.lineTo(0, 0); | 
|  | bowTie.lineTo(SK_Scalar1, SK_Scalar1); | 
|  | bowTie.lineTo(SK_Scalar1, SK_Scalar1); | 
|  | bowTie.lineTo(SK_Scalar1, SK_Scalar1); | 
|  | bowTie.lineTo(SK_Scalar1, 0); | 
|  | bowTie.lineTo(SK_Scalar1, 0); | 
|  | bowTie.lineTo(SK_Scalar1, 0); | 
|  | bowTie.lineTo(0, SK_Scalar1); | 
|  | bowTie.lineTo(0, SK_Scalar1); | 
|  | bowTie.lineTo(0, SK_Scalar1); | 
|  | bowTie.close(); | 
|  | check_convexity(reporter, bowTie, SkPath::kConcave_Convexity); | 
|  | check_direction(reporter, bowTie, kDontCheckDir); | 
|  |  | 
|  | SkPath spiral; | 
|  | spiral.moveTo(0, 0); | 
|  | spiral.lineTo(100*SK_Scalar1, 0); | 
|  | spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1); | 
|  | spiral.lineTo(0, 100*SK_Scalar1); | 
|  | spiral.lineTo(0, 50*SK_Scalar1); | 
|  | spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1); | 
|  | spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1); | 
|  | spiral.close(); | 
|  | check_convexity(reporter, spiral, SkPath::kConcave_Convexity); | 
|  | check_direction(reporter, spiral, kDontCheckDir); | 
|  |  | 
|  | SkPath dent; | 
|  | dent.moveTo(0, 0); | 
|  | dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1); | 
|  | dent.lineTo(0, 100*SK_Scalar1); | 
|  | dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1); | 
|  | dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1); | 
|  | dent.close(); | 
|  | check_convexity(reporter, dent, SkPath::kConcave_Convexity); | 
|  | check_direction(reporter, dent, SkPath::kCW_Direction); | 
|  |  | 
|  | // http://skbug.com/2235 | 
|  | SkPath strokedSin; | 
|  | for (int i = 0; i < 2000; i++) { | 
|  | SkScalar x = SkIntToScalar(i) / 2; | 
|  | SkScalar y = 500 - (x + SkScalarSin(x / 100) * 40) / 3; | 
|  | if (0 == i) { | 
|  | strokedSin.moveTo(x, y); | 
|  | } else { | 
|  | strokedSin.lineTo(x, y); | 
|  | } | 
|  | } | 
|  | SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); | 
|  | stroke.setStrokeStyle(2 * SK_Scalar1); | 
|  | stroke.applyToPath(&strokedSin, strokedSin); | 
|  | check_convexity(reporter, strokedSin, SkPath::kConcave_Convexity); | 
|  | check_direction(reporter, strokedSin, kDontCheckDir); | 
|  | } | 
|  |  | 
|  | static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p, | 
|  | const SkRect& bounds) { | 
|  | REPORTER_ASSERT(reporter, p.isConvex()); | 
|  | REPORTER_ASSERT(reporter, p.getBounds() == bounds); | 
|  |  | 
|  | SkPath p2(p); | 
|  | REPORTER_ASSERT(reporter, p2.isConvex()); | 
|  | REPORTER_ASSERT(reporter, p2.getBounds() == bounds); | 
|  |  | 
|  | SkPath other; | 
|  | other.swap(p2); | 
|  | REPORTER_ASSERT(reporter, other.isConvex()); | 
|  | REPORTER_ASSERT(reporter, other.getBounds() == bounds); | 
|  | } | 
|  |  | 
|  | static void setFromString(SkPath* path, const char str[]) { | 
|  | bool first = true; | 
|  | while (str) { | 
|  | SkScalar x, y; | 
|  | str = SkParse::FindScalar(str, &x); | 
|  | if (NULL == str) { | 
|  | break; | 
|  | } | 
|  | str = SkParse::FindScalar(str, &y); | 
|  | SkASSERT(str); | 
|  | if (first) { | 
|  | path->moveTo(x, y); | 
|  | first = false; | 
|  | } else { | 
|  | path->lineTo(x, y); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_convexity(skiatest::Reporter* reporter) { | 
|  | SkPath path; | 
|  |  | 
|  | check_convexity(reporter, path, SkPath::kConvex_Convexity); | 
|  | path.addCircle(0, 0, SkIntToScalar(10)); | 
|  | check_convexity(reporter, path, SkPath::kConvex_Convexity); | 
|  | path.addCircle(0, 0, SkIntToScalar(10));   // 2nd circle | 
|  | check_convexity(reporter, path, SkPath::kConcave_Convexity); | 
|  |  | 
|  | path.reset(); | 
|  | path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCCW_Direction); | 
|  | check_convexity(reporter, path, SkPath::kConvex_Convexity); | 
|  | REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCCW_Direction)); | 
|  |  | 
|  | path.reset(); | 
|  | path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCW_Direction); | 
|  | check_convexity(reporter, path, SkPath::kConvex_Convexity); | 
|  | REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCW_Direction)); | 
|  |  | 
|  | static const struct { | 
|  | const char*         fPathStr; | 
|  | SkPath::Convexity   fExpectedConvexity; | 
|  | SkPath::Direction   fExpectedDirection; | 
|  | } gRec[] = { | 
|  | { "", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction }, | 
|  | { "0 0", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction }, | 
|  | { "0 0 10 10", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction }, | 
|  | { "0 0 10 10 20 20 0 0 10 10", SkPath::kConcave_Convexity, SkPath::kUnknown_Direction }, | 
|  | { "0 0 10 10 10 20", SkPath::kConvex_Convexity, SkPath::kCW_Direction }, | 
|  | { "0 0 10 10 10 0", SkPath::kConvex_Convexity, SkPath::kCCW_Direction }, | 
|  | { "0 0 10 10 10 0 0 10", SkPath::kConcave_Convexity, kDontCheckDir }, | 
|  | { "0 0 10 0 0 10 -10 -10", SkPath::kConcave_Convexity, SkPath::kCW_Direction }, | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) { | 
|  | SkPath path; | 
|  | setFromString(&path, gRec[i].fPathStr); | 
|  | check_convexity(reporter, path, gRec[i].fExpectedConvexity); | 
|  | check_direction(reporter, path, gRec[i].fExpectedDirection); | 
|  | // check after setting the initial convex and direction | 
|  | if (kDontCheckDir != gRec[i].fExpectedDirection) { | 
|  | SkPath copy(path); | 
|  | SkPath::Direction dir; | 
|  | bool foundDir = copy.cheapComputeDirection(&dir); | 
|  | REPORTER_ASSERT(reporter, (gRec[i].fExpectedDirection == SkPath::kUnknown_Direction) | 
|  | ^ foundDir); | 
|  | REPORTER_ASSERT(reporter, !foundDir || gRec[i].fExpectedDirection == dir); | 
|  | check_convexity(reporter, copy, gRec[i].fExpectedConvexity); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, gRec[i].fExpectedConvexity == path.getConvexity()); | 
|  | check_direction(reporter, path, gRec[i].fExpectedDirection); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_isLine(skiatest::Reporter* reporter) { | 
|  | SkPath path; | 
|  | SkPoint pts[2]; | 
|  | const SkScalar value = SkIntToScalar(5); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, !path.isLine(NULL)); | 
|  |  | 
|  | // set some non-zero values | 
|  | pts[0].set(value, value); | 
|  | pts[1].set(value, value); | 
|  | REPORTER_ASSERT(reporter, !path.isLine(pts)); | 
|  | // check that pts was untouched | 
|  | REPORTER_ASSERT(reporter, pts[0].equals(value, value)); | 
|  | REPORTER_ASSERT(reporter, pts[1].equals(value, value)); | 
|  |  | 
|  | const SkScalar moveX = SkIntToScalar(1); | 
|  | const SkScalar moveY = SkIntToScalar(2); | 
|  | REPORTER_ASSERT(reporter, value != moveX && value != moveY); | 
|  |  | 
|  | path.moveTo(moveX, moveY); | 
|  | REPORTER_ASSERT(reporter, !path.isLine(NULL)); | 
|  | REPORTER_ASSERT(reporter, !path.isLine(pts)); | 
|  | // check that pts was untouched | 
|  | REPORTER_ASSERT(reporter, pts[0].equals(value, value)); | 
|  | REPORTER_ASSERT(reporter, pts[1].equals(value, value)); | 
|  |  | 
|  | const SkScalar lineX = SkIntToScalar(2); | 
|  | const SkScalar lineY = SkIntToScalar(2); | 
|  | REPORTER_ASSERT(reporter, value != lineX && value != lineY); | 
|  |  | 
|  | path.lineTo(lineX, lineY); | 
|  | REPORTER_ASSERT(reporter, path.isLine(NULL)); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY)); | 
|  | REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY)); | 
|  | REPORTER_ASSERT(reporter, path.isLine(pts)); | 
|  | REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); | 
|  | REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); | 
|  |  | 
|  | path.lineTo(0, 0);  // too many points/verbs | 
|  | REPORTER_ASSERT(reporter, !path.isLine(NULL)); | 
|  | REPORTER_ASSERT(reporter, !path.isLine(pts)); | 
|  | REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); | 
|  | REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); | 
|  |  | 
|  | path.reset(); | 
|  | path.quadTo(1, 1, 2, 2); | 
|  | REPORTER_ASSERT(reporter, !path.isLine(NULL)); | 
|  | } | 
|  |  | 
|  | static void test_conservativelyContains(skiatest::Reporter* reporter) { | 
|  | SkPath path; | 
|  |  | 
|  | // kBaseRect is used to construct most our test paths: a rect, a circle, and a round-rect. | 
|  | static const SkRect kBaseRect = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100)); | 
|  |  | 
|  | // A circle that bounds kBaseRect (with a significant amount of slop) | 
|  | SkScalar circleR = SkMaxScalar(kBaseRect.width(), kBaseRect.height()); | 
|  | circleR = SkScalarMul(circleR, 1.75f) / 2; | 
|  | static const SkPoint kCircleC = {kBaseRect.centerX(), kBaseRect.centerY()}; | 
|  |  | 
|  | // round-rect radii | 
|  | static const SkScalar kRRRadii[] = {SkIntToScalar(5), SkIntToScalar(3)}; | 
|  |  | 
|  | static const struct SUPPRESS_VISIBILITY_WARNING { | 
|  | SkRect fQueryRect; | 
|  | bool   fInRect; | 
|  | bool   fInCircle; | 
|  | bool   fInRR; | 
|  | bool   fInCubicRR; | 
|  | } kQueries[] = { | 
|  | {kBaseRect, true, true, false, false}, | 
|  |  | 
|  | // rect well inside of kBaseRect | 
|  | {SkRect::MakeLTRB(kBaseRect.fLeft + 0.25f*kBaseRect.width(), | 
|  | kBaseRect.fTop + 0.25f*kBaseRect.height(), | 
|  | kBaseRect.fRight - 0.25f*kBaseRect.width(), | 
|  | kBaseRect.fBottom - 0.25f*kBaseRect.height()), | 
|  | true, true, true, true}, | 
|  |  | 
|  | // rects with edges off by one from kBaseRect's edges | 
|  | {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, | 
|  | kBaseRect.width(), kBaseRect.height() + 1), | 
|  | false, true, false, false}, | 
|  | {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, | 
|  | kBaseRect.width() + 1, kBaseRect.height()), | 
|  | false, true, false, false}, | 
|  | {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, | 
|  | kBaseRect.width() + 1, kBaseRect.height() + 1), | 
|  | false, true, false, false}, | 
|  | {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop, | 
|  | kBaseRect.width(), kBaseRect.height()), | 
|  | false, true, false, false}, | 
|  | {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1, | 
|  | kBaseRect.width(), kBaseRect.height()), | 
|  | false, true, false, false}, | 
|  | {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop, | 
|  | kBaseRect.width() + 2, kBaseRect.height()), | 
|  | false, true, false, false}, | 
|  | {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1, | 
|  | kBaseRect.width() + 2, kBaseRect.height()), | 
|  | false, true, false, false}, | 
|  |  | 
|  | // zero-w/h rects at each corner of kBaseRect | 
|  | {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, 0, 0), true, true, false, false}, | 
|  | {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fTop, 0, 0), true, true, false, true}, | 
|  | {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fBottom, 0, 0), true, true, false, true}, | 
|  | {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fBottom, 0, 0), true, true, false, true}, | 
|  |  | 
|  | // far away rect | 
|  | {SkRect::MakeXYWH(10 * kBaseRect.fRight, 10 * kBaseRect.fBottom, | 
|  | SkIntToScalar(10), SkIntToScalar(10)), | 
|  | false, false, false, false}, | 
|  |  | 
|  | // very large rect containing kBaseRect | 
|  | {SkRect::MakeXYWH(kBaseRect.fLeft - 5 * kBaseRect.width(), | 
|  | kBaseRect.fTop - 5 * kBaseRect.height(), | 
|  | 11 * kBaseRect.width(), 11 * kBaseRect.height()), | 
|  | false, false, false, false}, | 
|  |  | 
|  | // skinny rect that spans same y-range as kBaseRect | 
|  | {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop, | 
|  | SkIntToScalar(1), kBaseRect.height()), | 
|  | true, true, true, true}, | 
|  |  | 
|  | // short rect that spans same x-range as kBaseRect | 
|  | {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width(), SkScalar(1)), | 
|  | true, true, true, true}, | 
|  |  | 
|  | // skinny rect that spans slightly larger y-range than kBaseRect | 
|  | {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop, | 
|  | SkIntToScalar(1), kBaseRect.height() + 1), | 
|  | false, true, false, false}, | 
|  |  | 
|  | // short rect that spans slightly larger x-range than kBaseRect | 
|  | {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), | 
|  | kBaseRect.width() + 1, SkScalar(1)), | 
|  | false, true, false, false}, | 
|  | }; | 
|  |  | 
|  | for (int inv = 0; inv < 4; ++inv) { | 
|  | for (size_t q = 0; q < SK_ARRAY_COUNT(kQueries); ++q) { | 
|  | SkRect qRect = kQueries[q].fQueryRect; | 
|  | if (inv & 0x1) { | 
|  | SkTSwap(qRect.fLeft, qRect.fRight); | 
|  | } | 
|  | if (inv & 0x2) { | 
|  | SkTSwap(qRect.fTop, qRect.fBottom); | 
|  | } | 
|  | for (int d = 0; d < 2; ++d) { | 
|  | SkPath::Direction dir = d ? SkPath::kCCW_Direction : SkPath::kCW_Direction; | 
|  | path.reset(); | 
|  | path.addRect(kBaseRect, dir); | 
|  | REPORTER_ASSERT(reporter, kQueries[q].fInRect == | 
|  | path.conservativelyContainsRect(qRect)); | 
|  |  | 
|  | path.reset(); | 
|  | path.addCircle(kCircleC.fX, kCircleC.fY, circleR, dir); | 
|  | REPORTER_ASSERT(reporter, kQueries[q].fInCircle == | 
|  | path.conservativelyContainsRect(qRect)); | 
|  |  | 
|  | path.reset(); | 
|  | path.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1], dir); | 
|  | REPORTER_ASSERT(reporter, kQueries[q].fInRR == | 
|  | path.conservativelyContainsRect(qRect)); | 
|  |  | 
|  | path.reset(); | 
|  | path.moveTo(kBaseRect.fLeft + kRRRadii[0], kBaseRect.fTop); | 
|  | path.cubicTo(kBaseRect.fLeft + kRRRadii[0] / 2, kBaseRect.fTop, | 
|  | kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1] / 2, | 
|  | kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1]); | 
|  | path.lineTo(kBaseRect.fLeft, kBaseRect.fBottom); | 
|  | path.lineTo(kBaseRect.fRight, kBaseRect.fBottom); | 
|  | path.lineTo(kBaseRect.fRight, kBaseRect.fTop); | 
|  | path.close(); | 
|  | REPORTER_ASSERT(reporter, kQueries[q].fInCubicRR == | 
|  | path.conservativelyContainsRect(qRect)); | 
|  |  | 
|  | } | 
|  | // Slightly non-convex shape, shouldn't contain any rects. | 
|  | path.reset(); | 
|  | path.moveTo(0, 0); | 
|  | path.lineTo(SkIntToScalar(50), 0.05f); | 
|  | path.lineTo(SkIntToScalar(100), 0); | 
|  | path.lineTo(SkIntToScalar(100), SkIntToScalar(100)); | 
|  | path.lineTo(0, SkIntToScalar(100)); | 
|  | path.close(); | 
|  | REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(qRect)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // make sure a minimal convex shape works, a right tri with edges along pos x and y axes. | 
|  | path.reset(); | 
|  | path.moveTo(0, 0); | 
|  | path.lineTo(SkIntToScalar(100), 0); | 
|  | path.lineTo(0, SkIntToScalar(100)); | 
|  |  | 
|  | // inside, on along top edge | 
|  | REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, | 
|  | SkIntToScalar(10), | 
|  | SkIntToScalar(10)))); | 
|  | // above | 
|  | REPORTER_ASSERT(reporter, !path.conservativelyContainsRect( | 
|  | SkRect::MakeXYWH(SkIntToScalar(50), | 
|  | SkIntToScalar(-10), | 
|  | SkIntToScalar(10), | 
|  | SkIntToScalar(10)))); | 
|  | // to the left | 
|  | REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(-10), | 
|  | SkIntToScalar(5), | 
|  | SkIntToScalar(5), | 
|  | SkIntToScalar(5)))); | 
|  |  | 
|  | // outside the diagonal edge | 
|  | REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(10), | 
|  | SkIntToScalar(200), | 
|  | SkIntToScalar(20), | 
|  | SkIntToScalar(5)))); | 
|  |  | 
|  | // same as above path and first test but with an extra moveTo. | 
|  | path.reset(); | 
|  | path.moveTo(100, 100); | 
|  | path.moveTo(0, 0); | 
|  | path.lineTo(SkIntToScalar(100), 0); | 
|  | path.lineTo(0, SkIntToScalar(100)); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, | 
|  | SkIntToScalar(10), | 
|  | SkIntToScalar(10)))); | 
|  |  | 
|  | path.reset(); | 
|  | path.lineTo(100, 100); | 
|  | REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(0, 0, 1, 1))); | 
|  | } | 
|  |  | 
|  | static void test_isRect_open_close(skiatest::Reporter* reporter) { | 
|  | SkPath path; | 
|  | bool isClosed; | 
|  |  | 
|  | path.moveTo(0, 0); path.lineTo(1, 0); path.lineTo(1, 1); path.lineTo(0, 1); | 
|  | path.close(); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, path.isRect(NULL, NULL)); | 
|  | REPORTER_ASSERT(reporter, path.isRect(&isClosed, NULL)); | 
|  | REPORTER_ASSERT(reporter, isClosed); | 
|  | REPORTER_ASSERT(reporter, SkPath::kStroke_PathAsRect == path.asRect(NULL)); | 
|  | } | 
|  |  | 
|  | // Simple isRect test is inline TestPath, below. | 
|  | // test_isRect provides more extensive testing. | 
|  | static void test_isRect(skiatest::Reporter* reporter) { | 
|  | test_isRect_open_close(reporter); | 
|  |  | 
|  | // passing tests (all moveTo / lineTo... | 
|  | SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; | 
|  | SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; | 
|  | SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; | 
|  | SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; | 
|  | SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; | 
|  | SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; | 
|  | SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; | 
|  | SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; | 
|  | SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; | 
|  | SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; | 
|  | SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; | 
|  | SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; | 
|  | SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; | 
|  | SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; | 
|  | SkPoint rf[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}}; | 
|  |  | 
|  | // failing tests | 
|  | SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points | 
|  | SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal | 
|  | SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps | 
|  | SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up | 
|  | SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots | 
|  | SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots | 
|  | SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots | 
|  | SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' | 
|  | SkPoint f9[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}, {2, 0}}; // overlaps | 
|  | SkPoint fa[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, -1}, {1, -1}}; // non colinear gap | 
|  | SkPoint fb[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 1}}; // falls short | 
|  |  | 
|  | // no close, but we should detect them as fillably the same as a rect | 
|  | SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; | 
|  | SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; | 
|  | SkPoint c3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 0}}; // hit the start | 
|  |  | 
|  | // like c2, but we double-back on ourselves | 
|  | SkPoint d1[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 2}}; | 
|  | // like c2, but we overshoot the start point | 
|  | SkPoint d2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}}; | 
|  | SkPoint d3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}, {0, 0}}; | 
|  |  | 
|  | struct IsRectTest { | 
|  | SkPoint *fPoints; | 
|  | size_t fPointCount; | 
|  | bool fClose; | 
|  | bool fIsRect; | 
|  | } tests[] = { | 
|  | { r1, SK_ARRAY_COUNT(r1), true, true }, | 
|  | { r2, SK_ARRAY_COUNT(r2), true, true }, | 
|  | { r3, SK_ARRAY_COUNT(r3), true, true }, | 
|  | { r4, SK_ARRAY_COUNT(r4), true, true }, | 
|  | { r5, SK_ARRAY_COUNT(r5), true, true }, | 
|  | { r6, SK_ARRAY_COUNT(r6), true, true }, | 
|  | { r7, SK_ARRAY_COUNT(r7), true, true }, | 
|  | { r8, SK_ARRAY_COUNT(r8), true, true }, | 
|  | { r9, SK_ARRAY_COUNT(r9), true, true }, | 
|  | { ra, SK_ARRAY_COUNT(ra), true, true }, | 
|  | { rb, SK_ARRAY_COUNT(rb), true, true }, | 
|  | { rc, SK_ARRAY_COUNT(rc), true, true }, | 
|  | { rd, SK_ARRAY_COUNT(rd), true, true }, | 
|  | { re, SK_ARRAY_COUNT(re), true, true }, | 
|  | { rf, SK_ARRAY_COUNT(rf), true, true }, | 
|  |  | 
|  | { f1, SK_ARRAY_COUNT(f1), true, false }, | 
|  | { f2, SK_ARRAY_COUNT(f2), true, false }, | 
|  | { f3, SK_ARRAY_COUNT(f3), true, false }, | 
|  | { f4, SK_ARRAY_COUNT(f4), true, false }, | 
|  | { f5, SK_ARRAY_COUNT(f5), true, false }, | 
|  | { f6, SK_ARRAY_COUNT(f6), true, false }, | 
|  | { f7, SK_ARRAY_COUNT(f7), true, false }, | 
|  | { f8, SK_ARRAY_COUNT(f8), true, false }, | 
|  | { f9, SK_ARRAY_COUNT(f9), true, false }, | 
|  | { fa, SK_ARRAY_COUNT(fa), true, false }, | 
|  | { fb, SK_ARRAY_COUNT(fb), true, false }, | 
|  |  | 
|  | { c1, SK_ARRAY_COUNT(c1), false, true }, | 
|  | { c2, SK_ARRAY_COUNT(c2), false, true }, | 
|  | { c3, SK_ARRAY_COUNT(c3), false, true }, | 
|  |  | 
|  | { d1, SK_ARRAY_COUNT(d1), false, false }, | 
|  | { d2, SK_ARRAY_COUNT(d2), false, false }, | 
|  | { d3, SK_ARRAY_COUNT(d3), false, false }, | 
|  | }; | 
|  |  | 
|  | const size_t testCount = SK_ARRAY_COUNT(tests); | 
|  | size_t index; | 
|  | for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { | 
|  | SkPath path; | 
|  | path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY); | 
|  | for (index = 1; index < tests[testIndex].fPointCount; ++index) { | 
|  | path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY); | 
|  | } | 
|  | if (tests[testIndex].fClose) { | 
|  | path.close(); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, tests[testIndex].fIsRect == path.isRect(NULL)); | 
|  | REPORTER_ASSERT(reporter, tests[testIndex].fIsRect == path.isRect(NULL, NULL)); | 
|  |  | 
|  | if (tests[testIndex].fIsRect) { | 
|  | SkRect computed, expected; | 
|  | expected.set(tests[testIndex].fPoints, tests[testIndex].fPointCount); | 
|  | REPORTER_ASSERT(reporter, path.isRect(&computed)); | 
|  | REPORTER_ASSERT(reporter, expected == computed); | 
|  |  | 
|  | bool isClosed; | 
|  | SkPath::Direction direction, cheapDirection; | 
|  | REPORTER_ASSERT(reporter, path.cheapComputeDirection(&cheapDirection)); | 
|  | REPORTER_ASSERT(reporter, path.isRect(&isClosed, &direction)); | 
|  | REPORTER_ASSERT(reporter, isClosed == tests[testIndex].fClose); | 
|  | REPORTER_ASSERT(reporter, direction == cheapDirection); | 
|  | direction = (SkPath::Direction) -1; | 
|  | if (!tests[testIndex].fClose) { | 
|  | REPORTER_ASSERT(reporter, SkPath::kFill_PathAsRect == path.asRect()); | 
|  | REPORTER_ASSERT(reporter, SkPath::kFill_PathAsRect == path.asRect(&direction)); | 
|  | } else { | 
|  | REPORTER_ASSERT(reporter, SkPath::kStroke_PathAsRect == path.asRect()); | 
|  | REPORTER_ASSERT(reporter, SkPath::kStroke_PathAsRect == path.asRect(&direction)); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, direction == cheapDirection); | 
|  | } else { | 
|  | SkRect computed; | 
|  | computed.set(123, 456, 789, 1011); | 
|  | REPORTER_ASSERT(reporter, !path.isRect(&computed)); | 
|  | REPORTER_ASSERT(reporter, computed.fLeft == 123 && computed.fTop == 456); | 
|  | REPORTER_ASSERT(reporter, computed.fRight == 789 && computed.fBottom == 1011); | 
|  |  | 
|  | bool isClosed = (bool) -1; | 
|  | SkPath::Direction direction = (SkPath::Direction) -1; | 
|  | REPORTER_ASSERT(reporter, !path.isRect(&isClosed, &direction)); | 
|  | REPORTER_ASSERT(reporter, isClosed == (bool) -1); | 
|  | REPORTER_ASSERT(reporter, direction == (SkPath::Direction) -1); | 
|  | REPORTER_ASSERT(reporter, SkPath::kNone_PathAsRect == path.asRect()); | 
|  | REPORTER_ASSERT(reporter, SkPath::kNone_PathAsRect == path.asRect(&direction)); | 
|  | REPORTER_ASSERT(reporter, direction == (SkPath::Direction) -1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fail, close then line | 
|  | SkPath path1; | 
|  | path1.moveTo(r1[0].fX, r1[0].fY); | 
|  | for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { | 
|  | path1.lineTo(r1[index].fX, r1[index].fY); | 
|  | } | 
|  | path1.close(); | 
|  | path1.lineTo(1, 0); | 
|  | REPORTER_ASSERT(reporter, !path1.isRect(NULL)); | 
|  |  | 
|  | // fail, move in the middle | 
|  | path1.reset(); | 
|  | path1.moveTo(r1[0].fX, r1[0].fY); | 
|  | for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { | 
|  | if (index == 2) { | 
|  | path1.moveTo(1, .5f); | 
|  | } | 
|  | path1.lineTo(r1[index].fX, r1[index].fY); | 
|  | } | 
|  | path1.close(); | 
|  | REPORTER_ASSERT(reporter, !path1.isRect(NULL)); | 
|  |  | 
|  | // fail, move on the edge | 
|  | path1.reset(); | 
|  | for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { | 
|  | path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); | 
|  | path1.lineTo(r1[index].fX, r1[index].fY); | 
|  | } | 
|  | path1.close(); | 
|  | REPORTER_ASSERT(reporter, !path1.isRect(NULL)); | 
|  |  | 
|  | // fail, quad | 
|  | path1.reset(); | 
|  | path1.moveTo(r1[0].fX, r1[0].fY); | 
|  | for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { | 
|  | if (index == 2) { | 
|  | path1.quadTo(1, .5f, 1, .5f); | 
|  | } | 
|  | path1.lineTo(r1[index].fX, r1[index].fY); | 
|  | } | 
|  | path1.close(); | 
|  | REPORTER_ASSERT(reporter, !path1.isRect(NULL)); | 
|  |  | 
|  | // fail, cubic | 
|  | path1.reset(); | 
|  | path1.moveTo(r1[0].fX, r1[0].fY); | 
|  | for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { | 
|  | if (index == 2) { | 
|  | path1.cubicTo(1, .5f, 1, .5f, 1, .5f); | 
|  | } | 
|  | path1.lineTo(r1[index].fX, r1[index].fY); | 
|  | } | 
|  | path1.close(); | 
|  | REPORTER_ASSERT(reporter, !path1.isRect(NULL)); | 
|  | } | 
|  |  | 
|  | static void test_isNestedRects(skiatest::Reporter* reporter) { | 
|  | // passing tests (all moveTo / lineTo... | 
|  | SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW | 
|  | SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; | 
|  | SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; | 
|  | SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; | 
|  | SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; // CCW | 
|  | SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; | 
|  | SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; | 
|  | SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; | 
|  | SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; | 
|  | SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; // CCW | 
|  | SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; // CW | 
|  | SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; // CW | 
|  | SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; // CCW | 
|  | SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW | 
|  |  | 
|  | // failing tests | 
|  | SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points | 
|  | SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal | 
|  | SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps | 
|  | SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up | 
|  | SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots | 
|  | SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots | 
|  | SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots | 
|  | SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' | 
|  |  | 
|  | // failing, no close | 
|  | SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match | 
|  | SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto | 
|  |  | 
|  | struct IsNestedRectTest { | 
|  | SkPoint *fPoints; | 
|  | size_t fPointCount; | 
|  | SkPath::Direction fDirection; | 
|  | bool fClose; | 
|  | bool fIsNestedRect; // nests with path.addRect(-1, -1, 2, 2); | 
|  | } tests[] = { | 
|  | { r1, SK_ARRAY_COUNT(r1), SkPath::kCW_Direction , true, true }, | 
|  | { r2, SK_ARRAY_COUNT(r2), SkPath::kCW_Direction , true, true }, | 
|  | { r3, SK_ARRAY_COUNT(r3), SkPath::kCW_Direction , true, true }, | 
|  | { r4, SK_ARRAY_COUNT(r4), SkPath::kCW_Direction , true, true }, | 
|  | { r5, SK_ARRAY_COUNT(r5), SkPath::kCCW_Direction, true, true }, | 
|  | { r6, SK_ARRAY_COUNT(r6), SkPath::kCCW_Direction, true, true }, | 
|  | { r7, SK_ARRAY_COUNT(r7), SkPath::kCCW_Direction, true, true }, | 
|  | { r8, SK_ARRAY_COUNT(r8), SkPath::kCCW_Direction, true, true }, | 
|  | { r9, SK_ARRAY_COUNT(r9), SkPath::kCCW_Direction, true, true }, | 
|  | { ra, SK_ARRAY_COUNT(ra), SkPath::kCCW_Direction, true, true }, | 
|  | { rb, SK_ARRAY_COUNT(rb), SkPath::kCW_Direction,  true, true }, | 
|  | { rc, SK_ARRAY_COUNT(rc), SkPath::kCW_Direction,  true, true }, | 
|  | { rd, SK_ARRAY_COUNT(rd), SkPath::kCCW_Direction, true, true }, | 
|  | { re, SK_ARRAY_COUNT(re), SkPath::kCW_Direction,  true, true }, | 
|  |  | 
|  | { f1, SK_ARRAY_COUNT(f1), SkPath::kUnknown_Direction, true, false }, | 
|  | { f2, SK_ARRAY_COUNT(f2), SkPath::kUnknown_Direction, true, false }, | 
|  | { f3, SK_ARRAY_COUNT(f3), SkPath::kUnknown_Direction, true, false }, | 
|  | { f4, SK_ARRAY_COUNT(f4), SkPath::kUnknown_Direction, true, false }, | 
|  | { f5, SK_ARRAY_COUNT(f5), SkPath::kUnknown_Direction, true, false }, | 
|  | { f6, SK_ARRAY_COUNT(f6), SkPath::kUnknown_Direction, true, false }, | 
|  | { f7, SK_ARRAY_COUNT(f7), SkPath::kUnknown_Direction, true, false }, | 
|  | { f8, SK_ARRAY_COUNT(f8), SkPath::kUnknown_Direction, true, false }, | 
|  |  | 
|  | { c1, SK_ARRAY_COUNT(c1), SkPath::kUnknown_Direction, false, false }, | 
|  | { c2, SK_ARRAY_COUNT(c2), SkPath::kUnknown_Direction, false, false }, | 
|  | }; | 
|  |  | 
|  | const size_t testCount = SK_ARRAY_COUNT(tests); | 
|  | size_t index; | 
|  | for (int rectFirst = 0; rectFirst <= 1; ++rectFirst) { | 
|  | for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { | 
|  | SkPath path; | 
|  | if (rectFirst) { | 
|  | path.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | 
|  | } | 
|  | path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY); | 
|  | for (index = 1; index < tests[testIndex].fPointCount; ++index) { | 
|  | path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY); | 
|  | } | 
|  | if (tests[testIndex].fClose) { | 
|  | path.close(); | 
|  | } | 
|  | if (!rectFirst) { | 
|  | path.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, tests[testIndex].fIsNestedRect == path.isNestedRects(NULL)); | 
|  | if (tests[testIndex].fIsNestedRect) { | 
|  | SkRect expected[2], computed[2]; | 
|  | SkPath::Direction expectedDirs[2], computedDirs[2]; | 
|  | SkRect testBounds; | 
|  | testBounds.set(tests[testIndex].fPoints, tests[testIndex].fPointCount); | 
|  | expected[0] = SkRect::MakeLTRB(-1, -1, 2, 2); | 
|  | expected[1] = testBounds; | 
|  | if (rectFirst) { | 
|  | expectedDirs[0] = SkPath::kCW_Direction; | 
|  | } else { | 
|  | expectedDirs[0] = SkPath::kCCW_Direction; | 
|  | } | 
|  | expectedDirs[1] = tests[testIndex].fDirection; | 
|  | REPORTER_ASSERT(reporter, path.isNestedRects(computed, computedDirs)); | 
|  | REPORTER_ASSERT(reporter, expected[0] == computed[0]); | 
|  | REPORTER_ASSERT(reporter, expected[1] == computed[1]); | 
|  | REPORTER_ASSERT(reporter, expectedDirs[0] == computedDirs[0]); | 
|  | REPORTER_ASSERT(reporter, expectedDirs[1] == computedDirs[1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fail, close then line | 
|  | SkPath path1; | 
|  | if (rectFirst) { | 
|  | path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | 
|  | } | 
|  | path1.moveTo(r1[0].fX, r1[0].fY); | 
|  | for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { | 
|  | path1.lineTo(r1[index].fX, r1[index].fY); | 
|  | } | 
|  | path1.close(); | 
|  | path1.lineTo(1, 0); | 
|  | if (!rectFirst) { | 
|  | path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL)); | 
|  |  | 
|  | // fail, move in the middle | 
|  | path1.reset(); | 
|  | if (rectFirst) { | 
|  | path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | 
|  | } | 
|  | path1.moveTo(r1[0].fX, r1[0].fY); | 
|  | for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { | 
|  | if (index == 2) { | 
|  | path1.moveTo(1, .5f); | 
|  | } | 
|  | path1.lineTo(r1[index].fX, r1[index].fY); | 
|  | } | 
|  | path1.close(); | 
|  | if (!rectFirst) { | 
|  | path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL)); | 
|  |  | 
|  | // fail, move on the edge | 
|  | path1.reset(); | 
|  | if (rectFirst) { | 
|  | path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | 
|  | } | 
|  | for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { | 
|  | path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); | 
|  | path1.lineTo(r1[index].fX, r1[index].fY); | 
|  | } | 
|  | path1.close(); | 
|  | if (!rectFirst) { | 
|  | path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL)); | 
|  |  | 
|  | // fail, quad | 
|  | path1.reset(); | 
|  | if (rectFirst) { | 
|  | path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | 
|  | } | 
|  | path1.moveTo(r1[0].fX, r1[0].fY); | 
|  | for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { | 
|  | if (index == 2) { | 
|  | path1.quadTo(1, .5f, 1, .5f); | 
|  | } | 
|  | path1.lineTo(r1[index].fX, r1[index].fY); | 
|  | } | 
|  | path1.close(); | 
|  | if (!rectFirst) { | 
|  | path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL)); | 
|  |  | 
|  | // fail, cubic | 
|  | path1.reset(); | 
|  | if (rectFirst) { | 
|  | path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | 
|  | } | 
|  | path1.moveTo(r1[0].fX, r1[0].fY); | 
|  | for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { | 
|  | if (index == 2) { | 
|  | path1.cubicTo(1, .5f, 1, .5f, 1, .5f); | 
|  | } | 
|  | path1.lineTo(r1[index].fX, r1[index].fY); | 
|  | } | 
|  | path1.close(); | 
|  | if (!rectFirst) { | 
|  | path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL)); | 
|  |  | 
|  | // fail,  not nested | 
|  | path1.reset(); | 
|  | path1.addRect(1, 1, 3, 3, SkPath::kCW_Direction); | 
|  | path1.addRect(2, 2, 4, 4, SkPath::kCW_Direction); | 
|  | REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL)); | 
|  | } | 
|  |  | 
|  | // pass, stroke rect | 
|  | SkPath src, dst; | 
|  | src.addRect(1, 1, 7, 7, SkPath::kCW_Direction); | 
|  | SkPaint strokePaint; | 
|  | strokePaint.setStyle(SkPaint::kStroke_Style); | 
|  | strokePaint.setStrokeWidth(2); | 
|  | strokePaint.getFillPath(src, &dst); | 
|  | REPORTER_ASSERT(reporter, dst.isNestedRects(NULL)); | 
|  | } | 
|  |  | 
|  | static void write_and_read_back(skiatest::Reporter* reporter, | 
|  | const SkPath& p) { | 
|  | SkWriter32 writer; | 
|  | writer.writePath(p); | 
|  | size_t size = writer.bytesWritten(); | 
|  | SkAutoMalloc storage(size); | 
|  | writer.flatten(storage.get()); | 
|  | SkReader32 reader(storage.get(), size); | 
|  |  | 
|  | SkPath readBack; | 
|  | REPORTER_ASSERT(reporter, readBack != p); | 
|  | reader.readPath(&readBack); | 
|  | REPORTER_ASSERT(reporter, readBack == p); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, readBack.getConvexityOrUnknown() == | 
|  | p.getConvexityOrUnknown()); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, readBack.isOval(NULL) == p.isOval(NULL)); | 
|  |  | 
|  | const SkRect& origBounds = p.getBounds(); | 
|  | const SkRect& readBackBounds = readBack.getBounds(); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, origBounds == readBackBounds); | 
|  | } | 
|  |  | 
|  | static void test_flattening(skiatest::Reporter* reporter) { | 
|  | SkPath p; | 
|  |  | 
|  | static const SkPoint pts[] = { | 
|  | { 0, 0 }, | 
|  | { SkIntToScalar(10), SkIntToScalar(10) }, | 
|  | { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, | 
|  | { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) } | 
|  | }; | 
|  | p.moveTo(pts[0]); | 
|  | p.lineTo(pts[1]); | 
|  | p.quadTo(pts[2], pts[3]); | 
|  | p.cubicTo(pts[4], pts[5], pts[6]); | 
|  |  | 
|  | write_and_read_back(reporter, p); | 
|  |  | 
|  | // create a buffer that should be much larger than the path so we don't | 
|  | // kill our stack if writer goes too far. | 
|  | char buffer[1024]; | 
|  | size_t size1 = p.writeToMemory(NULL); | 
|  | size_t size2 = p.writeToMemory(buffer); | 
|  | REPORTER_ASSERT(reporter, size1 == size2); | 
|  |  | 
|  | SkPath p2; | 
|  | size_t size3 = p2.readFromMemory(buffer, 1024); | 
|  | REPORTER_ASSERT(reporter, size1 == size3); | 
|  | REPORTER_ASSERT(reporter, p == p2); | 
|  |  | 
|  | size3 = p2.readFromMemory(buffer, 0); | 
|  | REPORTER_ASSERT(reporter, !size3); | 
|  |  | 
|  | SkPath tooShort; | 
|  | size3 = tooShort.readFromMemory(buffer, size1 - 1); | 
|  | REPORTER_ASSERT(reporter, tooShort.isEmpty()); | 
|  |  | 
|  | char buffer2[1024]; | 
|  | size3 = p2.writeToMemory(buffer2); | 
|  | REPORTER_ASSERT(reporter, size1 == size3); | 
|  | REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0); | 
|  |  | 
|  | // test persistence of the oval flag & convexity | 
|  | { | 
|  | SkPath oval; | 
|  | SkRect rect = SkRect::MakeWH(10, 10); | 
|  | oval.addOval(rect); | 
|  |  | 
|  | write_and_read_back(reporter, oval); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_transform(skiatest::Reporter* reporter) { | 
|  | SkPath p; | 
|  |  | 
|  | #define CONIC_PERSPECTIVE_BUG_FIXED 0 | 
|  | static const SkPoint pts[] = { | 
|  | { 0, 0 },  // move | 
|  | { SkIntToScalar(10), SkIntToScalar(10) },  // line | 
|  | { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 },  // quad | 
|  | { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) },  // cubic | 
|  | #if CONIC_PERSPECTIVE_BUG_FIXED | 
|  | { 0, 0 }, { SkIntToScalar(20), SkIntToScalar(10) },  // conic | 
|  | #endif | 
|  | }; | 
|  | const int kPtCount = SK_ARRAY_COUNT(pts); | 
|  |  | 
|  | p.moveTo(pts[0]); | 
|  | p.lineTo(pts[1]); | 
|  | p.quadTo(pts[2], pts[3]); | 
|  | p.cubicTo(pts[4], pts[5], pts[6]); | 
|  | #if CONIC_PERSPECTIVE_BUG_FIXED | 
|  | p.conicTo(pts[4], pts[5], 0.5f); | 
|  | #endif | 
|  | p.close(); | 
|  |  | 
|  | { | 
|  | SkMatrix matrix; | 
|  | matrix.reset(); | 
|  | SkPath p1; | 
|  | p.transform(matrix, &p1); | 
|  | REPORTER_ASSERT(reporter, p == p1); | 
|  | } | 
|  |  | 
|  |  | 
|  | { | 
|  | SkMatrix matrix; | 
|  | matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3); | 
|  |  | 
|  | SkPath p1;      // Leave p1 non-unique (i.e., the empty path) | 
|  |  | 
|  | p.transform(matrix, &p1); | 
|  | SkPoint pts1[kPtCount]; | 
|  | int count = p1.getPoints(pts1, kPtCount); | 
|  | REPORTER_ASSERT(reporter, kPtCount == count); | 
|  | for (int i = 0; i < count; ++i) { | 
|  | SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3); | 
|  | REPORTER_ASSERT(reporter, newPt == pts1[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | SkMatrix matrix; | 
|  | matrix.reset(); | 
|  | matrix.setPerspX(SkScalarToPersp(4)); | 
|  |  | 
|  | SkPath p1; | 
|  | p1.moveTo(SkPoint::Make(0, 0)); | 
|  |  | 
|  | p.transform(matrix, &p1); | 
|  | REPORTER_ASSERT(reporter, matrix.invert(&matrix)); | 
|  | p1.transform(matrix, NULL); | 
|  | SkRect pBounds = p.getBounds(); | 
|  | SkRect p1Bounds = p1.getBounds(); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fLeft, p1Bounds.fLeft)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fTop, p1Bounds.fTop)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fRight, p1Bounds.fRight)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fBottom, p1Bounds.fBottom)); | 
|  | } | 
|  |  | 
|  | p.reset(); | 
|  | p.addCircle(0, 0, 1, SkPath::kCW_Direction); | 
|  |  | 
|  | { | 
|  | SkMatrix matrix; | 
|  | matrix.reset(); | 
|  | SkPath p1; | 
|  | p1.moveTo(SkPoint::Make(0, 0)); | 
|  |  | 
|  | p.transform(matrix, &p1); | 
|  | REPORTER_ASSERT(reporter, p1.cheapIsDirection(SkPath::kCW_Direction)); | 
|  | } | 
|  |  | 
|  |  | 
|  | { | 
|  | SkMatrix matrix; | 
|  | matrix.reset(); | 
|  | matrix.setScaleX(-1); | 
|  | SkPath p1; | 
|  | p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path) | 
|  |  | 
|  | p.transform(matrix, &p1); | 
|  | REPORTER_ASSERT(reporter, p1.cheapIsDirection(SkPath::kCCW_Direction)); | 
|  | } | 
|  |  | 
|  | { | 
|  | SkMatrix matrix; | 
|  | matrix.setAll(1, 1, 0, 1, 1, 0, 0, 0, 1); | 
|  | SkPath p1; | 
|  | p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path) | 
|  |  | 
|  | p.transform(matrix, &p1); | 
|  | REPORTER_ASSERT(reporter, p1.cheapIsDirection(SkPath::kUnknown_Direction)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_zero_length_paths(skiatest::Reporter* reporter) { | 
|  | SkPath  p; | 
|  | uint8_t verbs[32]; | 
|  |  | 
|  | struct SUPPRESS_VISIBILITY_WARNING zeroPathTestData { | 
|  | const char* testPath; | 
|  | const size_t numResultPts; | 
|  | const SkRect resultBound; | 
|  | const SkPath::Verb* resultVerbs; | 
|  | const size_t numResultVerbs; | 
|  | }; | 
|  |  | 
|  | static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb }; | 
|  | static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb }; | 
|  | static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb }; | 
|  | static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb }; | 
|  | static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb }; | 
|  | static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb }; | 
|  | static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb }; | 
|  | static const SkPath::Verb resultVerbs8[] = { | 
|  | SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb | 
|  | }; | 
|  | static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb }; | 
|  | static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb }; | 
|  | static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb }; | 
|  | static const SkPath::Verb resultVerbs12[] = { | 
|  | SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb | 
|  | }; | 
|  | static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb }; | 
|  | static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb }; | 
|  | static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb }; | 
|  | static const SkPath::Verb resultVerbs16[] = { | 
|  | SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb | 
|  | }; | 
|  | static const struct zeroPathTestData gZeroLengthTests[] = { | 
|  | { "M 1 1", 1, {0, 0, 0, 0}, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
|  | { "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, | 
|  | { "M 1 1 z", 1, {0, 0, 0, 0}, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }, | 
|  | { "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) }, | 
|  | { "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) }, | 
|  | { "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, SK_ARRAY_COUNT(resultVerbs6) }, | 
|  | { "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, SK_ARRAY_COUNT(resultVerbs7) }, | 
|  | { "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, SK_ARRAY_COUNT(resultVerbs8) }, | 
|  | { "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, SK_ARRAY_COUNT(resultVerbs9) }, | 
|  | { "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, SK_ARRAY_COUNT(resultVerbs10) }, | 
|  | { "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, SK_ARRAY_COUNT(resultVerbs11) }, | 
|  | { "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, SK_ARRAY_COUNT(resultVerbs12) }, | 
|  | { "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, SK_ARRAY_COUNT(resultVerbs13) }, | 
|  | { "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14, | 
|  | SK_ARRAY_COUNT(resultVerbs14) | 
|  | }, | 
|  | { "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, SK_ARRAY_COUNT(resultVerbs15) }, | 
|  | { "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16, | 
|  | SK_ARRAY_COUNT(resultVerbs16) | 
|  | } | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(gZeroLengthTests); ++i) { | 
|  | p.reset(); | 
|  | bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p); | 
|  | REPORTER_ASSERT(reporter, valid); | 
|  | REPORTER_ASSERT(reporter, !p.isEmpty()); | 
|  | REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints()); | 
|  | REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds()); | 
|  | REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, SK_ARRAY_COUNT(verbs))); | 
|  | for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) { | 
|  | REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | struct SegmentInfo { | 
|  | SkPath fPath; | 
|  | int    fPointCount; | 
|  | }; | 
|  |  | 
|  | #define kCurveSegmentMask   (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask) | 
|  |  | 
|  | static void test_segment_masks(skiatest::Reporter* reporter) { | 
|  | SkPath p, p2; | 
|  |  | 
|  | p.moveTo(0, 0); | 
|  | p.quadTo(100, 100, 200, 200); | 
|  | REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks()); | 
|  | REPORTER_ASSERT(reporter, !p.isEmpty()); | 
|  | p2 = p; | 
|  | REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); | 
|  | p.cubicTo(100, 100, 200, 200, 300, 300); | 
|  | REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks()); | 
|  | REPORTER_ASSERT(reporter, !p.isEmpty()); | 
|  | p2 = p; | 
|  | REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); | 
|  |  | 
|  | p.reset(); | 
|  | p.moveTo(0, 0); | 
|  | p.cubicTo(100, 100, 200, 200, 300, 300); | 
|  | REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks()); | 
|  | p2 = p; | 
|  | REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, !p.isEmpty()); | 
|  | } | 
|  |  | 
|  | static void test_iter(skiatest::Reporter* reporter) { | 
|  | SkPath  p; | 
|  | SkPoint pts[4]; | 
|  |  | 
|  | // Test an iterator with no path | 
|  | SkPath::Iter noPathIter; | 
|  | REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | 
|  |  | 
|  | // Test that setting an empty path works | 
|  | noPathIter.setPath(p, false); | 
|  | REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | 
|  |  | 
|  | // Test that close path makes no difference for an empty path | 
|  | noPathIter.setPath(p, true); | 
|  | REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | 
|  |  | 
|  | // Test an iterator with an initial empty path | 
|  | SkPath::Iter iter(p, false); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
|  |  | 
|  | // Test that close path makes no difference | 
|  | iter.setPath(p, true); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
|  |  | 
|  |  | 
|  | struct iterTestData { | 
|  | const char* testPath; | 
|  | const bool forceClose; | 
|  | const bool consumeDegenerates; | 
|  | const size_t* numResultPtsPerVerb; | 
|  | const SkPoint* resultPts; | 
|  | const SkPath::Verb* resultVerbs; | 
|  | const size_t numResultVerbs; | 
|  | }; | 
|  |  | 
|  | static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb }; | 
|  | static const SkPath::Verb resultVerbs2[] = { | 
|  | SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kDone_Verb | 
|  | }; | 
|  | static const SkPath::Verb resultVerbs3[] = { | 
|  | SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb | 
|  | }; | 
|  | static const SkPath::Verb resultVerbs4[] = { | 
|  | SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb | 
|  | }; | 
|  | static const SkPath::Verb resultVerbs5[] = { | 
|  | SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb | 
|  | }; | 
|  | static const size_t resultPtsSizes1[] = { 0 }; | 
|  | static const size_t resultPtsSizes2[] = { 1, 2, 2, 0 }; | 
|  | static const size_t resultPtsSizes3[] = { 1, 2, 2, 2, 1, 0 }; | 
|  | static const size_t resultPtsSizes4[] = { 1, 2, 1, 1, 0 }; | 
|  | static const size_t resultPtsSizes5[] = { 1, 2, 1, 1, 1, 0 }; | 
|  | static const SkPoint* resultPts1 = 0; | 
|  | static const SkPoint resultPts2[] = { | 
|  | { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 } | 
|  | }; | 
|  | static const SkPoint resultPts3[] = { | 
|  | { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 }, | 
|  | { 0, SK_Scalar1 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 } | 
|  | }; | 
|  | static const SkPoint resultPts4[] = { | 
|  | { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } | 
|  | }; | 
|  | static const SkPoint resultPts5[] = { | 
|  | { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } | 
|  | }; | 
|  | static const struct iterTestData gIterTests[] = { | 
|  | { "M 1 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
|  | { "M 1 0 M 2 0 M 3 0 M 4 0 M 5 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
|  | { "M 1 0 M 1 0 M 3 0 M 4 0 M 5 0", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
|  | { "z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
|  | { "z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
|  | { "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
|  | { "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
|  | { "M 1 0 L 1 1 L 0 1 M 0 0 z", false, true, resultPtsSizes2, resultPts2, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, | 
|  | { "M 1 0 L 1 1 L 0 1 M 0 0 z", true, true, resultPtsSizes3, resultPts3, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }, | 
|  | { "M 1 0 L 1 0 M 0 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
|  | { "M 1 0 L 1 0 M 0 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
|  | { "M 1 0 L 1 0 M 0 0 z", false, false, resultPtsSizes4, resultPts4, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) }, | 
|  | { "M 1 0 L 1 0 M 0 0 z", true, false, resultPtsSizes5, resultPts5, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) } | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(gIterTests); ++i) { | 
|  | p.reset(); | 
|  | bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p); | 
|  | REPORTER_ASSERT(reporter, valid); | 
|  | iter.setPath(p, gIterTests[i].forceClose); | 
|  | int j = 0, l = 0; | 
|  | do { | 
|  | REPORTER_ASSERT(reporter, iter.next(pts, gIterTests[i].consumeDegenerates) == gIterTests[i].resultVerbs[j]); | 
|  | for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) { | 
|  | REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]); | 
|  | } | 
|  | } while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb); | 
|  | REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs); | 
|  | } | 
|  |  | 
|  | p.reset(); | 
|  | iter.setPath(p, false); | 
|  | REPORTER_ASSERT(reporter, !iter.isClosedContour()); | 
|  | p.lineTo(1, 1); | 
|  | p.close(); | 
|  | iter.setPath(p, false); | 
|  | REPORTER_ASSERT(reporter, iter.isClosedContour()); | 
|  | p.reset(); | 
|  | iter.setPath(p, true); | 
|  | REPORTER_ASSERT(reporter, !iter.isClosedContour()); | 
|  | p.lineTo(1, 1); | 
|  | iter.setPath(p, true); | 
|  | REPORTER_ASSERT(reporter, iter.isClosedContour()); | 
|  | p.moveTo(0, 0); | 
|  | p.lineTo(2, 2); | 
|  | iter.setPath(p, false); | 
|  | REPORTER_ASSERT(reporter, !iter.isClosedContour()); | 
|  |  | 
|  | // this checks to see if the NaN logic is executed in SkPath::autoClose(), but does not | 
|  | // check to see if the result is correct. | 
|  | for (int setNaN = 0; setNaN < 4; ++setNaN) { | 
|  | p.reset(); | 
|  | p.moveTo(setNaN == 0 ? SK_ScalarNaN : 0, setNaN == 1 ? SK_ScalarNaN : 0); | 
|  | p.lineTo(setNaN == 2 ? SK_ScalarNaN : 1, setNaN == 3 ? SK_ScalarNaN : 1); | 
|  | iter.setPath(p, true); | 
|  | iter.next(pts, false); | 
|  | iter.next(pts, false); | 
|  | REPORTER_ASSERT(reporter, SkPath::kClose_Verb == iter.next(pts, false)); | 
|  | } | 
|  |  | 
|  | p.reset(); | 
|  | p.quadTo(0, 0, 0, 0); | 
|  | iter.setPath(p, false); | 
|  | iter.next(pts, false); | 
|  | REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == iter.next(pts, false)); | 
|  | iter.setPath(p, false); | 
|  | iter.next(pts, false); | 
|  | REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true)); | 
|  |  | 
|  | p.reset(); | 
|  | p.conicTo(0, 0, 0, 0, 0.5f); | 
|  | iter.setPath(p, false); | 
|  | iter.next(pts, false); | 
|  | REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts, false)); | 
|  | iter.setPath(p, false); | 
|  | iter.next(pts, false); | 
|  | REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true)); | 
|  |  | 
|  | p.reset(); | 
|  | p.cubicTo(0, 0, 0, 0, 0, 0); | 
|  | iter.setPath(p, false); | 
|  | iter.next(pts, false); | 
|  | REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts, false)); | 
|  | iter.setPath(p, false); | 
|  | iter.next(pts, false); | 
|  | REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true)); | 
|  |  | 
|  | p.moveTo(1, 1);  // add a trailing moveto | 
|  | iter.setPath(p, false); | 
|  | iter.next(pts, false); | 
|  | REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts, false)); | 
|  | iter.setPath(p, false); | 
|  | iter.next(pts, false); | 
|  | REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true)); | 
|  |  | 
|  | // The GM degeneratesegments.cpp test is more extensive | 
|  | } | 
|  |  | 
|  | static void test_raw_iter(skiatest::Reporter* reporter) { | 
|  | SkPath p; | 
|  | SkPoint pts[4]; | 
|  |  | 
|  | // Test an iterator with no path | 
|  | SkPath::RawIter noPathIter; | 
|  | REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | 
|  | // Test that setting an empty path works | 
|  | noPathIter.setPath(p); | 
|  | REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | 
|  |  | 
|  | // Test an iterator with an initial empty path | 
|  | SkPath::RawIter iter(p); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
|  |  | 
|  | // Test that a move-only path returns the move. | 
|  | p.moveTo(SK_Scalar1, 0); | 
|  | iter.setPath(p); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); | 
|  | REPORTER_ASSERT(reporter, pts[0].fY == 0); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
|  |  | 
|  | // No matter how many moves we add, we should get them all back | 
|  | p.moveTo(SK_Scalar1*2, SK_Scalar1); | 
|  | p.moveTo(SK_Scalar1*3, SK_Scalar1*2); | 
|  | iter.setPath(p); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); | 
|  | REPORTER_ASSERT(reporter, pts[0].fY == 0); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); | 
|  | REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); | 
|  | REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
|  |  | 
|  | // Initial close is never ever stored | 
|  | p.reset(); | 
|  | p.close(); | 
|  | iter.setPath(p); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
|  |  | 
|  | // Move/close sequences | 
|  | p.reset(); | 
|  | p.close(); // Not stored, no purpose | 
|  | p.moveTo(SK_Scalar1, 0); | 
|  | p.close(); | 
|  | p.close(); // Not stored, no purpose | 
|  | p.moveTo(SK_Scalar1*2, SK_Scalar1); | 
|  | p.close(); | 
|  | p.moveTo(SK_Scalar1*3, SK_Scalar1*2); | 
|  | p.moveTo(SK_Scalar1*4, SK_Scalar1*3); | 
|  | p.close(); | 
|  | iter.setPath(p); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); | 
|  | REPORTER_ASSERT(reporter, pts[0].fY == 0); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); | 
|  | REPORTER_ASSERT(reporter, pts[0].fY == 0); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); | 
|  | REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); | 
|  | REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); | 
|  | REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4); | 
|  | REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4); | 
|  | REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3); | 
|  | REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
|  |  | 
|  | // Generate random paths and verify | 
|  | SkPoint randomPts[25]; | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Max of 10 segments, max 3 points per segment | 
|  | SkRandom rand(9876543); | 
|  | SkPoint          expectedPts[31]; // May have leading moveTo | 
|  | SkPath::Verb     expectedVerbs[22]; // May have leading moveTo | 
|  | SkPath::Verb     nextVerb; | 
|  |  | 
|  | for (int i = 0; i < 500; ++i) { | 
|  | p.reset(); | 
|  | bool lastWasClose = true; | 
|  | bool haveMoveTo = false; | 
|  | SkPoint lastMoveToPt = { 0, 0 }; | 
|  | int numPoints = 0; | 
|  | int numVerbs = (rand.nextU() >> 16) % 10; | 
|  | int numIterVerbs = 0; | 
|  | for (int j = 0; j < numVerbs; ++j) { | 
|  | do { | 
|  | nextVerb = static_cast<SkPath::Verb>((rand.nextU() >> 16) % SkPath::kDone_Verb); | 
|  | } while (lastWasClose && nextVerb == SkPath::kClose_Verb); | 
|  | switch (nextVerb) { | 
|  | case SkPath::kMove_Verb: | 
|  | expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | 
|  | p.moveTo(expectedPts[numPoints]); | 
|  | lastMoveToPt = expectedPts[numPoints]; | 
|  | numPoints += 1; | 
|  | lastWasClose = false; | 
|  | haveMoveTo = true; | 
|  | break; | 
|  | case SkPath::kLine_Verb: | 
|  | if (!haveMoveTo) { | 
|  | expectedPts[numPoints++] = lastMoveToPt; | 
|  | expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; | 
|  | haveMoveTo = true; | 
|  | } | 
|  | expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | 
|  | p.lineTo(expectedPts[numPoints]); | 
|  | numPoints += 1; | 
|  | lastWasClose = false; | 
|  | break; | 
|  | case SkPath::kQuad_Verb: | 
|  | if (!haveMoveTo) { | 
|  | expectedPts[numPoints++] = lastMoveToPt; | 
|  | expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; | 
|  | haveMoveTo = true; | 
|  | } | 
|  | expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | 
|  | expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; | 
|  | p.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]); | 
|  | numPoints += 2; | 
|  | lastWasClose = false; | 
|  | break; | 
|  | case SkPath::kConic_Verb: | 
|  | if (!haveMoveTo) { | 
|  | expectedPts[numPoints++] = lastMoveToPt; | 
|  | expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; | 
|  | haveMoveTo = true; | 
|  | } | 
|  | expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | 
|  | expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; | 
|  | p.conicTo(expectedPts[numPoints], expectedPts[numPoints + 1], | 
|  | rand.nextUScalar1() * 4); | 
|  | numPoints += 2; | 
|  | lastWasClose = false; | 
|  | break; | 
|  | case SkPath::kCubic_Verb: | 
|  | if (!haveMoveTo) { | 
|  | expectedPts[numPoints++] = lastMoveToPt; | 
|  | expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; | 
|  | haveMoveTo = true; | 
|  | } | 
|  | expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | 
|  | expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; | 
|  | expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25]; | 
|  | p.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1], | 
|  | expectedPts[numPoints + 2]); | 
|  | numPoints += 3; | 
|  | lastWasClose = false; | 
|  | break; | 
|  | case SkPath::kClose_Verb: | 
|  | p.close(); | 
|  | haveMoveTo = false; | 
|  | lastWasClose = true; | 
|  | break; | 
|  | default: | 
|  | SkDEBUGFAIL("unexpected verb"); | 
|  | } | 
|  | expectedVerbs[numIterVerbs++] = nextVerb; | 
|  | } | 
|  |  | 
|  | iter.setPath(p); | 
|  | numVerbs = numIterVerbs; | 
|  | numIterVerbs = 0; | 
|  | int numIterPts = 0; | 
|  | SkPoint lastMoveTo; | 
|  | SkPoint lastPt; | 
|  | lastMoveTo.set(0, 0); | 
|  | lastPt.set(0, 0); | 
|  | while ((nextVerb = iter.next(pts)) != SkPath::kDone_Verb) { | 
|  | REPORTER_ASSERT(reporter, nextVerb == expectedVerbs[numIterVerbs]); | 
|  | numIterVerbs++; | 
|  | switch (nextVerb) { | 
|  | case SkPath::kMove_Verb: | 
|  | REPORTER_ASSERT(reporter, numIterPts < numPoints); | 
|  | REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]); | 
|  | lastPt = lastMoveTo = pts[0]; | 
|  | numIterPts += 1; | 
|  | break; | 
|  | case SkPath::kLine_Verb: | 
|  | REPORTER_ASSERT(reporter, numIterPts < numPoints + 1); | 
|  | REPORTER_ASSERT(reporter, pts[0] == lastPt); | 
|  | REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); | 
|  | lastPt = pts[1]; | 
|  | numIterPts += 1; | 
|  | break; | 
|  | case SkPath::kQuad_Verb: | 
|  | case SkPath::kConic_Verb: | 
|  | REPORTER_ASSERT(reporter, numIterPts < numPoints + 2); | 
|  | REPORTER_ASSERT(reporter, pts[0] == lastPt); | 
|  | REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); | 
|  | REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); | 
|  | lastPt = pts[2]; | 
|  | numIterPts += 2; | 
|  | break; | 
|  | case SkPath::kCubic_Verb: | 
|  | REPORTER_ASSERT(reporter, numIterPts < numPoints + 3); | 
|  | REPORTER_ASSERT(reporter, pts[0] == lastPt); | 
|  | REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); | 
|  | REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); | 
|  | REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]); | 
|  | lastPt = pts[3]; | 
|  | numIterPts += 3; | 
|  | break; | 
|  | case SkPath::kClose_Verb: | 
|  | REPORTER_ASSERT(reporter, pts[0] == lastMoveTo); | 
|  | lastPt = lastMoveTo; | 
|  | break; | 
|  | default: | 
|  | SkDEBUGFAIL("unexpected verb"); | 
|  | } | 
|  | } | 
|  | REPORTER_ASSERT(reporter, numIterPts == numPoints); | 
|  | REPORTER_ASSERT(reporter, numIterVerbs == numVerbs); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void check_for_circle(skiatest::Reporter* reporter, | 
|  | const SkPath& path, | 
|  | bool expectedCircle, | 
|  | SkPath::Direction expectedDir) { | 
|  | SkRect rect = SkRect::MakeEmpty(); | 
|  | REPORTER_ASSERT(reporter, path.isOval(&rect) == expectedCircle); | 
|  | REPORTER_ASSERT(reporter, path.cheapIsDirection(expectedDir)); | 
|  |  | 
|  | if (expectedCircle) { | 
|  | REPORTER_ASSERT(reporter, rect.height() == rect.width()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_circle_skew(skiatest::Reporter* reporter, | 
|  | const SkPath& path, | 
|  | SkPath::Direction dir) { | 
|  | SkPath tmp; | 
|  |  | 
|  | SkMatrix m; | 
|  | m.setSkew(SkIntToScalar(3), SkIntToScalar(5)); | 
|  | path.transform(m, &tmp); | 
|  | // this matrix reverses the direction. | 
|  | if (SkPath::kCCW_Direction == dir) { | 
|  | dir = SkPath::kCW_Direction; | 
|  | } else { | 
|  | REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir); | 
|  | dir = SkPath::kCCW_Direction; | 
|  | } | 
|  | check_for_circle(reporter, tmp, false, dir); | 
|  | } | 
|  |  | 
|  | static void test_circle_translate(skiatest::Reporter* reporter, | 
|  | const SkPath& path, | 
|  | SkPath::Direction dir) { | 
|  | SkPath tmp; | 
|  |  | 
|  | // translate at small offset | 
|  | SkMatrix m; | 
|  | m.setTranslate(SkIntToScalar(15), SkIntToScalar(15)); | 
|  | path.transform(m, &tmp); | 
|  | check_for_circle(reporter, tmp, true, dir); | 
|  |  | 
|  | tmp.reset(); | 
|  | m.reset(); | 
|  |  | 
|  | // translate at a relatively big offset | 
|  | m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000)); | 
|  | path.transform(m, &tmp); | 
|  | check_for_circle(reporter, tmp, true, dir); | 
|  | } | 
|  |  | 
|  | static void test_circle_rotate(skiatest::Reporter* reporter, | 
|  | const SkPath& path, | 
|  | SkPath::Direction dir) { | 
|  | for (int angle = 0; angle < 360; ++angle) { | 
|  | SkPath tmp; | 
|  | SkMatrix m; | 
|  | m.setRotate(SkIntToScalar(angle)); | 
|  | path.transform(m, &tmp); | 
|  |  | 
|  | // TODO: a rotated circle whose rotated angle is not a multiple of 90 | 
|  | // degrees is not an oval anymore, this can be improved.  we made this | 
|  | // for the simplicity of our implementation. | 
|  | if (angle % 90 == 0) { | 
|  | check_for_circle(reporter, tmp, true, dir); | 
|  | } else { | 
|  | check_for_circle(reporter, tmp, false, dir); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_circle_mirror_x(skiatest::Reporter* reporter, | 
|  | const SkPath& path, | 
|  | SkPath::Direction dir) { | 
|  | SkPath tmp; | 
|  | SkMatrix m; | 
|  | m.reset(); | 
|  | m.setScaleX(-SK_Scalar1); | 
|  | path.transform(m, &tmp); | 
|  |  | 
|  | if (SkPath::kCW_Direction == dir) { | 
|  | dir = SkPath::kCCW_Direction; | 
|  | } else { | 
|  | REPORTER_ASSERT(reporter, SkPath::kCCW_Direction == dir); | 
|  | dir = SkPath::kCW_Direction; | 
|  | } | 
|  |  | 
|  | check_for_circle(reporter, tmp, true, dir); | 
|  | } | 
|  |  | 
|  | static void test_circle_mirror_y(skiatest::Reporter* reporter, | 
|  | const SkPath& path, | 
|  | SkPath::Direction dir) { | 
|  | SkPath tmp; | 
|  | SkMatrix m; | 
|  | m.reset(); | 
|  | m.setScaleY(-SK_Scalar1); | 
|  | path.transform(m, &tmp); | 
|  |  | 
|  | if (SkPath::kCW_Direction == dir) { | 
|  | dir = SkPath::kCCW_Direction; | 
|  | } else { | 
|  | REPORTER_ASSERT(reporter, SkPath::kCCW_Direction == dir); | 
|  | dir = SkPath::kCW_Direction; | 
|  | } | 
|  |  | 
|  | check_for_circle(reporter, tmp, true, dir); | 
|  | } | 
|  |  | 
|  | static void test_circle_mirror_xy(skiatest::Reporter* reporter, | 
|  | const SkPath& path, | 
|  | SkPath::Direction dir) { | 
|  | SkPath tmp; | 
|  | SkMatrix m; | 
|  | m.reset(); | 
|  | m.setScaleX(-SK_Scalar1); | 
|  | m.setScaleY(-SK_Scalar1); | 
|  | path.transform(m, &tmp); | 
|  |  | 
|  | check_for_circle(reporter, tmp, true, dir); | 
|  | } | 
|  |  | 
|  | static void test_circle_with_direction(skiatest::Reporter* reporter, | 
|  | SkPath::Direction dir) { | 
|  | SkPath path; | 
|  |  | 
|  | // circle at origin | 
|  | path.addCircle(0, 0, SkIntToScalar(20), dir); | 
|  | check_for_circle(reporter, path, true, dir); | 
|  | test_circle_rotate(reporter, path, dir); | 
|  | test_circle_translate(reporter, path, dir); | 
|  | test_circle_skew(reporter, path, dir); | 
|  |  | 
|  | // circle at an offset at (10, 10) | 
|  | path.reset(); | 
|  | path.addCircle(SkIntToScalar(10), SkIntToScalar(10), | 
|  | SkIntToScalar(20), dir); | 
|  | check_for_circle(reporter, path, true, dir); | 
|  | test_circle_rotate(reporter, path, dir); | 
|  | test_circle_translate(reporter, path, dir); | 
|  | test_circle_skew(reporter, path, dir); | 
|  | test_circle_mirror_x(reporter, path, dir); | 
|  | test_circle_mirror_y(reporter, path, dir); | 
|  | test_circle_mirror_xy(reporter, path, dir); | 
|  | } | 
|  |  | 
|  | static void test_circle_with_add_paths(skiatest::Reporter* reporter) { | 
|  | SkPath path; | 
|  | SkPath circle; | 
|  | SkPath rect; | 
|  | SkPath empty; | 
|  |  | 
|  | static const SkPath::Direction kCircleDir = SkPath::kCW_Direction; | 
|  | static const SkPath::Direction kCircleDirOpposite = SkPath::kCCW_Direction; | 
|  |  | 
|  | circle.addCircle(0, 0, SkIntToScalar(10), kCircleDir); | 
|  | rect.addRect(SkIntToScalar(5), SkIntToScalar(5), | 
|  | SkIntToScalar(20), SkIntToScalar(20), SkPath::kCW_Direction); | 
|  |  | 
|  | SkMatrix translate; | 
|  | translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12)); | 
|  |  | 
|  | // Although all the path concatenation related operations leave | 
|  | // the path a circle, most mark it as a non-circle for simplicity | 
|  |  | 
|  | // empty + circle (translate) | 
|  | path = empty; | 
|  | path.addPath(circle, translate); | 
|  | check_for_circle(reporter, path, false, kCircleDir); | 
|  |  | 
|  | // circle + empty (translate) | 
|  | path = circle; | 
|  | path.addPath(empty, translate); | 
|  | check_for_circle(reporter, path, true, kCircleDir); | 
|  |  | 
|  | // test reverseAddPath | 
|  | path = circle; | 
|  | path.reverseAddPath(rect); | 
|  | check_for_circle(reporter, path, false, kCircleDirOpposite); | 
|  | } | 
|  |  | 
|  | static void test_circle(skiatest::Reporter* reporter) { | 
|  | test_circle_with_direction(reporter, SkPath::kCW_Direction); | 
|  | test_circle_with_direction(reporter, SkPath::kCCW_Direction); | 
|  |  | 
|  | // multiple addCircle() | 
|  | SkPath path; | 
|  | path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); | 
|  | path.addCircle(0, 0, SkIntToScalar(20), SkPath::kCW_Direction); | 
|  | check_for_circle(reporter, path, false, SkPath::kCW_Direction); | 
|  |  | 
|  | // some extra lineTo() would make isOval() fail | 
|  | path.reset(); | 
|  | path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); | 
|  | path.lineTo(0, 0); | 
|  | check_for_circle(reporter, path, false, SkPath::kCW_Direction); | 
|  |  | 
|  | // not back to the original point | 
|  | path.reset(); | 
|  | path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); | 
|  | path.setLastPt(SkIntToScalar(5), SkIntToScalar(5)); | 
|  | check_for_circle(reporter, path, false, SkPath::kCW_Direction); | 
|  |  | 
|  | test_circle_with_add_paths(reporter); | 
|  |  | 
|  | // test negative radius | 
|  | path.reset(); | 
|  | path.addCircle(0, 0, -1, SkPath::kCW_Direction); | 
|  | REPORTER_ASSERT(reporter, path.isEmpty()); | 
|  | } | 
|  |  | 
|  | static void test_oval(skiatest::Reporter* reporter) { | 
|  | SkRect rect; | 
|  | SkMatrix m; | 
|  | SkPath path; | 
|  |  | 
|  | rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50)); | 
|  | path.addOval(rect); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, path.isOval(NULL)); | 
|  |  | 
|  | m.setRotate(SkIntToScalar(90)); | 
|  | SkPath tmp; | 
|  | path.transform(m, &tmp); | 
|  | // an oval rotated 90 degrees is still an oval. | 
|  | REPORTER_ASSERT(reporter, tmp.isOval(NULL)); | 
|  |  | 
|  | m.reset(); | 
|  | m.setRotate(SkIntToScalar(30)); | 
|  | tmp.reset(); | 
|  | path.transform(m, &tmp); | 
|  | // an oval rotated 30 degrees is not an oval anymore. | 
|  | REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); | 
|  |  | 
|  | // since empty path being transformed. | 
|  | path.reset(); | 
|  | tmp.reset(); | 
|  | m.reset(); | 
|  | path.transform(m, &tmp); | 
|  | REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); | 
|  |  | 
|  | // empty path is not an oval | 
|  | tmp.reset(); | 
|  | REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); | 
|  |  | 
|  | // only has moveTo()s | 
|  | tmp.reset(); | 
|  | tmp.moveTo(0, 0); | 
|  | tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10)); | 
|  | REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); | 
|  |  | 
|  | // mimic WebKit's calling convention, | 
|  | // call moveTo() first and then call addOval() | 
|  | path.reset(); | 
|  | path.moveTo(0, 0); | 
|  | path.addOval(rect); | 
|  | REPORTER_ASSERT(reporter, path.isOval(NULL)); | 
|  |  | 
|  | // copy path | 
|  | path.reset(); | 
|  | tmp.reset(); | 
|  | tmp.addOval(rect); | 
|  | path = tmp; | 
|  | REPORTER_ASSERT(reporter, path.isOval(NULL)); | 
|  | } | 
|  |  | 
|  | static void test_empty(skiatest::Reporter* reporter, const SkPath& p) { | 
|  | SkPath  empty; | 
|  |  | 
|  | REPORTER_ASSERT(reporter, p.isEmpty()); | 
|  | REPORTER_ASSERT(reporter, 0 == p.countPoints()); | 
|  | REPORTER_ASSERT(reporter, 0 == p.countVerbs()); | 
|  | REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks()); | 
|  | REPORTER_ASSERT(reporter, p.isConvex()); | 
|  | REPORTER_ASSERT(reporter, p.getFillType() == SkPath::kWinding_FillType); | 
|  | REPORTER_ASSERT(reporter, !p.isInverseFillType()); | 
|  | REPORTER_ASSERT(reporter, p == empty); | 
|  | REPORTER_ASSERT(reporter, !(p != empty)); | 
|  | } | 
|  |  | 
|  | static void test_rrect_is_convex(skiatest::Reporter* reporter, SkPath* path, | 
|  | SkPath::Direction dir) { | 
|  | REPORTER_ASSERT(reporter, path->isConvex()); | 
|  | REPORTER_ASSERT(reporter, path->cheapIsDirection(dir)); | 
|  | path->setConvexity(SkPath::kUnknown_Convexity); | 
|  | REPORTER_ASSERT(reporter, path->isConvex()); | 
|  | path->reset(); | 
|  | } | 
|  |  | 
|  | static void test_rrect(skiatest::Reporter* reporter) { | 
|  | SkPath p; | 
|  | SkRRect rr; | 
|  | SkVector radii[] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}; | 
|  | SkRect r = {10, 20, 30, 40}; | 
|  | rr.setRectRadii(r, radii); | 
|  | p.addRRect(rr); | 
|  | test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | 
|  | p.addRRect(rr, SkPath::kCCW_Direction); | 
|  | test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction); | 
|  | p.addRoundRect(r, &radii[0].fX); | 
|  | test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | 
|  | p.addRoundRect(r, &radii[0].fX, SkPath::kCCW_Direction); | 
|  | test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction); | 
|  | p.addRoundRect(r, radii[1].fX, radii[1].fY); | 
|  | test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | 
|  | p.addRoundRect(r, radii[1].fX, radii[1].fY, SkPath::kCCW_Direction); | 
|  | test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction); | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(radii); ++i) { | 
|  | SkVector save = radii[i]; | 
|  | radii[i].set(0, 0); | 
|  | rr.setRectRadii(r, radii); | 
|  | p.addRRect(rr); | 
|  | test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | 
|  | radii[i] = save; | 
|  | } | 
|  | p.addRoundRect(r, 0, 0); | 
|  | SkRect returnedRect; | 
|  | REPORTER_ASSERT(reporter, p.isRect(&returnedRect)); | 
|  | REPORTER_ASSERT(reporter, returnedRect == r); | 
|  | test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | 
|  | SkVector zeroRadii[] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}}; | 
|  | rr.setRectRadii(r, zeroRadii); | 
|  | p.addRRect(rr); | 
|  | bool closed; | 
|  | SkPath::Direction dir; | 
|  | REPORTER_ASSERT(reporter, p.isRect(&closed, &dir)); | 
|  | REPORTER_ASSERT(reporter, closed); | 
|  | REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir); | 
|  | test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | 
|  | p.addRRect(rr, SkPath::kCW_Direction); | 
|  | p.addRRect(rr, SkPath::kCW_Direction); | 
|  | REPORTER_ASSERT(reporter, !p.isConvex()); | 
|  | p.reset(); | 
|  | p.addRRect(rr, SkPath::kCCW_Direction); | 
|  | p.addRRect(rr, SkPath::kCCW_Direction); | 
|  | REPORTER_ASSERT(reporter, !p.isConvex()); | 
|  | p.reset(); | 
|  | SkRect emptyR = {10, 20, 10, 30}; | 
|  | rr.setRectRadii(emptyR, radii); | 
|  | p.addRRect(rr); | 
|  | REPORTER_ASSERT(reporter, p.isEmpty()); | 
|  | SkRect largeR = {0, 0, SK_ScalarMax, SK_ScalarMax}; | 
|  | rr.setRectRadii(largeR, radii); | 
|  | p.addRRect(rr); | 
|  | test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | 
|  | SkRect infR = {0, 0, SK_ScalarMax, SK_ScalarInfinity}; | 
|  | rr.setRectRadii(infR, radii); | 
|  | p.addRRect(rr); | 
|  | test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | 
|  | SkRect tinyR = {0, 0, 1e-9f, 1e-9f}; | 
|  | p.addRoundRect(tinyR, 5e-11f, 5e-11f); | 
|  | test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | 
|  | } | 
|  |  | 
|  | static void test_arc(skiatest::Reporter* reporter) { | 
|  | SkPath p; | 
|  | SkRect emptyOval = {10, 20, 30, 20}; | 
|  | REPORTER_ASSERT(reporter, emptyOval.isEmpty()); | 
|  | p.addArc(emptyOval, 1, 2); | 
|  | REPORTER_ASSERT(reporter, p.isEmpty()); | 
|  | p.reset(); | 
|  | SkRect oval = {10, 20, 30, 40}; | 
|  | p.addArc(oval, 1, 0); | 
|  | REPORTER_ASSERT(reporter, p.isEmpty()); | 
|  | p.reset(); | 
|  | SkPath cwOval; | 
|  | cwOval.addOval(oval); | 
|  | p.addArc(oval, 1, 360); | 
|  | REPORTER_ASSERT(reporter, p == cwOval); | 
|  | p.reset(); | 
|  | SkPath ccwOval; | 
|  | ccwOval.addOval(oval, SkPath::kCCW_Direction); | 
|  | p.addArc(oval, 1, -360); | 
|  | REPORTER_ASSERT(reporter, p == ccwOval); | 
|  | p.reset(); | 
|  | p.addArc(oval, 1, 180); | 
|  | REPORTER_ASSERT(reporter, p.isConvex()); | 
|  | REPORTER_ASSERT(reporter, p.cheapIsDirection(SkPath::kCW_Direction)); | 
|  | p.setConvexity(SkPath::kUnknown_Convexity); | 
|  | REPORTER_ASSERT(reporter, p.isConvex()); | 
|  | } | 
|  |  | 
|  | static void check_move(skiatest::Reporter* reporter, SkPath::RawIter* iter, | 
|  | SkScalar x0, SkScalar y0) { | 
|  | SkPoint pts[4]; | 
|  | SkPath::Verb v = iter->next(pts); | 
|  | REPORTER_ASSERT(reporter, v == SkPath::kMove_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[0].fX == x0); | 
|  | REPORTER_ASSERT(reporter, pts[0].fY == y0); | 
|  | } | 
|  |  | 
|  | static void check_line(skiatest::Reporter* reporter, SkPath::RawIter* iter, | 
|  | SkScalar x1, SkScalar y1) { | 
|  | SkPoint pts[4]; | 
|  | SkPath::Verb v = iter->next(pts); | 
|  | REPORTER_ASSERT(reporter, v == SkPath::kLine_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[1].fX == x1); | 
|  | REPORTER_ASSERT(reporter, pts[1].fY == y1); | 
|  | } | 
|  |  | 
|  | static void check_quad(skiatest::Reporter* reporter, SkPath::RawIter* iter, | 
|  | SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { | 
|  | SkPoint pts[4]; | 
|  | SkPath::Verb v = iter->next(pts); | 
|  | REPORTER_ASSERT(reporter, v == SkPath::kQuad_Verb); | 
|  | REPORTER_ASSERT(reporter, pts[1].fX == x1); | 
|  | REPORTER_ASSERT(reporter, pts[1].fY == y1); | 
|  | REPORTER_ASSERT(reporter, pts[2].fX == x2); | 
|  | REPORTER_ASSERT(reporter, pts[2].fY == y2); | 
|  | } | 
|  |  | 
|  | static void check_done(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) { | 
|  | SkPoint pts[4]; | 
|  | SkPath::Verb v = iter->next(pts); | 
|  | REPORTER_ASSERT(reporter, v == SkPath::kDone_Verb); | 
|  | } | 
|  |  | 
|  | static void check_done_and_reset(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) { | 
|  | check_done(reporter, p, iter); | 
|  | p->reset(); | 
|  | } | 
|  |  | 
|  | static void check_path_is_move_and_reset(skiatest::Reporter* reporter, SkPath* p, | 
|  | SkScalar x0, SkScalar y0) { | 
|  | SkPath::RawIter iter(*p); | 
|  | check_move(reporter, &iter, x0, y0); | 
|  | check_done_and_reset(reporter, p, &iter); | 
|  | } | 
|  |  | 
|  | static void check_path_is_line_and_reset(skiatest::Reporter* reporter, SkPath* p, | 
|  | SkScalar x1, SkScalar y1) { | 
|  | SkPath::RawIter iter(*p); | 
|  | check_move(reporter, &iter, 0, 0); | 
|  | check_line(reporter, &iter, x1, y1); | 
|  | check_done_and_reset(reporter, p, &iter); | 
|  | } | 
|  |  | 
|  | static void check_path_is_line(skiatest::Reporter* reporter, SkPath* p, | 
|  | SkScalar x1, SkScalar y1) { | 
|  | SkPath::RawIter iter(*p); | 
|  | check_move(reporter, &iter, 0, 0); | 
|  | check_line(reporter, &iter, x1, y1); | 
|  | check_done(reporter, p, &iter); | 
|  | } | 
|  |  | 
|  | static void check_path_is_line_pair_and_reset(skiatest::Reporter* reporter, SkPath* p, | 
|  | SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { | 
|  | SkPath::RawIter iter(*p); | 
|  | check_move(reporter, &iter, 0, 0); | 
|  | check_line(reporter, &iter, x1, y1); | 
|  | check_line(reporter, &iter, x2, y2); | 
|  | check_done_and_reset(reporter, p, &iter); | 
|  | } | 
|  |  | 
|  | static void check_path_is_quad_and_reset(skiatest::Reporter* reporter, SkPath* p, | 
|  | SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { | 
|  | SkPath::RawIter iter(*p); | 
|  | check_move(reporter, &iter, 0, 0); | 
|  | check_quad(reporter, &iter, x1, y1, x2, y2); | 
|  | check_done_and_reset(reporter, p, &iter); | 
|  | } | 
|  |  | 
|  | static void test_arcTo(skiatest::Reporter* reporter) { | 
|  | SkPath p; | 
|  | p.arcTo(0, 0, 1, 2, 1); | 
|  | check_path_is_line_and_reset(reporter, &p, 0, 0); | 
|  | p.arcTo(1, 2, 1, 2, 1); | 
|  | check_path_is_line_and_reset(reporter, &p, 1, 2); | 
|  | p.arcTo(1, 2, 3, 4, 0); | 
|  | check_path_is_line_and_reset(reporter, &p, 1, 2); | 
|  | p.arcTo(1, 2, 0, 0, 1); | 
|  | check_path_is_line_and_reset(reporter, &p, 1, 2); | 
|  | p.arcTo(1, 0, 1, 1, 1); | 
|  | SkPoint pt; | 
|  | REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == 1); | 
|  | p.reset(); | 
|  | p.arcTo(1, 0, 1, -1, 1); | 
|  | REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == -1); | 
|  | p.reset(); | 
|  | SkRect oval = {1, 2, 3, 4}; | 
|  | p.arcTo(oval, 0, 0, true); | 
|  | check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); | 
|  | p.arcTo(oval, 0, 0, false); | 
|  | check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); | 
|  | p.arcTo(oval, 360, 0, true); | 
|  | check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); | 
|  | p.arcTo(oval, 360, 0, false); | 
|  | check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); | 
|  | for (float sweep = 359, delta = 0.5f; sweep != (float) (sweep + delta); ) { | 
|  | p.arcTo(oval, 0, sweep, false); | 
|  | REPORTER_ASSERT(reporter, p.getBounds() == oval); | 
|  | sweep += delta; | 
|  | delta /= 2; | 
|  | } | 
|  | for (float sweep = 361, delta = 0.5f; sweep != (float) (sweep - delta);) { | 
|  | p.arcTo(oval, 0, sweep, false); | 
|  | REPORTER_ASSERT(reporter, p.getBounds() == oval); | 
|  | sweep -= delta; | 
|  | delta /= 2; | 
|  | } | 
|  | SkRect noOvalWidth = {1, 2, 0, 3}; | 
|  | p.reset(); | 
|  | p.arcTo(noOvalWidth, 0, 360, false); | 
|  | REPORTER_ASSERT(reporter, p.isEmpty()); | 
|  |  | 
|  | SkRect noOvalHeight = {1, 2, 3, 1}; | 
|  | p.reset(); | 
|  | p.arcTo(noOvalHeight, 0, 360, false); | 
|  | REPORTER_ASSERT(reporter, p.isEmpty()); | 
|  | } | 
|  |  | 
|  | static void test_addPath(skiatest::Reporter* reporter) { | 
|  | SkPath p, q; | 
|  | p.lineTo(1, 2); | 
|  | q.moveTo(4, 4); | 
|  | q.lineTo(7, 8); | 
|  | q.conicTo(8, 7, 6, 5, 0.5f); | 
|  | q.quadTo(6, 7, 8, 6); | 
|  | q.cubicTo(5, 6, 7, 8, 7, 5); | 
|  | q.close(); | 
|  | p.addPath(q, -4, -4); | 
|  | SkRect expected = {0, 0, 4, 4}; | 
|  | REPORTER_ASSERT(reporter, p.getBounds() == expected); | 
|  | p.reset(); | 
|  | p.reverseAddPath(q); | 
|  | SkRect reverseExpected = {4, 4, 8, 8}; | 
|  | REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected); | 
|  | } | 
|  |  | 
|  | static void test_addPathMode(skiatest::Reporter* reporter, bool explicitMoveTo, bool extend) { | 
|  | SkPath p, q; | 
|  | if (explicitMoveTo) { | 
|  | p.moveTo(1, 1); | 
|  | } | 
|  | p.lineTo(1, 2); | 
|  | if (explicitMoveTo) { | 
|  | q.moveTo(2, 1); | 
|  | } | 
|  | q.lineTo(2, 2); | 
|  | p.addPath(q, extend ? SkPath::kExtend_AddPathMode : SkPath::kAppend_AddPathMode); | 
|  | uint8_t verbs[4]; | 
|  | int verbcount = p.getVerbs(verbs, 4); | 
|  | REPORTER_ASSERT(reporter, verbcount == 4); | 
|  | REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb); | 
|  | REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb); | 
|  | REPORTER_ASSERT(reporter, verbs[2] == (extend ? SkPath::kLine_Verb : SkPath::kMove_Verb)); | 
|  | REPORTER_ASSERT(reporter, verbs[3] == SkPath::kLine_Verb); | 
|  | } | 
|  |  | 
|  | static void test_extendClosedPath(skiatest::Reporter* reporter) { | 
|  | SkPath p, q; | 
|  | p.moveTo(1, 1); | 
|  | p.lineTo(1, 2); | 
|  | p.lineTo(2, 2); | 
|  | p.close(); | 
|  | q.moveTo(2, 1); | 
|  | q.lineTo(2, 3); | 
|  | p.addPath(q, SkPath::kExtend_AddPathMode); | 
|  | uint8_t verbs[7]; | 
|  | int verbcount = p.getVerbs(verbs, 7); | 
|  | REPORTER_ASSERT(reporter, verbcount == 7); | 
|  | REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb); | 
|  | REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb); | 
|  | REPORTER_ASSERT(reporter, verbs[2] == SkPath::kLine_Verb); | 
|  | REPORTER_ASSERT(reporter, verbs[3] == SkPath::kClose_Verb); | 
|  | REPORTER_ASSERT(reporter, verbs[4] == SkPath::kMove_Verb); | 
|  | REPORTER_ASSERT(reporter, verbs[5] == SkPath::kLine_Verb); | 
|  | REPORTER_ASSERT(reporter, verbs[6] == SkPath::kLine_Verb); | 
|  |  | 
|  | SkPoint pt; | 
|  | REPORTER_ASSERT(reporter, p.getLastPt(&pt)); | 
|  | REPORTER_ASSERT(reporter, pt == SkPoint::Make(2, 3)); | 
|  | REPORTER_ASSERT(reporter, p.getPoint(3) == SkPoint::Make(1, 1)); | 
|  | } | 
|  |  | 
|  | static void test_addEmptyPath(skiatest::Reporter* reporter, SkPath::AddPathMode mode) { | 
|  | SkPath p, q, r; | 
|  | // case 1: dst is empty | 
|  | p.moveTo(2, 1); | 
|  | p.lineTo(2, 3); | 
|  | q.addPath(p, mode); | 
|  | REPORTER_ASSERT(reporter, q == p); | 
|  | // case 2: src is empty | 
|  | p.addPath(r, mode); | 
|  | REPORTER_ASSERT(reporter, q == p); | 
|  | // case 3: src and dst are empty | 
|  | q.reset(); | 
|  | q.addPath(r, mode); | 
|  | REPORTER_ASSERT(reporter, q.isEmpty()); | 
|  | } | 
|  |  | 
|  | static void test_conicTo_special_case(skiatest::Reporter* reporter) { | 
|  | SkPath p; | 
|  | p.conicTo(1, 2, 3, 4, -1); | 
|  | check_path_is_line_and_reset(reporter, &p, 3, 4); | 
|  | p.conicTo(1, 2, 3, 4, SK_ScalarInfinity); | 
|  | check_path_is_line_pair_and_reset(reporter, &p, 1, 2, 3, 4); | 
|  | p.conicTo(1, 2, 3, 4, 1); | 
|  | check_path_is_quad_and_reset(reporter, &p, 1, 2, 3, 4); | 
|  | } | 
|  |  | 
|  | static void test_get_point(skiatest::Reporter* reporter) { | 
|  | SkPath p; | 
|  | SkPoint pt = p.getPoint(0); | 
|  | REPORTER_ASSERT(reporter, pt == SkPoint::Make(0, 0)); | 
|  | REPORTER_ASSERT(reporter, !p.getLastPt(NULL)); | 
|  | REPORTER_ASSERT(reporter, !p.getLastPt(&pt) && pt == SkPoint::Make(0, 0)); | 
|  | p.setLastPt(10, 10); | 
|  | pt = p.getPoint(0); | 
|  | REPORTER_ASSERT(reporter, pt == SkPoint::Make(10, 10)); | 
|  | REPORTER_ASSERT(reporter, p.getLastPt(NULL)); | 
|  | p.rMoveTo(10, 10); | 
|  | REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt == SkPoint::Make(20, 20)); | 
|  | } | 
|  |  | 
|  | static void test_contains(skiatest::Reporter* reporter) { | 
|  | SkPath p; | 
|  | p.setFillType(SkPath::kInverseWinding_FillType); | 
|  | REPORTER_ASSERT(reporter, p.contains(0, 0)); | 
|  | p.setFillType(SkPath::kWinding_FillType); | 
|  | REPORTER_ASSERT(reporter, !p.contains(0, 0)); | 
|  | p.moveTo(4, 4); | 
|  | p.lineTo(6, 8); | 
|  | p.lineTo(8, 4); | 
|  | // test quick reject | 
|  | REPORTER_ASSERT(reporter, !p.contains(4, 0)); | 
|  | REPORTER_ASSERT(reporter, !p.contains(0, 4)); | 
|  | REPORTER_ASSERT(reporter, !p.contains(4, 10)); | 
|  | REPORTER_ASSERT(reporter, !p.contains(10, 4)); | 
|  | // test various crossings in x | 
|  | REPORTER_ASSERT(reporter, !p.contains(5, 7)); | 
|  | REPORTER_ASSERT(reporter, p.contains(6, 7)); | 
|  | REPORTER_ASSERT(reporter, !p.contains(7, 7)); | 
|  | p.reset(); | 
|  | p.moveTo(4, 4); | 
|  | p.lineTo(8, 6); | 
|  | p.lineTo(4, 8); | 
|  | // test various crossings in y | 
|  | REPORTER_ASSERT(reporter, !p.contains(7, 5)); | 
|  | REPORTER_ASSERT(reporter, p.contains(7, 6)); | 
|  | REPORTER_ASSERT(reporter, !p.contains(7, 7)); | 
|  | // test quads | 
|  | p.reset(); | 
|  | p.moveTo(4, 4); | 
|  | p.quadTo(6, 6, 8, 8); | 
|  | p.quadTo(6, 8, 4, 8); | 
|  | p.quadTo(4, 6, 4, 4); | 
|  | REPORTER_ASSERT(reporter, p.contains(5, 6)); | 
|  | REPORTER_ASSERT(reporter, !p.contains(6, 5)); | 
|  |  | 
|  | p.reset(); | 
|  | p.moveTo(6, 6); | 
|  | p.quadTo(8, 8, 6, 8); | 
|  | p.quadTo(4, 8, 4, 6); | 
|  | p.quadTo(4, 4, 6, 6); | 
|  | REPORTER_ASSERT(reporter, p.contains(5, 6)); | 
|  | REPORTER_ASSERT(reporter, !p.contains(6, 5)); | 
|  |  | 
|  | #define CONIC_CONTAINS_BUG_FIXED 0 | 
|  | #if CONIC_CONTAINS_BUG_FIXED | 
|  | p.reset(); | 
|  | p.moveTo(4, 4); | 
|  | p.conicTo(6, 6, 8, 8, 0.5f); | 
|  | p.conicTo(6, 8, 4, 8, 0.5f); | 
|  | p.conicTo(4, 6, 4, 4, 0.5f); | 
|  | REPORTER_ASSERT(reporter, p.contains(5, 6)); | 
|  | REPORTER_ASSERT(reporter, !p.contains(6, 5)); | 
|  | #endif | 
|  |  | 
|  | // test cubics | 
|  | SkPoint pts[] = {{5, 4}, {6, 5}, {7, 6}, {6, 6}, {4, 6}, {5, 7}, {5, 5}, {5, 4}, {6, 5}, {7, 6}}; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | p.reset(); | 
|  | p.setFillType(SkPath::kEvenOdd_FillType); | 
|  | p.moveTo(pts[i].fX, pts[i].fY); | 
|  | p.cubicTo(pts[i + 1].fX, pts[i + 1].fY, pts[i + 2].fX, pts[i + 2].fY, pts[i + 3].fX, pts[i + 3].fY); | 
|  | p.cubicTo(pts[i + 4].fX, pts[i + 4].fY, pts[i + 5].fX, pts[i + 5].fY, pts[i + 6].fX, pts[i + 6].fY); | 
|  | p.close(); | 
|  | REPORTER_ASSERT(reporter, p.contains(5.5f, 5.5f)); | 
|  | REPORTER_ASSERT(reporter, !p.contains(4.5f, 5.5f)); | 
|  | } | 
|  | } | 
|  |  | 
|  | class PathRefTest_Private { | 
|  | public: | 
|  | static void TestPathRef(skiatest::Reporter* reporter) { | 
|  | static const int kRepeatCnt = 10; | 
|  |  | 
|  | SkAutoTUnref<SkPathRef> pathRef(SkNEW(SkPathRef)); | 
|  |  | 
|  | SkPathRef::Editor ed(&pathRef); | 
|  |  | 
|  | { | 
|  | ed.growForRepeatedVerb(SkPath::kMove_Verb, kRepeatCnt); | 
|  | REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); | 
|  | REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints()); | 
|  | REPORTER_ASSERT(reporter, 0 == pathRef->getSegmentMasks()); | 
|  | for (int i = 0; i < kRepeatCnt; ++i) { | 
|  | REPORTER_ASSERT(reporter, SkPath::kMove_Verb == pathRef->atVerb(i)); | 
|  | } | 
|  | ed.resetToSize(0, 0, 0); | 
|  | } | 
|  |  | 
|  | { | 
|  | ed.growForRepeatedVerb(SkPath::kLine_Verb, kRepeatCnt); | 
|  | REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); | 
|  | REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints()); | 
|  | REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == pathRef->getSegmentMasks()); | 
|  | for (int i = 0; i < kRepeatCnt; ++i) { | 
|  | REPORTER_ASSERT(reporter, SkPath::kLine_Verb == pathRef->atVerb(i)); | 
|  | } | 
|  | ed.resetToSize(0, 0, 0); | 
|  | } | 
|  |  | 
|  | { | 
|  | ed.growForRepeatedVerb(SkPath::kQuad_Verb, kRepeatCnt); | 
|  | REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); | 
|  | REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints()); | 
|  | REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == pathRef->getSegmentMasks()); | 
|  | for (int i = 0; i < kRepeatCnt; ++i) { | 
|  | REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == pathRef->atVerb(i)); | 
|  | } | 
|  | ed.resetToSize(0, 0, 0); | 
|  | } | 
|  |  | 
|  | { | 
|  | SkScalar* weights = NULL; | 
|  | ed.growForRepeatedVerb(SkPath::kConic_Verb, kRepeatCnt, &weights); | 
|  | REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); | 
|  | REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints()); | 
|  | REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countWeights()); | 
|  | REPORTER_ASSERT(reporter, SkPath::kConic_SegmentMask == pathRef->getSegmentMasks()); | 
|  | REPORTER_ASSERT(reporter, NULL != weights); | 
|  | for (int i = 0; i < kRepeatCnt; ++i) { | 
|  | REPORTER_ASSERT(reporter, SkPath::kConic_Verb == pathRef->atVerb(i)); | 
|  | } | 
|  | ed.resetToSize(0, 0, 0); | 
|  | } | 
|  |  | 
|  | { | 
|  | ed.growForRepeatedVerb(SkPath::kCubic_Verb, kRepeatCnt); | 
|  | REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); | 
|  | REPORTER_ASSERT(reporter, 3*kRepeatCnt == pathRef->countPoints()); | 
|  | REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == pathRef->getSegmentMasks()); | 
|  | for (int i = 0; i < kRepeatCnt; ++i) { | 
|  | REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == pathRef->atVerb(i)); | 
|  | } | 
|  | ed.resetToSize(0, 0, 0); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void test_operatorEqual(skiatest::Reporter* reporter) { | 
|  | SkPath a; | 
|  | SkPath b; | 
|  | REPORTER_ASSERT(reporter, a == a); | 
|  | REPORTER_ASSERT(reporter, a == b); | 
|  | a.setFillType(SkPath::kInverseWinding_FillType); | 
|  | REPORTER_ASSERT(reporter, a != b); | 
|  | a.reset(); | 
|  | REPORTER_ASSERT(reporter, a == b); | 
|  | a.lineTo(1, 1); | 
|  | REPORTER_ASSERT(reporter, a != b); | 
|  | a.reset(); | 
|  | REPORTER_ASSERT(reporter, a == b); | 
|  | a.lineTo(1, 1); | 
|  | b.lineTo(1, 2); | 
|  | REPORTER_ASSERT(reporter, a != b); | 
|  | a.reset(); | 
|  | a.lineTo(1, 2); | 
|  | REPORTER_ASSERT(reporter, a == b); | 
|  | } | 
|  |  | 
|  | class PathTest_Private { | 
|  | public: | 
|  | static void TestPathTo(skiatest::Reporter* reporter) { | 
|  | SkPath p, q; | 
|  | p.lineTo(4, 4); | 
|  | p.reversePathTo(q); | 
|  | check_path_is_line(reporter, &p, 4, 4); | 
|  | q.moveTo(-4, -4); | 
|  | p.reversePathTo(q); | 
|  | check_path_is_line(reporter, &p, 4, 4); | 
|  | q.lineTo(7, 8); | 
|  | q.conicTo(8, 7, 6, 5, 0.5f); | 
|  | q.quadTo(6, 7, 8, 6); | 
|  | q.cubicTo(5, 6, 7, 8, 7, 5); | 
|  | q.close(); | 
|  | p.reversePathTo(q); | 
|  | SkRect reverseExpected = {-4, -4, 8, 8}; | 
|  | REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected); | 
|  | } | 
|  | }; | 
|  |  | 
|  | DEF_TEST(Paths, reporter) { | 
|  | test_path_crbug364224(); | 
|  |  | 
|  | SkTSize<SkScalar>::Make(3,4); | 
|  |  | 
|  | SkPath  p, empty; | 
|  | SkRect  bounds, bounds2; | 
|  | test_empty(reporter, p); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, p.getBounds().isEmpty()); | 
|  |  | 
|  | // this triggers a code path in SkPath::operator= which is otherwise unexercised | 
|  | SkPath& self = p; | 
|  | p = self; | 
|  |  | 
|  | // this triggers a code path in SkPath::swap which is otherwise unexercised | 
|  | p.swap(self); | 
|  |  | 
|  | bounds.set(0, 0, SK_Scalar1, SK_Scalar1); | 
|  |  | 
|  | p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1); | 
|  | check_convex_bounds(reporter, p, bounds); | 
|  | // we have quads or cubics | 
|  | REPORTER_ASSERT(reporter, p.getSegmentMasks() & kCurveSegmentMask); | 
|  | REPORTER_ASSERT(reporter, !p.isEmpty()); | 
|  |  | 
|  | p.reset(); | 
|  | test_empty(reporter, p); | 
|  |  | 
|  | p.addOval(bounds); | 
|  | check_convex_bounds(reporter, p, bounds); | 
|  | REPORTER_ASSERT(reporter, !p.isEmpty()); | 
|  |  | 
|  | p.rewind(); | 
|  | test_empty(reporter, p); | 
|  |  | 
|  | p.addRect(bounds); | 
|  | check_convex_bounds(reporter, p, bounds); | 
|  | // we have only lines | 
|  | REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks()); | 
|  | REPORTER_ASSERT(reporter, !p.isEmpty()); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, p != empty); | 
|  | REPORTER_ASSERT(reporter, !(p == empty)); | 
|  |  | 
|  | // do getPoints and getVerbs return the right result | 
|  | REPORTER_ASSERT(reporter, p.getPoints(NULL, 0) == 4); | 
|  | REPORTER_ASSERT(reporter, p.getVerbs(NULL, 0) == 5); | 
|  | SkPoint pts[4]; | 
|  | int count = p.getPoints(pts, 4); | 
|  | REPORTER_ASSERT(reporter, count == 4); | 
|  | uint8_t verbs[6]; | 
|  | verbs[5] = 0xff; | 
|  | p.getVerbs(verbs, 5); | 
|  | REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]); | 
|  | REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]); | 
|  | REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]); | 
|  | REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]); | 
|  | REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]); | 
|  | REPORTER_ASSERT(reporter, 0xff == verbs[5]); | 
|  | bounds2.set(pts, 4); | 
|  | REPORTER_ASSERT(reporter, bounds == bounds2); | 
|  |  | 
|  | bounds.offset(SK_Scalar1*3, SK_Scalar1*4); | 
|  | p.offset(SK_Scalar1*3, SK_Scalar1*4); | 
|  | REPORTER_ASSERT(reporter, bounds == p.getBounds()); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, p.isRect(NULL)); | 
|  | bounds2.setEmpty(); | 
|  | REPORTER_ASSERT(reporter, p.isRect(&bounds2)); | 
|  | REPORTER_ASSERT(reporter, bounds == bounds2); | 
|  |  | 
|  | // now force p to not be a rect | 
|  | bounds.set(0, 0, SK_Scalar1/2, SK_Scalar1/2); | 
|  | p.addRect(bounds); | 
|  | REPORTER_ASSERT(reporter, !p.isRect(NULL)); | 
|  |  | 
|  | test_operatorEqual(reporter); | 
|  | test_isLine(reporter); | 
|  | test_isRect(reporter); | 
|  | test_isNestedRects(reporter); | 
|  | test_zero_length_paths(reporter); | 
|  | test_direction(reporter); | 
|  | test_convexity(reporter); | 
|  | test_convexity2(reporter); | 
|  | test_conservativelyContains(reporter); | 
|  | test_close(reporter); | 
|  | test_segment_masks(reporter); | 
|  | test_flattening(reporter); | 
|  | test_transform(reporter); | 
|  | test_bounds(reporter); | 
|  | test_iter(reporter); | 
|  | test_raw_iter(reporter); | 
|  | test_circle(reporter); | 
|  | test_oval(reporter); | 
|  | test_strokerec(reporter); | 
|  | test_addPoly(reporter); | 
|  | test_isfinite(reporter); | 
|  | test_isfinite_after_transform(reporter); | 
|  | test_arb_round_rect_is_convex(reporter); | 
|  | test_arb_zero_rad_round_rect_is_rect(reporter); | 
|  | test_addrect(reporter); | 
|  | test_addrect_isfinite(reporter); | 
|  | test_tricky_cubic(); | 
|  | test_clipped_cubic(); | 
|  | test_crbug_170666(); | 
|  | test_bad_cubic_crbug229478(); | 
|  | test_bad_cubic_crbug234190(); | 
|  | test_android_specific_behavior(reporter); | 
|  | test_gen_id(reporter); | 
|  | test_path_close_issue1474(reporter); | 
|  | test_path_to_region(reporter); | 
|  | test_rrect(reporter); | 
|  | test_arc(reporter); | 
|  | test_arcTo(reporter); | 
|  | test_addPath(reporter); | 
|  | test_addPathMode(reporter, false, false); | 
|  | test_addPathMode(reporter, true, false); | 
|  | test_addPathMode(reporter, false, true); | 
|  | test_addPathMode(reporter, true, true); | 
|  | test_extendClosedPath(reporter); | 
|  | test_addEmptyPath(reporter, SkPath::kExtend_AddPathMode); | 
|  | test_addEmptyPath(reporter, SkPath::kAppend_AddPathMode); | 
|  | test_conicTo_special_case(reporter); | 
|  | test_get_point(reporter); | 
|  | test_contains(reporter); | 
|  | PathTest_Private::TestPathTo(reporter); | 
|  | PathRefTest_Private::TestPathRef(reporter); | 
|  | } |