blob: 92c3628dd9b45e4c787f66c5a6705449ccda4024 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/private/SkHalf.h"
#include "include/private/base/SkTo.h"
#include "src/core/SkOpts.h"
#include "src/core/SkRasterPipeline.h"
#include "src/core/SkUtils.h"
#include "src/gpu/Swizzle.h"
#include "tests/Test.h"
#include <cmath>
#include <numeric>
DEF_TEST(SkRasterPipeline, r) {
// Build and run a simple pipeline to exercise SkRasterPipeline,
// drawing 50% transparent blue over opaque red in half-floats.
uint64_t red = 0x3c00000000003c00ull,
blue = 0x3800380000000000ull,
result;
SkRasterPipeline_MemoryCtx load_s_ctx = { &blue, 0 },
load_d_ctx = { &red, 0 },
store_ctx = { &result, 0 };
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_f16, &load_s_ctx);
p.append(SkRasterPipelineOp::load_f16_dst, &load_d_ctx);
p.append(SkRasterPipelineOp::srcover);
p.append(SkRasterPipelineOp::store_f16, &store_ctx);
p.run(0,0,1,1);
// We should see half-intensity magenta.
REPORTER_ASSERT(r, ((result >> 0) & 0xffff) == 0x3800);
REPORTER_ASSERT(r, ((result >> 16) & 0xffff) == 0x0000);
REPORTER_ASSERT(r, ((result >> 32) & 0xffff) == 0x3800);
REPORTER_ASSERT(r, ((result >> 48) & 0xffff) == 0x3c00);
}
DEF_TEST(SkRasterPipeline_ImmediateStoreUnmasked, r) {
alignas(64) float val[SkRasterPipeline_kMaxStride_highp + 1] = {};
float immVal = 123.0f;
const void* immValCtx = nullptr;
memcpy(&immValCtx, &immVal, sizeof(float));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::immediate_f, immValCtx);
p.append(SkRasterPipelineOp::store_unmasked, val);
p.run(0,0,1,1);
// `val` should be populated with `123.0` in the frontmost positions
// (depending on the architecture that SkRasterPipeline is targeting).
size_t index = 0;
for (; index < SkOpts::raster_pipeline_highp_stride; ++index) {
REPORTER_ASSERT(r, val[index] == immVal);
}
// The remaining slots should have been left alone.
for (; index < std::size(val); ++index) {
REPORTER_ASSERT(r, val[index] == 0.0f);
}
}
DEF_TEST(SkRasterPipeline_LoadStoreUnmasked, r) {
alignas(64) float val[SkRasterPipeline_kMaxStride_highp] = {};
alignas(64) float data[] = {123.0f, 456.0f, 789.0f, -876.0f, -543.0f, -210.0f, 12.0f, -3.0f};
static_assert(std::size(data) == SkRasterPipeline_kMaxStride_highp);
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_unmasked, data);
p.append(SkRasterPipelineOp::store_unmasked, val);
p.run(0,0,1,1);
// `val` should be populated with `data` in the frontmost positions
// (depending on the architecture that SkRasterPipeline is targeting).
size_t index = 0;
for (; index < SkOpts::raster_pipeline_highp_stride; ++index) {
REPORTER_ASSERT(r, val[index] == data[index]);
}
// The remaining slots should have been left alone.
for (; index < std::size(val); ++index) {
REPORTER_ASSERT(r, val[index] == 0.0f);
}
}
DEF_TEST(SkRasterPipeline_LoadStoreMasked, r) {
for (size_t width = 0; width < SkOpts::raster_pipeline_highp_stride; ++width) {
alignas(64) float val[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f};
alignas(64) float data[] = {2.0f, 2.0f, 2.0f, 2.0f, 2.0f, 2.0f, 2.0f, 2.0f};
alignas(64) const int32_t mask[] = {0, ~0, ~0, ~0, ~0, ~0, 0, ~0};
static_assert(std::size(val) == SkRasterPipeline_kMaxStride_highp);
static_assert(std::size(data) == SkRasterPipeline_kMaxStride_highp);
static_assert(std::size(mask) == SkRasterPipeline_kMaxStride_highp);
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::init_lane_masks);
p.append(SkRasterPipelineOp::load_condition_mask, mask);
p.append(SkRasterPipelineOp::load_unmasked, data);
p.append(SkRasterPipelineOp::store_masked, val);
p.run(0, 0, width, 1);
// Where the mask is set, and the width is sufficient, `val` should be populated.
size_t index = 0;
for (; index < width; ++index) {
if (mask[index]) {
REPORTER_ASSERT(r, val[index] == 2.0f);
} else {
REPORTER_ASSERT(r, val[index] == 1.0f);
}
}
// The remaining slots should have been left alone.
for (; index < std::size(val); ++index) {
REPORTER_ASSERT(r, val[index] == 1.0f);
}
}
}
DEF_TEST(SkRasterPipeline_LoadStoreConditionMask, r) {
alignas(64) int32_t mask[] = {~0, 0, ~0, 0, ~0, ~0, ~0, 0};
alignas(64) int32_t maskCopy[SkRasterPipeline_kMaxStride_highp] = {};
alignas(64) int32_t dst[4 * SkRasterPipeline_kMaxStride_highp] = {};
static_assert(std::size(mask) == SkRasterPipeline_kMaxStride_highp);
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::init_lane_masks);
p.append(SkRasterPipelineOp::load_condition_mask, mask);
p.append(SkRasterPipelineOp::store_condition_mask, maskCopy);
p.append(SkRasterPipelineOp::store_dst, dst);
p.run(0,0,SkOpts::raster_pipeline_highp_stride,1);
{
// `maskCopy` should be populated with `mask` in the frontmost positions
// (depending on the architecture that SkRasterPipeline is targeting).
size_t index = 0;
for (; index < SkOpts::raster_pipeline_highp_stride; ++index) {
REPORTER_ASSERT(r, maskCopy[index] == mask[index]);
}
// The remaining slots should have been left alone.
for (; index < std::size(maskCopy); ++index) {
REPORTER_ASSERT(r, maskCopy[index] == 0);
}
}
{
// `dr` and `da` should be populated with `mask`.
// `dg` and `db` should remain initialized to true.
const int dr = 0 * SkOpts::raster_pipeline_highp_stride;
const int dg = 1 * SkOpts::raster_pipeline_highp_stride;
const int db = 2 * SkOpts::raster_pipeline_highp_stride;
const int da = 3 * SkOpts::raster_pipeline_highp_stride;
for (size_t index = 0; index < SkOpts::raster_pipeline_highp_stride; ++index) {
REPORTER_ASSERT(r, dst[dr + index] == mask[index]);
REPORTER_ASSERT(r, dst[dg + index] == ~0);
REPORTER_ASSERT(r, dst[db + index] == ~0);
REPORTER_ASSERT(r, dst[da + index] == mask[index]);
}
}
}
DEF_TEST(SkRasterPipeline_LoadStoreLoopMask, r) {
alignas(64) int32_t mask[] = {~0, 0, ~0, 0, ~0, ~0, ~0, 0};
alignas(64) int32_t maskCopy[SkRasterPipeline_kMaxStride_highp] = {};
alignas(64) int32_t dst[4 * SkRasterPipeline_kMaxStride_highp] = {};
static_assert(std::size(mask) == SkRasterPipeline_kMaxStride_highp);
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::init_lane_masks);
p.append(SkRasterPipelineOp::load_loop_mask, mask);
p.append(SkRasterPipelineOp::store_loop_mask, maskCopy);
p.append(SkRasterPipelineOp::store_dst, dst);
p.run(0,0,SkOpts::raster_pipeline_highp_stride,1);
{
// `maskCopy` should be populated with `mask` in the frontmost positions
// (depending on the architecture that SkRasterPipeline is targeting).
size_t index = 0;
for (; index < SkOpts::raster_pipeline_highp_stride; ++index) {
REPORTER_ASSERT(r, maskCopy[index] == mask[index]);
}
// The remaining slots should have been left alone.
for (; index < std::size(maskCopy); ++index) {
REPORTER_ASSERT(r, maskCopy[index] == 0);
}
}
{
// `dg` and `da` should be populated with `mask`.
// `dr` and `db` should remain initialized to true.
const int dr = 0 * SkOpts::raster_pipeline_highp_stride;
const int dg = 1 * SkOpts::raster_pipeline_highp_stride;
const int db = 2 * SkOpts::raster_pipeline_highp_stride;
const int da = 3 * SkOpts::raster_pipeline_highp_stride;
for (size_t index = 0; index < SkOpts::raster_pipeline_highp_stride; ++index) {
REPORTER_ASSERT(r, dst[dr + index] == ~0);
REPORTER_ASSERT(r, dst[dg + index] == mask[index]);
REPORTER_ASSERT(r, dst[db + index] == ~0);
REPORTER_ASSERT(r, dst[da + index] == mask[index]);
}
}
}
DEF_TEST(SkRasterPipeline_LoadStoreReturnMask, r) {
alignas(64) int32_t mask[] = {~0, 0, ~0, 0, ~0, ~0, ~0, 0};
alignas(64) int32_t maskCopy[SkRasterPipeline_kMaxStride_highp] = {};
alignas(64) int32_t dst[4 * SkRasterPipeline_kMaxStride_highp] = {};
static_assert(std::size(mask) == SkRasterPipeline_kMaxStride_highp);
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::init_lane_masks);
p.append(SkRasterPipelineOp::load_return_mask, mask);
p.append(SkRasterPipelineOp::store_return_mask, maskCopy);
p.append(SkRasterPipelineOp::store_dst, dst);
p.run(0,0,SkOpts::raster_pipeline_highp_stride,1);
{
// `maskCopy` should be populated with `mask` in the frontmost positions
// (depending on the architecture that SkRasterPipeline is targeting).
size_t index = 0;
for (; index < SkOpts::raster_pipeline_highp_stride; ++index) {
REPORTER_ASSERT(r, maskCopy[index] == mask[index]);
}
// The remaining slots should have been left alone.
for (; index < std::size(maskCopy); ++index) {
REPORTER_ASSERT(r, maskCopy[index] == 0);
}
}
{
// `db` and `da` should be populated with `mask`.
// `dr` and `dg` should remain initialized to true.
const int dr = 0 * SkOpts::raster_pipeline_highp_stride;
const int dg = 1 * SkOpts::raster_pipeline_highp_stride;
const int db = 2 * SkOpts::raster_pipeline_highp_stride;
const int da = 3 * SkOpts::raster_pipeline_highp_stride;
for (size_t index = 0; index < SkOpts::raster_pipeline_highp_stride; ++index) {
REPORTER_ASSERT(r, dst[dr + index] == ~0);
REPORTER_ASSERT(r, dst[dg + index] == ~0);
REPORTER_ASSERT(r, dst[db + index] == mask[index]);
REPORTER_ASSERT(r, dst[da + index] == mask[index]);
}
}
}
DEF_TEST(SkRasterPipeline_MergeConditionMask, r) {
alignas(64) int32_t mask[] = { 0, 0, ~0, ~0, 0, ~0, 0, ~0,
~0, ~0, ~0, ~0, 0, 0, 0, 0};
alignas(64) int32_t dst[4 * SkRasterPipeline_kMaxStride_highp] = {};
static_assert(std::size(mask) == (2 * SkRasterPipeline_kMaxStride_highp));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::init_lane_masks);
p.append(SkRasterPipelineOp::merge_condition_mask, mask);
p.append(SkRasterPipelineOp::store_dst, dst);
p.run(0,0,SkOpts::raster_pipeline_highp_stride,1);
// `dr` and `da` should be populated with `mask[x] & mask[y]` in the frontmost positions.
// `dg` and `db` should remain initialized to true.
const int dr = 0 * SkOpts::raster_pipeline_highp_stride;
const int dg = 1 * SkOpts::raster_pipeline_highp_stride;
const int db = 2 * SkOpts::raster_pipeline_highp_stride;
const int da = 3 * SkOpts::raster_pipeline_highp_stride;
for (size_t index = 0; index < SkOpts::raster_pipeline_highp_stride; ++index) {
int32_t expected = mask[index] & mask[index + SkOpts::raster_pipeline_highp_stride];
REPORTER_ASSERT(r, dst[dr + index] == expected);
REPORTER_ASSERT(r, dst[dg + index] == ~0);
REPORTER_ASSERT(r, dst[db + index] == ~0);
REPORTER_ASSERT(r, dst[da + index] == expected);
}
}
DEF_TEST(SkRasterPipeline_MergeLoopMask, r) {
alignas(64) int32_t initial[] = {~0, ~0, ~0, ~0, ~0, 0, ~0, ~0, // dr (condition)
~0, 0, ~0, 0, ~0, ~0, ~0, ~0, // dg (loop)
~0, ~0, ~0, ~0, ~0, ~0, 0, ~0, // db (return)
~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0}; // da (combined)
alignas(64) int32_t mask[] = { 0, ~0, ~0, 0, ~0, ~0, ~0, ~0};
alignas(64) int32_t dst[4 * SkRasterPipeline_kMaxStride_highp] = {};
static_assert(std::size(initial) == (4 * SkRasterPipeline_kMaxStride_highp));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_dst, initial);
p.append(SkRasterPipelineOp::merge_loop_mask, mask);
p.append(SkRasterPipelineOp::store_dst, dst);
p.run(0,0,SkOpts::raster_pipeline_highp_stride,1);
const int dr = 0 * SkOpts::raster_pipeline_highp_stride;
const int dg = 1 * SkOpts::raster_pipeline_highp_stride;
const int db = 2 * SkOpts::raster_pipeline_highp_stride;
const int da = 3 * SkOpts::raster_pipeline_highp_stride;
for (size_t index = 0; index < SkOpts::raster_pipeline_highp_stride; ++index) {
// `dg` should contain `dg & mask` in each lane.
REPORTER_ASSERT(r, dst[dg + index] == (initial[dg + index] & mask[index]));
// `dr` and `db` should be unchanged.
REPORTER_ASSERT(r, dst[dr + index] == initial[dr + index]);
REPORTER_ASSERT(r, dst[db + index] == initial[db + index]);
// `da` should contain `dr & dg & gb`.
REPORTER_ASSERT(r, dst[da + index] == (dst[dr+index] & dst[dg+index] & dst[db+index]));
}
}
DEF_TEST(SkRasterPipeline_ReenableLoopMask, r) {
alignas(64) int32_t initial[] = {~0, ~0, ~0, ~0, ~0, 0, ~0, ~0, // dr (condition)
~0, 0, ~0, 0, ~0, ~0, 0, ~0, // dg (loop)
0, ~0, ~0, ~0, 0, 0, 0, ~0, // db (return)
0, 0, ~0, 0, 0, 0, 0, ~0}; // da (combined)
alignas(64) int32_t mask[] = { 0, ~0, 0, 0, 0, 0, ~0, 0};
alignas(64) int32_t dst[4 * SkRasterPipeline_kMaxStride_highp] = {};
static_assert(std::size(initial) == (4 * SkRasterPipeline_kMaxStride_highp));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_dst, initial);
p.append(SkRasterPipelineOp::reenable_loop_mask, mask);
p.append(SkRasterPipelineOp::store_dst, dst);
p.run(0,0,SkOpts::raster_pipeline_highp_stride,1);
const int dr = 0 * SkOpts::raster_pipeline_highp_stride;
const int dg = 1 * SkOpts::raster_pipeline_highp_stride;
const int db = 2 * SkOpts::raster_pipeline_highp_stride;
const int da = 3 * SkOpts::raster_pipeline_highp_stride;
for (size_t index = 0; index < SkOpts::raster_pipeline_highp_stride; ++index) {
// `dg` should contain `dg | mask` in each lane.
REPORTER_ASSERT(r, dst[dg + index] == (initial[dg + index] | mask[index]));
// `dr` and `db` should be unchanged.
REPORTER_ASSERT(r, dst[dr + index] == initial[dr + index]);
REPORTER_ASSERT(r, dst[db + index] == initial[db + index]);
// `da` should contain `dr & dg & gb`.
REPORTER_ASSERT(r, dst[da + index] == (dst[dr+index] & dst[dg+index] & dst[db+index]));
}
}
DEF_TEST(SkRasterPipeline_MaskOffLoopMask, r) {
alignas(64) int32_t initial[] = {~0, ~0, ~0, ~0, ~0, 0, ~0, ~0, // dr (condition)
~0, 0, ~0, ~0, 0, 0, 0, ~0, // dg (loop)
~0, ~0, 0, ~0, 0, 0, ~0, ~0, // db (return)
~0, 0, 0, ~0, 0, 0, 0, ~0}; // da (combined)
alignas(64) int32_t dst[4 * SkRasterPipeline_kMaxStride_highp] = {};
static_assert(std::size(initial) == (4 * SkRasterPipeline_kMaxStride_highp));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_dst, initial);
p.append(SkRasterPipelineOp::mask_off_loop_mask);
p.append(SkRasterPipelineOp::store_dst, dst);
p.run(0,0,SkOpts::raster_pipeline_highp_stride,1);
const int dr = 0 * SkOpts::raster_pipeline_highp_stride;
const int dg = 1 * SkOpts::raster_pipeline_highp_stride;
const int db = 2 * SkOpts::raster_pipeline_highp_stride;
const int da = 3 * SkOpts::raster_pipeline_highp_stride;
for (size_t index = 0; index < SkOpts::raster_pipeline_highp_stride; ++index) {
// `dg` should have masked off any lanes that are currently executing.
int32_t expected = initial[dg + index] & ~initial[da + index];
REPORTER_ASSERT(r, dst[dg + index] == expected);
// `da` should contain `dr & dg & gb`.
expected = dst[dr + index] & dst[dg + index] & dst[db + index];
REPORTER_ASSERT(r, dst[da + index] == expected);
}
}
DEF_TEST(SkRasterPipeline_MaskOffReturnMask, r) {
alignas(64) int32_t initial[] = {~0, ~0, ~0, ~0, ~0, 0, ~0, ~0, // dr (condition)
~0, 0, ~0, ~0, 0, 0, 0, ~0, // dg (loop)
~0, ~0, 0, ~0, 0, 0, ~0, ~0, // db (return)
~0, 0, 0, ~0, 0, 0, 0, ~0}; // da (combined)
alignas(64) int32_t dst[4 * SkRasterPipeline_kMaxStride_highp] = {};
static_assert(std::size(initial) == (4 * SkRasterPipeline_kMaxStride_highp));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_dst, initial);
p.append(SkRasterPipelineOp::mask_off_return_mask);
p.append(SkRasterPipelineOp::store_dst, dst);
p.run(0,0,SkOpts::raster_pipeline_highp_stride,1);
const int dr = 0 * SkOpts::raster_pipeline_highp_stride;
const int dg = 1 * SkOpts::raster_pipeline_highp_stride;
const int db = 2 * SkOpts::raster_pipeline_highp_stride;
const int da = 3 * SkOpts::raster_pipeline_highp_stride;
for (size_t index = 0; index < SkOpts::raster_pipeline_highp_stride; ++index) {
// `db` should have masked off any lanes that are currently executing.
int32_t expected = initial[db + index] & ~initial[da + index];
REPORTER_ASSERT(r, dst[db + index] == expected);
// `da` should contain `dr & dg & gb`.
expected = dst[dr + index] & dst[dg + index] & dst[db + index];
REPORTER_ASSERT(r, dst[da + index] == expected);
}
}
DEF_TEST(SkRasterPipeline_InitLaneMasks, r) {
for (size_t width = 1; width <= SkOpts::raster_pipeline_highp_stride; ++width) {
SkRasterPipeline_<256> p;
// Initialize dRGBA to unrelated values.
SkRasterPipeline_UniformColorCtx uniformCtx;
uniformCtx.a = 0.0f;
uniformCtx.r = 0.25f;
uniformCtx.g = 0.50f;
uniformCtx.b = 0.75f;
p.append(SkRasterPipelineOp::uniform_color_dst, &uniformCtx);
// Overwrite dRGB with lane masks up to the tail width.
p.append(SkRasterPipelineOp::init_lane_masks);
// Use the store_dst command to write out dRGBA for inspection.
alignas(64) int32_t dRGBA[4 * SkRasterPipeline_kMaxStride_highp] = {};
p.append(SkRasterPipelineOp::store_dst, dRGBA);
// Execute our program.
p.run(0,0,width,1);
// Initialized data should look like on/on/on/on (RGBA are all set) and is
// striped by the raster pipeline stride because we wrote it using store_dst.
size_t index = 0;
int32_t* channelR = dRGBA;
int32_t* channelG = channelR + SkOpts::raster_pipeline_highp_stride;
int32_t* channelB = channelG + SkOpts::raster_pipeline_highp_stride;
int32_t* channelA = channelB + SkOpts::raster_pipeline_highp_stride;
for (; index < width; ++index) {
REPORTER_ASSERT(r, *channelR++ == ~0);
REPORTER_ASSERT(r, *channelG++ == ~0);
REPORTER_ASSERT(r, *channelB++ == ~0);
REPORTER_ASSERT(r, *channelA++ == ~0);
}
// The rest of the output array should be untouched (all zero).
for (; index < SkOpts::raster_pipeline_highp_stride; ++index) {
REPORTER_ASSERT(r, *channelR++ == 0);
REPORTER_ASSERT(r, *channelG++ == 0);
REPORTER_ASSERT(r, *channelB++ == 0);
REPORTER_ASSERT(r, *channelA++ == 0);
}
}
}
DEF_TEST(SkRasterPipeline_CopySlotsMasked, r) {
// Allocate space for 5 source slots and 5 dest slots.
alignas(64) float slots[10 * SkRasterPipeline_kMaxStride_highp];
const int srcIndex = 0, dstIndex = 5;
struct CopySlotsOp {
SkRasterPipelineOp stage;
int numSlotsAffected;
};
static const CopySlotsOp kCopyOps[] = {
{SkRasterPipelineOp::copy_slot_masked, 1},
{SkRasterPipelineOp::copy_2_slots_masked, 2},
{SkRasterPipelineOp::copy_3_slots_masked, 3},
{SkRasterPipelineOp::copy_4_slots_masked, 4},
};
static_assert(SkRasterPipeline_kMaxStride_highp == 8);
alignas(64) const int32_t kMask1[8] = {~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0};
alignas(64) const int32_t kMask2[8] = { 0, 0, 0, 0, 0, 0, 0, 0};
alignas(64) const int32_t kMask3[8] = {~0, 0, ~0, ~0, ~0, ~0, 0, ~0};
alignas(64) const int32_t kMask4[8] = { 0, ~0, 0, 0, 0, ~0, ~0, 0};
const int N = SkOpts::raster_pipeline_highp_stride;
for (const CopySlotsOp& op : kCopyOps) {
for (const int32_t* mask : {kMask1, kMask2, kMask3, kMask4}) {
// Initialize the destination slots to 0,1,2.. and the source slots to 1000,1001,1002...
std::iota(&slots[N * dstIndex], &slots[N * (dstIndex + 5)], 0.0f);
std::iota(&slots[N * srcIndex], &slots[N * (srcIndex + 5)], 1000.0f);
// Run `copy_slots_masked` over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
auto* ctx = alloc.make<SkRasterPipeline_BinaryOpCtx>();
ctx->dst = &slots[N * dstIndex];
ctx->src = &slots[N * srcIndex];
p.append(SkRasterPipelineOp::init_lane_masks);
p.append(SkRasterPipelineOp::load_condition_mask, mask);
p.append(op.stage, ctx);
p.run(0,0,N,1);
// Verify that the destination has been overwritten in the mask-on fields, and has not
// been overwritten in the mask-off fields, for each destination slot.
float expectedUnchanged = 0.0f, expectedChanged = 1000.0f;
float* destPtr = &slots[N * dstIndex];
for (int checkSlot = 0; checkSlot < 5; ++checkSlot) {
for (int checkMask = 0; checkMask < N; ++checkMask) {
if (checkSlot < op.numSlotsAffected && mask[checkMask]) {
REPORTER_ASSERT(r, *destPtr == expectedChanged);
} else {
REPORTER_ASSERT(r, *destPtr == expectedUnchanged);
}
++destPtr;
expectedUnchanged += 1.0f;
expectedChanged += 1.0f;
}
}
}
}
}
DEF_TEST(SkRasterPipeline_CopySlotsUnmasked, r) {
// Allocate space for 5 source slots and 5 dest slots.
alignas(64) float slots[10 * SkRasterPipeline_kMaxStride_highp];
const int srcIndex = 0, dstIndex = 5;
const int N = SkOpts::raster_pipeline_highp_stride;
struct CopySlotsOp {
SkRasterPipelineOp stage;
int numSlotsAffected;
};
static const CopySlotsOp kCopyOps[] = {
{SkRasterPipelineOp::copy_slot_unmasked, 1},
{SkRasterPipelineOp::copy_2_slots_unmasked, 2},
{SkRasterPipelineOp::copy_3_slots_unmasked, 3},
{SkRasterPipelineOp::copy_4_slots_unmasked, 4},
};
for (const CopySlotsOp& op : kCopyOps) {
// Initialize the destination slots to 0,1,2.. and the source slots to 1000,1001,1002...
std::iota(&slots[N * dstIndex], &slots[N * (dstIndex + 5)], 0.0f);
std::iota(&slots[N * srcIndex], &slots[N * (srcIndex + 5)], 1000.0f);
// Run `copy_slots_unmasked` over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
auto* ctx = alloc.make<SkRasterPipeline_BinaryOpCtx>();
ctx->dst = &slots[N * dstIndex];
ctx->src = &slots[N * srcIndex];
p.append(op.stage, ctx);
p.run(0,0,1,1);
// Verify that the destination has been overwritten in each slot.
float expectedUnchanged = 0.0f, expectedChanged = 1000.0f;
float* destPtr = &slots[N * dstIndex];
for (int checkSlot = 0; checkSlot < 5; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < op.numSlotsAffected) {
REPORTER_ASSERT(r, *destPtr == expectedChanged);
} else {
REPORTER_ASSERT(r, *destPtr == expectedUnchanged);
}
++destPtr;
expectedUnchanged += 1.0f;
expectedChanged += 1.0f;
}
}
}
}
DEF_TEST(SkRasterPipeline_ZeroSlotsUnmasked, r) {
// Allocate space for 5 dest slots.
alignas(64) float slots[5 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct ZeroSlotsOp {
SkRasterPipelineOp stage;
int numSlotsAffected;
};
static const ZeroSlotsOp kZeroOps[] = {
{SkRasterPipelineOp::zero_slot_unmasked, 1},
{SkRasterPipelineOp::zero_2_slots_unmasked, 2},
{SkRasterPipelineOp::zero_3_slots_unmasked, 3},
{SkRasterPipelineOp::zero_4_slots_unmasked, 4},
};
for (const ZeroSlotsOp& op : kZeroOps) {
// Initialize the destination slots to 1,2,3...
std::iota(&slots[0], &slots[5 * N], 1.0f);
// Run `zero_slots_unmasked` over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
p.append(op.stage, &slots[0]);
p.run(0,0,1,1);
// Verify that the destination has been zeroed out in each slot.
float expectedUnchanged = 1.0f;
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 5; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < op.numSlotsAffected) {
REPORTER_ASSERT(r, *destPtr == 0.0f);
} else {
REPORTER_ASSERT(r, *destPtr == expectedUnchanged);
}
++destPtr;
expectedUnchanged += 1.0f;
}
}
}
}
DEF_TEST(SkRasterPipeline_CopyConstants, r) {
// Allocate space for 5 dest slots.
alignas(64) float slots[5 * SkRasterPipeline_kMaxStride_highp];
float constants[5];
const int N = SkOpts::raster_pipeline_highp_stride;
struct CopySlotsOp {
SkRasterPipelineOp stage;
int numSlotsAffected;
};
static const CopySlotsOp kCopyOps[] = {
{SkRasterPipelineOp::copy_constant, 1},
{SkRasterPipelineOp::copy_2_constants, 2},
{SkRasterPipelineOp::copy_3_constants, 3},
{SkRasterPipelineOp::copy_4_constants, 4},
};
for (const CopySlotsOp& op : kCopyOps) {
// Initialize the destination slots to 1,2,3...
std::iota(&slots[0], &slots[5 * N], 1.0f);
// Initialize the constant buffer to 1000,1001,1002...
std::iota(&constants[0], &constants[5], 1000.0f);
// Run `copy_constants` over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
auto* ctx = alloc.make<SkRasterPipeline_BinaryOpCtx>();
ctx->dst = slots;
ctx->src = constants;
p.append(op.stage, ctx);
p.run(0,0,1,1);
// Verify that our constants have been broadcast into each slot.
float expectedUnchanged = 1.0f;
float expectedChanged = 1000.0f;
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 5; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < op.numSlotsAffected) {
REPORTER_ASSERT(r, *destPtr == expectedChanged);
} else {
REPORTER_ASSERT(r, *destPtr == expectedUnchanged);
}
++destPtr;
expectedUnchanged += 1.0f;
}
expectedChanged += 1.0f;
}
}
}
DEF_TEST(SkRasterPipeline_Swizzle, r) {
// Allocate space for 4 dest slots.
alignas(64) float slots[4 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct TestPattern {
SkRasterPipelineOp stage;
uint16_t swizzle[4];
uint16_t expectation[4];
};
static const TestPattern kPatterns[] = {
{SkRasterPipelineOp::swizzle_1, {3}, {3, 1, 2, 3}}, // (1,2,3,4).w = (4)
{SkRasterPipelineOp::swizzle_2, {1, 0}, {1, 0, 2, 3}}, // (1,2,3,4).yx = (2,1)
{SkRasterPipelineOp::swizzle_3, {2, 2, 2}, {2, 2, 2, 3}}, // (1,2,3,4).zzz = (3,3,3)
{SkRasterPipelineOp::swizzle_4, {0, 0, 1, 2}, {0, 0, 1, 2}}, // (1,2,3,4).xxyz = (1,1,2,3)
};
static_assert(sizeof(TestPattern::swizzle) == sizeof(SkRasterPipeline_SwizzleCtx::offsets));
for (const TestPattern& pattern : kPatterns) {
// Initialize the destination slots to 0,1,2,3...
std::iota(&slots[0], &slots[4 * N], 0.0f);
// Apply the test-pattern swizzle.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
SkRasterPipeline_SwizzleCtx ctx;
ctx.ptr = slots;
for (size_t index = 0; index < std::size(ctx.offsets); ++index) {
ctx.offsets[index] = pattern.swizzle[index] * N * sizeof(float);
}
p.append(pattern.stage, &ctx);
p.run(0,0,1,1);
// Verify that the swizzle has been applied in each slot.
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 4; ++checkSlot) {
float expected = pattern.expectation[checkSlot] * N;
for (int checkLane = 0; checkLane < N; ++checkLane) {
REPORTER_ASSERT(r, *destPtr == expected);
++destPtr;
expected += 1.0f;
}
}
}
}
DEF_TEST(SkRasterPipeline_Shuffle, r) {
// Allocate space for 16 dest slots.
alignas(64) float slots[16 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct TestPattern {
int count;
uint16_t shuffle[16];
uint16_t expectation[16];
};
static const TestPattern kPatterns[] = {
{9, { 0, 3, 6,
1, 4, 7,
2, 5, 8, /* past end: */ 0, 0, 0, 0, 0, 0, 0},
{ 0, 3, 6,
1, 4, 7,
2, 5, 8, /* unchanged: */ 9, 10, 11, 12, 13, 14, 15}},
{16, { 0, 4, 8, 12,
1, 5, 9, 13,
2, 6, 10, 14,
3, 7, 11, 15},
{ 0, 4, 8, 12,
1, 5, 9, 13,
2, 6, 10, 14,
3, 7, 11, 15}},
};
static_assert(sizeof(TestPattern::shuffle) == sizeof(SkRasterPipeline_ShuffleCtx::offsets));
for (const TestPattern& pattern : kPatterns) {
// Initialize the destination slots to 1,2,3...
std::iota(&slots[0], &slots[16 * N], 1.0f);
// Apply the shuffle.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
SkRasterPipeline_ShuffleCtx ctx;
ctx.ptr = slots;
ctx.count = pattern.count;
for (size_t index = 0; index < std::size(ctx.offsets); ++index) {
ctx.offsets[index] = pattern.shuffle[index] * N * sizeof(float);
}
p.append(SkRasterPipelineOp::shuffle, &ctx);
p.run(0,0,1,1);
// Verify that the shuffle has been applied in each slot.
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 16; ++checkSlot) {
float expected = pattern.expectation[checkSlot] * N + 1;
for (int checkLane = 0; checkLane < N; ++checkLane) {
REPORTER_ASSERT(r, *destPtr == expected);
++destPtr;
expected += 1.0f;
}
}
}
}
DEF_TEST(SkRasterPipeline_FloatArithmeticWithNSlots, r) {
// Allocate space for 5 dest and 5 source slots.
alignas(64) float slots[10 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct ArithmeticOp {
SkRasterPipelineOp stage;
std::function<float(float, float)> verify;
};
static const ArithmeticOp kArithmeticOps[] = {
{SkRasterPipelineOp::add_n_floats, [](float a, float b) { return a + b; }},
{SkRasterPipelineOp::sub_n_floats, [](float a, float b) { return a - b; }},
{SkRasterPipelineOp::mul_n_floats, [](float a, float b) { return a * b; }},
{SkRasterPipelineOp::div_n_floats, [](float a, float b) { return a / b; }},
};
for (const ArithmeticOp& op : kArithmeticOps) {
for (int numSlotsAffected = 1; numSlotsAffected <= 5; ++numSlotsAffected) {
// Initialize the slot values to 1,2,3...
std::iota(&slots[0], &slots[10 * N], 1.0f);
// Run the arithmetic op over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
auto* ctx = alloc.make<SkRasterPipeline_BinaryOpCtx>();
ctx->dst = &slots[0];
ctx->src = &slots[numSlotsAffected * N];
p.append(op.stage, ctx);
p.run(0,0,1,1);
// Verify that the affected slots now equal (1,2,3...) op (4,5,6...).
float leftValue = 1.0f;
float rightValue = float(numSlotsAffected * N) + 1.0f;
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 10; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < numSlotsAffected) {
REPORTER_ASSERT(r, *destPtr == op.verify(leftValue, rightValue));
} else {
REPORTER_ASSERT(r, *destPtr == leftValue);
}
++destPtr;
leftValue += 1.0f;
rightValue += 1.0f;
}
}
}
}
}
DEF_TEST(SkRasterPipeline_FloatArithmeticWithHardcodedSlots, r) {
// Allocate space for 5 dest and 5 source slots.
alignas(64) float slots[10 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct ArithmeticOp {
SkRasterPipelineOp stage;
int numSlotsAffected;
std::function<float(float, float)> verify;
};
static const ArithmeticOp kArithmeticOps[] = {
{SkRasterPipelineOp::add_float, 1, [](float a, float b) { return a + b; }},
{SkRasterPipelineOp::sub_float, 1, [](float a, float b) { return a - b; }},
{SkRasterPipelineOp::mul_float, 1, [](float a, float b) { return a * b; }},
{SkRasterPipelineOp::div_float, 1, [](float a, float b) { return a / b; }},
{SkRasterPipelineOp::add_2_floats, 2, [](float a, float b) { return a + b; }},
{SkRasterPipelineOp::sub_2_floats, 2, [](float a, float b) { return a - b; }},
{SkRasterPipelineOp::mul_2_floats, 2, [](float a, float b) { return a * b; }},
{SkRasterPipelineOp::div_2_floats, 2, [](float a, float b) { return a / b; }},
{SkRasterPipelineOp::add_3_floats, 3, [](float a, float b) { return a + b; }},
{SkRasterPipelineOp::sub_3_floats, 3, [](float a, float b) { return a - b; }},
{SkRasterPipelineOp::mul_3_floats, 3, [](float a, float b) { return a * b; }},
{SkRasterPipelineOp::div_3_floats, 3, [](float a, float b) { return a / b; }},
{SkRasterPipelineOp::add_4_floats, 4, [](float a, float b) { return a + b; }},
{SkRasterPipelineOp::sub_4_floats, 4, [](float a, float b) { return a - b; }},
{SkRasterPipelineOp::mul_4_floats, 4, [](float a, float b) { return a * b; }},
{SkRasterPipelineOp::div_4_floats, 4, [](float a, float b) { return a / b; }},
};
for (const ArithmeticOp& op : kArithmeticOps) {
// Initialize the slot values to 1,2,3...
std::iota(&slots[0], &slots[10 * N], 1.0f);
// Run the arithmetic op over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
p.append(op.stage, &slots[0]);
p.run(0,0,1,1);
// Verify that the affected slots now equal (1,2,3...) op (4,5,6...).
float leftValue = 1.0f;
float rightValue = float(op.numSlotsAffected * N) + 1.0f;
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 10; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < op.numSlotsAffected) {
REPORTER_ASSERT(r, *destPtr == op.verify(leftValue, rightValue));
} else {
REPORTER_ASSERT(r, *destPtr == leftValue);
}
++destPtr;
leftValue += 1.0f;
rightValue += 1.0f;
}
}
}
}
static int divide_unsigned(int a, int b) { return int(uint32_t(a) / uint32_t(b)); }
static int min_unsigned (int a, int b) { return uint32_t(a) < uint32_t(b) ? a : b; }
static int max_unsigned (int a, int b) { return uint32_t(a) > uint32_t(b) ? a : b; }
DEF_TEST(SkRasterPipeline_IntArithmeticWithNSlots, r) {
// Allocate space for 5 dest and 5 source slots.
alignas(64) int slots[10 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct ArithmeticOp {
SkRasterPipelineOp stage;
std::function<int(int, int)> verify;
};
static const ArithmeticOp kArithmeticOps[] = {
{SkRasterPipelineOp::add_n_ints, [](int a, int b) { return a + b; }},
{SkRasterPipelineOp::sub_n_ints, [](int a, int b) { return a - b; }},
{SkRasterPipelineOp::mul_n_ints, [](int a, int b) { return a * b; }},
{SkRasterPipelineOp::div_n_ints, [](int a, int b) { return a / b; }},
{SkRasterPipelineOp::div_n_uints, divide_unsigned},
{SkRasterPipelineOp::bitwise_and_n_ints, [](int a, int b) { return a & b; }},
{SkRasterPipelineOp::bitwise_or_n_ints, [](int a, int b) { return a | b; }},
{SkRasterPipelineOp::bitwise_xor_n_ints, [](int a, int b) { return a ^ b; }},
{SkRasterPipelineOp::min_n_ints, [](int a, int b) { return a < b ? a : b; }},
{SkRasterPipelineOp::min_n_uints, min_unsigned},
{SkRasterPipelineOp::max_n_ints, [](int a, int b) { return a > b ? a : b; }},
{SkRasterPipelineOp::max_n_uints, max_unsigned},
};
for (const ArithmeticOp& op : kArithmeticOps) {
for (int numSlotsAffected = 1; numSlotsAffected <= 5; ++numSlotsAffected) {
// Initialize the slot values to 1,2,3...
std::iota(&slots[0], &slots[10 * N], 1);
int leftValue = slots[0];
int rightValue = slots[numSlotsAffected * N];
// Run the op (e.g. `add_n_ints`) over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
auto* ctx = alloc.make<SkRasterPipeline_BinaryOpCtx>();
ctx->dst = (float*)&slots[0];
ctx->src = (float*)&slots[numSlotsAffected * N];
p.append(op.stage, ctx);
p.run(0,0,1,1);
// Verify that the affected slots now equal (1,2,3...) op (4,5,6...).
int* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 10; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < numSlotsAffected) {
REPORTER_ASSERT(r, *destPtr == op.verify(leftValue, rightValue));
} else {
REPORTER_ASSERT(r, *destPtr == leftValue);
}
++destPtr;
leftValue += 1;
rightValue += 1;
}
}
}
}
}
DEF_TEST(SkRasterPipeline_IntArithmeticWithHardcodedSlots, r) {
// Allocate space for 5 dest and 5 source slots.
alignas(64) int slots[10 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct ArithmeticOp {
SkRasterPipelineOp stage;
int numSlotsAffected;
std::function<int(int, int)> verify;
};
static const ArithmeticOp kArithmeticOps[] = {
{SkRasterPipelineOp::add_int, 1, [](int a, int b) { return a + b; }},
{SkRasterPipelineOp::sub_int, 1, [](int a, int b) { return a - b; }},
{SkRasterPipelineOp::mul_int, 1, [](int a, int b) { return a * b; }},
{SkRasterPipelineOp::div_int, 1, [](int a, int b) { return a / b; }},
{SkRasterPipelineOp::div_uint, 1, divide_unsigned},
{SkRasterPipelineOp::bitwise_and_int, 1, [](int a, int b) { return a & b; }},
{SkRasterPipelineOp::bitwise_or_int, 1, [](int a, int b) { return a | b; }},
{SkRasterPipelineOp::bitwise_xor_int, 1, [](int a, int b) { return a ^ b; }},
{SkRasterPipelineOp::min_int, 1, [](int a, int b) { return a < b ? a: b; }},
{SkRasterPipelineOp::min_uint, 1, min_unsigned},
{SkRasterPipelineOp::max_int, 1, [](int a, int b) { return a > b ? a: b; }},
{SkRasterPipelineOp::max_uint, 1, max_unsigned},
{SkRasterPipelineOp::add_2_ints, 2, [](int a, int b) { return a + b; }},
{SkRasterPipelineOp::sub_2_ints, 2, [](int a, int b) { return a - b; }},
{SkRasterPipelineOp::mul_2_ints, 2, [](int a, int b) { return a * b; }},
{SkRasterPipelineOp::div_2_ints, 2, [](int a, int b) { return a / b; }},
{SkRasterPipelineOp::div_2_uints, 2, divide_unsigned},
{SkRasterPipelineOp::bitwise_and_2_ints, 2, [](int a, int b) { return a & b; }},
{SkRasterPipelineOp::bitwise_or_2_ints, 2, [](int a, int b) { return a | b; }},
{SkRasterPipelineOp::bitwise_xor_2_ints, 2, [](int a, int b) { return a ^ b; }},
{SkRasterPipelineOp::min_2_ints, 2, [](int a, int b) { return a < b ? a: b; }},
{SkRasterPipelineOp::min_2_uints, 2, min_unsigned},
{SkRasterPipelineOp::max_2_ints, 2, [](int a, int b) { return a > b ? a: b; }},
{SkRasterPipelineOp::max_2_uints, 2, max_unsigned},
{SkRasterPipelineOp::add_3_ints, 3, [](int a, int b) { return a + b; }},
{SkRasterPipelineOp::sub_3_ints, 3, [](int a, int b) { return a - b; }},
{SkRasterPipelineOp::mul_3_ints, 3, [](int a, int b) { return a * b; }},
{SkRasterPipelineOp::div_3_ints, 3, [](int a, int b) { return a / b; }},
{SkRasterPipelineOp::div_3_uints, 3, divide_unsigned},
{SkRasterPipelineOp::bitwise_and_3_ints, 3, [](int a, int b) { return a & b; }},
{SkRasterPipelineOp::bitwise_or_3_ints, 3, [](int a, int b) { return a | b; }},
{SkRasterPipelineOp::bitwise_xor_3_ints, 3, [](int a, int b) { return a ^ b; }},
{SkRasterPipelineOp::min_3_ints, 3, [](int a, int b) { return a < b ? a: b; }},
{SkRasterPipelineOp::min_3_uints, 3, min_unsigned},
{SkRasterPipelineOp::max_3_ints, 3, [](int a, int b) { return a > b ? a: b; }},
{SkRasterPipelineOp::max_3_uints, 3, max_unsigned},
{SkRasterPipelineOp::add_4_ints, 4, [](int a, int b) { return a + b; }},
{SkRasterPipelineOp::sub_4_ints, 4, [](int a, int b) { return a - b; }},
{SkRasterPipelineOp::mul_4_ints, 4, [](int a, int b) { return a * b; }},
{SkRasterPipelineOp::div_4_ints, 4, [](int a, int b) { return a / b; }},
{SkRasterPipelineOp::div_4_uints, 4, divide_unsigned},
{SkRasterPipelineOp::bitwise_and_4_ints, 4, [](int a, int b) { return a & b; }},
{SkRasterPipelineOp::bitwise_or_4_ints, 4, [](int a, int b) { return a | b; }},
{SkRasterPipelineOp::bitwise_xor_4_ints, 4, [](int a, int b) { return a ^ b; }},
{SkRasterPipelineOp::min_4_ints, 4, [](int a, int b) { return a < b ? a: b; }},
{SkRasterPipelineOp::min_4_uints, 4, min_unsigned},
{SkRasterPipelineOp::max_4_ints, 4, [](int a, int b) { return a > b ? a: b; }},
{SkRasterPipelineOp::max_4_uints, 4, max_unsigned},
};
for (const ArithmeticOp& op : kArithmeticOps) {
// Initialize the slot values to 1,2,3...
std::iota(&slots[0], &slots[10 * N], 1);
int leftValue = slots[0];
int rightValue = slots[op.numSlotsAffected * N];
// Run the op (e.g. `add_2_ints`) over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
p.append(op.stage, &slots[0]);
p.run(0,0,1,1);
// Verify that the affected slots now equal (1,2,3...) op (4,5,6...).
int* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 10; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < op.numSlotsAffected) {
REPORTER_ASSERT(r, *destPtr == op.verify(leftValue, rightValue));
} else {
REPORTER_ASSERT(r, *destPtr == leftValue);
}
++destPtr;
leftValue += 1;
rightValue += 1;
}
}
}
}
DEF_TEST(SkRasterPipeline_CompareFloatsWithNSlots, r) {
// Allocate space for 5 dest and 5 source slots.
alignas(64) float slots[10 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct CompareOp {
SkRasterPipelineOp stage;
std::function<bool(float, float)> verify;
};
static const CompareOp kCompareOps[] = {
{SkRasterPipelineOp::cmpeq_n_floats, [](float a, float b) { return a == b; }},
{SkRasterPipelineOp::cmpne_n_floats, [](float a, float b) { return a != b; }},
{SkRasterPipelineOp::cmplt_n_floats, [](float a, float b) { return a < b; }},
{SkRasterPipelineOp::cmple_n_floats, [](float a, float b) { return a <= b; }},
};
for (const CompareOp& op : kCompareOps) {
for (int numSlotsAffected = 1; numSlotsAffected <= 5; ++numSlotsAffected) {
// Initialize the slot values to 0,1,2,0,1,2,0,1,2...
for (int index = 0; index < 10 * N; ++index) {
slots[index] = std::fmod(index, 3.0f);
}
float leftValue = slots[0];
float rightValue = slots[numSlotsAffected * N];
// Run the comparison op over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
auto* ctx = alloc.make<SkRasterPipeline_BinaryOpCtx>();
ctx->dst = &slots[0];
ctx->src = &slots[numSlotsAffected * N];
p.append(op.stage, ctx);
p.run(0, 0, 1, 1);
// Verify that the affected slots now contain "(0,1,2,0...) op (1,2,0,1...)".
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 10; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < numSlotsAffected) {
bool compareIsTrue = op.verify(leftValue, rightValue);
REPORTER_ASSERT(r, *(int*)destPtr == (compareIsTrue ? ~0 : 0));
} else {
REPORTER_ASSERT(r, *destPtr == leftValue);
}
++destPtr;
leftValue = std::fmod(leftValue + 1.0f, 3.0f);
rightValue = std::fmod(rightValue + 1.0f, 3.0f);
}
}
}
}
}
DEF_TEST(SkRasterPipeline_CompareFloatsWithHardcodedSlots, r) {
// Allocate space for 5 dest and 5 source slots.
alignas(64) float slots[10 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct CompareOp {
SkRasterPipelineOp stage;
int numSlotsAffected;
std::function<bool(float, float)> verify;
};
static const CompareOp kCompareOps[] = {
{SkRasterPipelineOp::cmpeq_float, 1, [](float a, float b) { return a == b; }},
{SkRasterPipelineOp::cmpne_float, 1, [](float a, float b) { return a != b; }},
{SkRasterPipelineOp::cmplt_float, 1, [](float a, float b) { return a < b; }},
{SkRasterPipelineOp::cmple_float, 1, [](float a, float b) { return a <= b; }},
{SkRasterPipelineOp::cmpeq_2_floats, 2, [](float a, float b) { return a == b; }},
{SkRasterPipelineOp::cmpne_2_floats, 2, [](float a, float b) { return a != b; }},
{SkRasterPipelineOp::cmplt_2_floats, 2, [](float a, float b) { return a < b; }},
{SkRasterPipelineOp::cmple_2_floats, 2, [](float a, float b) { return a <= b; }},
{SkRasterPipelineOp::cmpeq_3_floats, 3, [](float a, float b) { return a == b; }},
{SkRasterPipelineOp::cmpne_3_floats, 3, [](float a, float b) { return a != b; }},
{SkRasterPipelineOp::cmplt_3_floats, 3, [](float a, float b) { return a < b; }},
{SkRasterPipelineOp::cmple_3_floats, 3, [](float a, float b) { return a <= b; }},
{SkRasterPipelineOp::cmpeq_4_floats, 4, [](float a, float b) { return a == b; }},
{SkRasterPipelineOp::cmpne_4_floats, 4, [](float a, float b) { return a != b; }},
{SkRasterPipelineOp::cmplt_4_floats, 4, [](float a, float b) { return a < b; }},
{SkRasterPipelineOp::cmple_4_floats, 4, [](float a, float b) { return a <= b; }},
};
for (const CompareOp& op : kCompareOps) {
// Initialize the slot values to 0,1,2,0,1,2,0,1,2...
for (int index = 0; index < 10 * N; ++index) {
slots[index] = std::fmod(index, 3.0f);
}
float leftValue = slots[0];
float rightValue = slots[op.numSlotsAffected * N];
// Run the comparison op over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
p.append(op.stage, &slots[0]);
p.run(0, 0, 1, 1);
// Verify that the affected slots now contain "(0,1,2,0...) op (1,2,0,1...)".
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 10; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < op.numSlotsAffected) {
bool compareIsTrue = op.verify(leftValue, rightValue);
REPORTER_ASSERT(r, *(int*)destPtr == (compareIsTrue ? ~0 : 0));
} else {
REPORTER_ASSERT(r, *destPtr == leftValue);
}
++destPtr;
leftValue = std::fmod(leftValue + 1.0f, 3.0f);
rightValue = std::fmod(rightValue + 1.0f, 3.0f);
}
}
}
}
static bool compare_lt_uint (int a, int b) { return uint32_t(a) < uint32_t(b); }
static bool compare_lteq_uint(int a, int b) { return uint32_t(a) <= uint32_t(b); }
DEF_TEST(SkRasterPipeline_CompareIntsWithNSlots, r) {
// Allocate space for 5 dest and 5 source slots.
alignas(64) int slots[10 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct CompareOp {
SkRasterPipelineOp stage;
std::function<bool(int, int)> verify;
};
static const CompareOp kCompareOps[] = {
{SkRasterPipelineOp::cmpeq_n_ints, [](int a, int b) { return a == b; }},
{SkRasterPipelineOp::cmpne_n_ints, [](int a, int b) { return a != b; }},
{SkRasterPipelineOp::cmplt_n_ints, [](int a, int b) { return a < b; }},
{SkRasterPipelineOp::cmple_n_ints, [](int a, int b) { return a <= b; }},
{SkRasterPipelineOp::cmplt_n_uints, compare_lt_uint},
{SkRasterPipelineOp::cmple_n_uints, compare_lteq_uint},
};
for (const CompareOp& op : kCompareOps) {
for (int numSlotsAffected = 1; numSlotsAffected <= 5; ++numSlotsAffected) {
// Initialize the slot values to -1,0,1,-1,0,1,-1,0,1,-1...
for (int index = 0; index < 10 * N; ++index) {
slots[index] = (index % 3) - 1;
}
int leftValue = slots[0];
int rightValue = slots[numSlotsAffected * N];
// Run the comparison op over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
auto* ctx = alloc.make<SkRasterPipeline_BinaryOpCtx>();
ctx->dst = (float*)&slots[0];
ctx->src = (float*)&slots[numSlotsAffected * N];
p.append(op.stage, ctx);
p.run(0, 0, 1, 1);
// Verify that the affected slots now contain "(-1,0,1,-1...) op (0,1,-1,0...)".
int* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 10; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < numSlotsAffected) {
bool compareIsTrue = op.verify(leftValue, rightValue);
REPORTER_ASSERT(r, *destPtr == (compareIsTrue ? ~0 : 0));
} else {
REPORTER_ASSERT(r, *destPtr == leftValue);
}
++destPtr;
if (++leftValue == 2) {
leftValue = -1;
}
if (++rightValue == 2) {
rightValue = -1;
}
}
}
}
}
}
DEF_TEST(SkRasterPipeline_CompareIntsWithHardcodedSlots, r) {
// Allocate space for 5 dest and 5 source slots.
alignas(64) int slots[10 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct CompareOp {
SkRasterPipelineOp stage;
int numSlotsAffected;
std::function<bool(int, int)> verify;
};
static const CompareOp kCompareOps[] = {
{SkRasterPipelineOp::cmpeq_int, 1, [](int a, int b) { return a == b; }},
{SkRasterPipelineOp::cmpne_int, 1, [](int a, int b) { return a != b; }},
{SkRasterPipelineOp::cmplt_int, 1, [](int a, int b) { return a < b; }},
{SkRasterPipelineOp::cmple_int, 1, [](int a, int b) { return a <= b; }},
{SkRasterPipelineOp::cmplt_uint, 1, compare_lt_uint},
{SkRasterPipelineOp::cmple_uint, 1, compare_lteq_uint},
{SkRasterPipelineOp::cmpeq_2_ints, 2, [](int a, int b) { return a == b; }},
{SkRasterPipelineOp::cmpne_2_ints, 2, [](int a, int b) { return a != b; }},
{SkRasterPipelineOp::cmplt_2_ints, 2, [](int a, int b) { return a < b; }},
{SkRasterPipelineOp::cmple_2_ints, 2, [](int a, int b) { return a <= b; }},
{SkRasterPipelineOp::cmplt_2_uints, 2, compare_lt_uint},
{SkRasterPipelineOp::cmple_2_uints, 2, compare_lteq_uint},
{SkRasterPipelineOp::cmpeq_3_ints, 3, [](int a, int b) { return a == b; }},
{SkRasterPipelineOp::cmpne_3_ints, 3, [](int a, int b) { return a != b; }},
{SkRasterPipelineOp::cmplt_3_ints, 3, [](int a, int b) { return a < b; }},
{SkRasterPipelineOp::cmple_3_ints, 3, [](int a, int b) { return a <= b; }},
{SkRasterPipelineOp::cmplt_3_uints, 3, compare_lt_uint},
{SkRasterPipelineOp::cmple_3_uints, 3, compare_lteq_uint},
{SkRasterPipelineOp::cmpeq_4_ints, 4, [](int a, int b) { return a == b; }},
{SkRasterPipelineOp::cmpne_4_ints, 4, [](int a, int b) { return a != b; }},
{SkRasterPipelineOp::cmplt_4_ints, 4, [](int a, int b) { return a < b; }},
{SkRasterPipelineOp::cmple_4_ints, 4, [](int a, int b) { return a <= b; }},
{SkRasterPipelineOp::cmplt_4_uints, 4, compare_lt_uint},
{SkRasterPipelineOp::cmple_4_uints, 4, compare_lteq_uint},
};
for (const CompareOp& op : kCompareOps) {
// Initialize the slot values to -1,0,1,-1,0,1,-1,0,1,-1...
for (int index = 0; index < 10 * N; ++index) {
slots[index] = (index % 3) - 1;
}
int leftValue = slots[0];
int rightValue = slots[op.numSlotsAffected * N];
// Run the comparison op over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
p.append(op.stage, &slots[0]);
p.run(0, 0, 1, 1);
// Verify that the affected slots now contain "(0,1,2,0...) op (1,2,0,1...)".
int* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 10; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < op.numSlotsAffected) {
bool compareIsTrue = op.verify(leftValue, rightValue);
REPORTER_ASSERT(r, *destPtr == (compareIsTrue ? ~0 : 0));
} else {
REPORTER_ASSERT(r, *destPtr == leftValue);
}
++destPtr;
if (++leftValue == 2) {
leftValue = -1;
}
if (++rightValue == 2) {
rightValue = -1;
}
}
}
}
}
static int to_float(int a) { return sk_bit_cast<int>((float)a); }
DEF_TEST(SkRasterPipeline_UnaryIntOps, r) {
// Allocate space for 5 slots.
alignas(64) int slots[5 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct UnaryOp {
SkRasterPipelineOp stage;
int numSlotsAffected;
std::function<int(int)> verify;
};
static const UnaryOp kUnaryOps[] = {
{SkRasterPipelineOp::bitwise_not_int, 1, [](int a) { return ~a; }},
{SkRasterPipelineOp::bitwise_not_2_ints, 2, [](int a) { return ~a; }},
{SkRasterPipelineOp::bitwise_not_3_ints, 3, [](int a) { return ~a; }},
{SkRasterPipelineOp::bitwise_not_4_ints, 4, [](int a) { return ~a; }},
{SkRasterPipelineOp::cast_to_float_from_int, 1, to_float},
{SkRasterPipelineOp::cast_to_float_from_2_ints, 2, to_float},
{SkRasterPipelineOp::cast_to_float_from_3_ints, 3, to_float},
{SkRasterPipelineOp::cast_to_float_from_4_ints, 4, to_float},
{SkRasterPipelineOp::abs_int, 1, [](int a) { return a < 0 ? -a : a; }},
{SkRasterPipelineOp::abs_2_ints, 2, [](int a) { return a < 0 ? -a : a; }},
{SkRasterPipelineOp::abs_3_ints, 3, [](int a) { return a < 0 ? -a : a; }},
{SkRasterPipelineOp::abs_4_ints, 4, [](int a) { return a < 0 ? -a : a; }},
};
for (const UnaryOp& op : kUnaryOps) {
// Initialize the slot values to -10,-9,-8...
std::iota(&slots[0], &slots[5 * N], -10);
int inputValue = slots[0];
// Run the unary op over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
p.append(op.stage, &slots[0]);
p.run(0, 0, 1, 1);
// Verify that the destination slots have been updated.
int* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 5; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < op.numSlotsAffected) {
int expected = op.verify(inputValue);
REPORTER_ASSERT(r, *destPtr == expected);
} else {
REPORTER_ASSERT(r, *destPtr == inputValue);
}
++destPtr;
++inputValue;
}
}
}
}
static float to_int(float a) { return sk_bit_cast<float>((int)a); }
static float to_uint(float a) { return sk_bit_cast<float>((unsigned int)a); }
DEF_TEST(SkRasterPipeline_UnaryFloatOps, r) {
// Allocate space for 5 slots.
alignas(64) float slots[5 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct UnaryOp {
SkRasterPipelineOp stage;
int numSlotsAffected;
std::function<float(float)> verify;
};
static const UnaryOp kUnaryOps[] = {
{SkRasterPipelineOp::cast_to_int_from_float, 1, to_int},
{SkRasterPipelineOp::cast_to_int_from_2_floats, 2, to_int},
{SkRasterPipelineOp::cast_to_int_from_3_floats, 3, to_int},
{SkRasterPipelineOp::cast_to_int_from_4_floats, 4, to_int},
{SkRasterPipelineOp::cast_to_uint_from_float, 1, to_uint},
{SkRasterPipelineOp::cast_to_uint_from_2_floats, 2, to_uint},
{SkRasterPipelineOp::cast_to_uint_from_3_floats, 3, to_uint},
{SkRasterPipelineOp::cast_to_uint_from_4_floats, 4, to_uint},
{SkRasterPipelineOp::abs_float, 1, [](float a) { return a < 0 ? -a : a; }},
{SkRasterPipelineOp::abs_2_floats, 2, [](float a) { return a < 0 ? -a : a; }},
{SkRasterPipelineOp::abs_3_floats, 3, [](float a) { return a < 0 ? -a : a; }},
{SkRasterPipelineOp::abs_4_floats, 4, [](float a) { return a < 0 ? -a : a; }},
{SkRasterPipelineOp::floor_float, 1, [](float a) { return floorf(a); }},
{SkRasterPipelineOp::floor_2_floats, 2, [](float a) { return floorf(a); }},
{SkRasterPipelineOp::floor_3_floats, 3, [](float a) { return floorf(a); }},
{SkRasterPipelineOp::floor_4_floats, 4, [](float a) { return floorf(a); }},
{SkRasterPipelineOp::ceil_float, 1, [](float a) { return ceilf(a); }},
{SkRasterPipelineOp::ceil_2_floats, 2, [](float a) { return ceilf(a); }},
{SkRasterPipelineOp::ceil_3_floats, 3, [](float a) { return ceilf(a); }},
{SkRasterPipelineOp::ceil_4_floats, 4, [](float a) { return ceilf(a); }},
};
for (const UnaryOp& op : kUnaryOps) {
// The result of some ops are undefined with negative inputs, so only test positive values.
bool positiveOnly = (op.stage == SkRasterPipelineOp::cast_to_uint_from_float ||
op.stage == SkRasterPipelineOp::cast_to_uint_from_2_floats ||
op.stage == SkRasterPipelineOp::cast_to_uint_from_3_floats ||
op.stage == SkRasterPipelineOp::cast_to_uint_from_4_floats);
float iotaStart = positiveOnly ? 1.0f : -9.75f;
std::iota(&slots[0], &slots[5 * N], iotaStart);
float inputValue = slots[0];
// Run the unary op over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
p.append(op.stage, &slots[0]);
p.run(0, 0, 1, 1);
// Verify that the destination slots have been updated.
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 5; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
if (checkSlot < op.numSlotsAffected) {
float expected = op.verify(inputValue);
// The casting tests can generate NaN, depending on the input value, so a value
// match (via ==) might not succeed.
// The ceil tests can generate negative zeros _sometimes_, depending on the
// exact implementation of ceil(), so a bitwise match might not succeed.
// Because of this, we allow either a value match or a bitwise match.
bool bitwiseMatch = (0 == memcmp(destPtr, &expected, sizeof(float)));
bool valueMatch = (*destPtr == expected);
REPORTER_ASSERT(r, valueMatch || bitwiseMatch);
} else {
REPORTER_ASSERT(r, *destPtr == inputValue);
}
++destPtr;
++inputValue;
}
}
}
}
static float to_mix_weight(float value) {
// Convert a positive value to a mix-weight (a number between 0 and 1).
value /= 16.0f;
return value - std::floor(value);
}
DEF_TEST(SkRasterPipeline_MixTest, r) {
// Allocate space for 5 dest and 10 source slots.
alignas(64) float slots[15 * SkRasterPipeline_kMaxStride_highp];
const int N = SkOpts::raster_pipeline_highp_stride;
struct MixOp {
int numSlotsAffected;
std::function<void(SkRasterPipeline*, SkArenaAlloc*)> append;
};
static const MixOp kMixOps[] = {
{1, [&](SkRasterPipeline* p, SkArenaAlloc* alloc) {
p->append(SkRasterPipelineOp::mix_float, slots);
}},
{2, [&](SkRasterPipeline* p, SkArenaAlloc* alloc) {
p->append(SkRasterPipelineOp::mix_2_floats, slots);
}},
{3, [&](SkRasterPipeline* p, SkArenaAlloc* alloc) {
p->append(SkRasterPipelineOp::mix_3_floats, slots);
}},
{4, [&](SkRasterPipeline* p, SkArenaAlloc* alloc) {
p->append(SkRasterPipelineOp::mix_4_floats, slots);
}},
{5, [&](SkRasterPipeline* p, SkArenaAlloc* alloc) {
auto* ctx = alloc->make<SkRasterPipeline_TernaryOpCtx>();
ctx->dst = &slots[0];
ctx->src0 = &slots[5 * N];
ctx->src1 = &slots[10 * N];
p->append(SkRasterPipelineOp::mix_n_floats, ctx);
}},
};
for (const MixOp& op : kMixOps) {
// Initialize the values to 1,2,3...
std::iota(&slots[0], &slots[15 * N], 1.0f);
float fromValue = slots[0];
float toValue = slots[1 * op.numSlotsAffected * N];
float weightValue = slots[2 * op.numSlotsAffected * N];
// The third group of values (the weight) must be between zero and one.
for (int idx = 2 * op.numSlotsAffected * N; idx < 3 * op.numSlotsAffected * N; ++idx) {
slots[idx] = to_mix_weight(slots[idx]);
}
// Run the mix op over our data.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
op.append(&p, &alloc);
p.run(0,0,1,1);
// Verify that the affected slots now equal mix({1,2...}, {3,4...}, {0.25, 0.3125...).
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < op.numSlotsAffected; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
float checkValue = (toValue - fromValue) * to_mix_weight(weightValue) + fromValue;
REPORTER_ASSERT(r, *destPtr == checkValue);
++destPtr;
fromValue += 1.0f;
toValue += 1.0f;
weightValue += 1.0f;
}
}
}
}
DEF_TEST(SkRasterPipeline_Jump, r) {
// Allocate space for 4 slots.
alignas(64) float slots[4 * SkRasterPipeline_kMaxStride_highp] = {};
const int N = SkOpts::raster_pipeline_highp_stride;
alignas(64) static constexpr float kColorDarkRed[4] = {0.5f, 0.0f, 0.0f, 0.75f};
alignas(64) static constexpr float kColorGreen[4] = {0.0f, 1.0f, 0.0f, 1.0f};
const int offset = 2;
// Make a program which jumps over an append_constant_color op.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
p.append_constant_color(&alloc, kColorGreen); // assign green
p.append(SkRasterPipelineOp::jump, &offset); // jump over the dark-red color assignment
p.append_constant_color(&alloc, kColorDarkRed); // (not executed)
p.append(SkRasterPipelineOp::store_src, slots); // store the result so we can check it
p.run(0,0,1,1);
// Verify that the slots contain green.
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 4; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
REPORTER_ASSERT(r, *destPtr == kColorGreen[checkSlot]);
++destPtr;
}
}
}
DEF_TEST(SkRasterPipeline_BranchIfAnyActiveLanes, r) {
// Allocate space for 4 slots.
alignas(64) float slots[4 * SkRasterPipeline_kMaxStride_highp] = {};
const int N = SkOpts::raster_pipeline_highp_stride;
alignas(64) static constexpr float kColorDarkRed[4] = {0.5f, 0.0f, 0.0f, 0.75f};
alignas(64) static constexpr float kColorGreen[4] = {0.0f, 1.0f, 0.0f, 1.0f};
const int offset = 2;
// An array of all zeros.
alignas(64) static constexpr int32_t kNoLanesActive[4 * SkRasterPipeline_kMaxStride_highp] = {};
// An array of all zeros, except for a single ~0 in the first dA slot.
alignas(64) int32_t oneLaneActive[4 * SkRasterPipeline_kMaxStride_highp] = {};
oneLaneActive[3*N] = ~0;
// Make a program which conditionally branches past two append_constant_color ops.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
p.append_constant_color(&alloc, kColorDarkRed); // set the color to dark red
p.append(SkRasterPipelineOp::load_dst, kNoLanesActive); // make no lanes active
p.append(SkRasterPipelineOp::branch_if_any_active_lanes, &offset); // do not skip past next line
p.append_constant_color(&alloc, kColorGreen); // set the color to green
p.append(SkRasterPipelineOp::load_dst, oneLaneActive); // set one lane active
p.append(SkRasterPipelineOp::branch_if_any_active_lanes, &offset); // skip past next line
p.append_constant_color(&alloc, kColorDarkRed); // (not executed)
p.append(SkRasterPipelineOp::init_lane_masks); // set all lanes active
p.append(SkRasterPipelineOp::branch_if_any_active_lanes, &offset); // skip past next line
p.append_constant_color(&alloc, kColorDarkRed); // (not executed)
p.append(SkRasterPipelineOp::store_src, slots); // store final color
p.run(0,0,1,1);
// Verify that the slots contain green.
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 4; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
REPORTER_ASSERT(r, *destPtr == kColorGreen[checkSlot]);
++destPtr;
}
}
}
DEF_TEST(SkRasterPipeline_BranchIfNoActiveLanes, r) {
// Allocate space for 4 slots.
alignas(64) float slots[4 * SkRasterPipeline_kMaxStride_highp] = {};
const int N = SkOpts::raster_pipeline_highp_stride;
alignas(64) static constexpr float kColorBlack[4] = {0.0f, 0.0f, 0.0f, 0.0f};
alignas(64) static constexpr float kColorRed[4] = {1.0f, 0.0f, 0.0f, 1.0f};
alignas(64) static constexpr float kColorBlue[4] = {0.0f, 0.0f, 1.0f, 1.0f};
const int offset = 2;
// An array of all zeros.
alignas(64) static constexpr int32_t kNoLanesActive[4 * SkRasterPipeline_kMaxStride_highp] = {};
// An array of all zeros, except for a single ~0 in the first dA slot.
alignas(64) int32_t oneLaneActive[4 * SkRasterPipeline_kMaxStride_highp] = {};
oneLaneActive[3*N] = ~0;
// Make a program which conditionally branches past a append_constant_color op.
SkArenaAlloc alloc(/*firstHeapAllocation=*/256);
SkRasterPipeline p(&alloc);
p.append_constant_color(&alloc, kColorBlack); // set the color to black
p.append(SkRasterPipelineOp::init_lane_masks); // set all lanes active
p.append(SkRasterPipelineOp::branch_if_no_active_lanes, &offset); // do not skip past next line
p.append_constant_color(&alloc, kColorRed); // sets the color to red
p.append(SkRasterPipelineOp::load_dst, oneLaneActive); // set one lane active
p.append(SkRasterPipelineOp::branch_if_no_active_lanes, &offset); // do not skip past next line
p.append(SkRasterPipelineOp::swap_rb); // swap R and B (making blue)
p.append(SkRasterPipelineOp::load_dst, kNoLanesActive); // make no lanes active
p.append(SkRasterPipelineOp::branch_if_no_active_lanes, &offset); // skip past next line
p.append_constant_color(&alloc, kColorBlack); // (not executed)
p.append(SkRasterPipelineOp::store_src, slots); // store final blue color
p.run(0,0,1,1);
// Verify that the slots contain blue.
float* destPtr = &slots[0];
for (int checkSlot = 0; checkSlot < 4; ++checkSlot) {
for (int checkLane = 0; checkLane < N; ++checkLane) {
REPORTER_ASSERT(r, *destPtr == kColorBlue[checkSlot]);
++destPtr;
}
}
}
DEF_TEST(SkRasterPipeline_empty, r) {
// No asserts... just a test that this is safe to run.
SkRasterPipeline_<256> p;
p.run(0,0,20,1);
}
DEF_TEST(SkRasterPipeline_nonsense, r) {
// No asserts... just a test that this is safe to run and terminates.
// srcover() calls st->next(); this makes sure we've always got something there to call.
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::srcover);
p.run(0,0,20,1);
}
DEF_TEST(SkRasterPipeline_JIT, r) {
// This tests a couple odd corners that a JIT backend can stumble over.
uint32_t buf[72] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
SkRasterPipeline_MemoryCtx src = { buf + 0, 0 },
dst = { buf + 36, 0 };
// Copy buf[x] to buf[x+36] for x in [15,35).
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_8888, &src);
p.append(SkRasterPipelineOp::store_8888, &dst);
p.run(15,0, 20,1);
for (int i = 0; i < 36; i++) {
if (i < 15 || i == 35) {
REPORTER_ASSERT(r, buf[i+36] == 0);
} else {
REPORTER_ASSERT(r, buf[i+36] == (uint32_t)(i - 11));
}
}
}
static uint16_t h(float f) {
// Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
uint32_t sem;
memcpy(&sem, &f, sizeof(sem));
uint32_t s = sem & 0x80000000,
em = sem ^ s;
// Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (int32_t)em < 0x38800000; // I32 comparison is often quicker, and always safe
// here.
return denorm ? SkTo<uint16_t>(0)
: SkTo<uint16_t>((s>>16) + (em>>13) - ((127-15)<<10));
}
DEF_TEST(SkRasterPipeline_tail, r) {
{
float data[][4] = {
{00, 01, 02, 03},
{10, 11, 12, 13},
{20, 21, 22, 23},
{30, 31, 32, 33},
};
float buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_f32, &src);
p.append(SkRasterPipelineOp::store_f32, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
for (unsigned k = 0; k < 4; k++) {
if (buffer[j][k] != data[j][k]) {
ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, data[j][k], buffer[j][k]);
}
}
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, SkScalarIsNaN(f));
}
}
}
}
{
float data[][2] = {
{00, 01},
{10, 11},
{20, 21},
{30, 31},
};
float buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_rgf32, &src);
p.append(SkRasterPipelineOp::store_f32, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
for (unsigned k = 0; k < 2; k++) {
if (buffer[j][k] != data[j][k]) {
ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, data[j][k], buffer[j][k]);
}
}
if (buffer[j][2] != 0) {
ERRORF(r, "(%u, 2) - a: 0 r: %g\n", j, buffer[j][2]);
}
if (buffer[j][3] != 1) {
ERRORF(r, "(%u, 3) - a: 1 r: %g\n", j, buffer[j][3]);
}
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, SkScalarIsNaN(f));
}
}
}
}
{
float data[][4] = {
{00, 01, 02, 03},
{10, 11, 12, 13},
{20, 21, 22, 23},
{30, 31, 32, 33},
};
float buffer[4][2];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_f32, &src);
p.append(SkRasterPipelineOp::store_rgf32, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
for (unsigned k = 0; k < 2; k++) {
if (buffer[j][k] != data[j][k]) {
ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, data[j][k], buffer[j][k]);
}
}
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, SkScalarIsNaN(f));
}
}
}
}
{
alignas(8) uint16_t data[][4] = {
{h(00), h(01), h(02), h(03)},
{h(10), h(11), h(12), h(13)},
{h(20), h(21), h(22), h(23)},
{h(30), h(31), h(32), h(33)},
};
alignas(8) uint16_t buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_f16, &src);
p.append(SkRasterPipelineOp::store_f16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
for (int k = 0; k < 4; k++) {
REPORTER_ASSERT(r, buffer[j][k] == data[j][k]);
}
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, f == 0xffff);
}
}
}
}
{
alignas(8) uint16_t data[]= {
h(00),
h(10),
h(20),
h(30),
};
alignas(8) uint16_t buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_af16, &src);
p.append(SkRasterPipelineOp::store_f16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
uint16_t expected[] = {0, 0, 0, data[j]};
REPORTER_ASSERT(r, !memcmp(expected, &buffer[j][0], sizeof(buffer[j])));
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, f == 0xffff);
}
}
}
}
{
alignas(8) uint16_t data[][4] = {
{h(00), h(01), h(02), h(03)},
{h(10), h(11), h(12), h(13)},
{h(20), h(21), h(22), h(23)},
{h(30), h(31), h(32), h(33)},
};
alignas(8) uint16_t buffer[4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_f16, &src);
p.append(SkRasterPipelineOp::store_af16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
REPORTER_ASSERT(r, !memcmp(&data[j][3], &buffer[j], sizeof(buffer[j])));
}
for (int j = i; j < 4; j++) {
REPORTER_ASSERT(r, buffer[j] == 0xffff);
}
}
}
{
alignas(8) uint16_t data[][4] = {
{h(00), h(01), h(02), h(03)},
{h(10), h(11), h(12), h(13)},
{h(20), h(21), h(22), h(23)},
{h(30), h(31), h(32), h(33)},
};
alignas(8) uint16_t buffer[4][2];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_f16, &src);
p.append(SkRasterPipelineOp::store_rgf16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
REPORTER_ASSERT(r, !memcmp(&buffer[j], &data[j], 2 * sizeof(uint16_t)));
}
for (int j = i; j < 4; j++) {
for (auto h : buffer[j]) {
REPORTER_ASSERT(r, h == 0xffff);
}
}
}
}
{
alignas(8) uint16_t data[][2] = {
{h(00), h(01)},
{h(10), h(11)},
{h(20), h(21)},
{h(30), h(31)},
};
alignas(8) uint16_t buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_rgf16, &src);
p.append(SkRasterPipelineOp::store_f16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
uint16_t expected[] = {data[j][0], data[j][1], h(0), h(1)};
REPORTER_ASSERT(r, !memcmp(&buffer[j], expected, sizeof(expected)));
}
for (int j = i; j < 4; j++) {
for (auto h : buffer[j]) {
REPORTER_ASSERT(r, h == 0xffff);
}
}
}
}
}
DEF_TEST(SkRasterPipeline_u16, r) {
{
alignas(8) uint16_t data[][2] = {
{0x0000, 0x0111},
{0x1010, 0x1111},
{0x2020, 0x2121},
{0x3030, 0x3131},
};
uint8_t buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xab, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_rg1616, &src);
p.append(SkRasterPipelineOp::store_8888, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
uint8_t expected[] = {
SkToU8(data[j][0] >> 8),
SkToU8(data[j][1] >> 8),
000,
0xff
};
REPORTER_ASSERT(r, !memcmp(&buffer[j], expected, sizeof(expected)));
}
for (int j = i; j < 4; j++) {
for (auto b : buffer[j]) {
REPORTER_ASSERT(r, b == 0xab);
}
}
}
}
{
alignas(8) uint16_t data[] = {
0x0000,
0x1010,
0x2020,
0x3030,
};
uint8_t buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_a16, &src);
p.append(SkRasterPipelineOp::store_8888, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
uint8_t expected[] = {0x00, 0x00, 0x00, SkToU8(data[j] >> 8)};
REPORTER_ASSERT(r, !memcmp(&buffer[j], expected, sizeof(expected)));
}
for (int j = i; j < 4; j++) {
for (auto b : buffer[j]) {
REPORTER_ASSERT(r, b == 0xff);
}
}
}
}
{
uint8_t data[][4] = {
{0x00, 0x01, 0x02, 0x03},
{0x10, 0x11, 0x12, 0x13},
{0x20, 0x21, 0x22, 0x23},
{0x30, 0x31, 0x32, 0x33},
};
alignas(8) uint16_t buffer[4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_8888, &src);
p.append(SkRasterPipelineOp::store_a16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
uint16_t expected = (data[j][3] << 8) | data[j][3];
REPORTER_ASSERT(r, buffer[j] == expected);
}
for (int j = i; j < 4; j++) {
REPORTER_ASSERT(r, buffer[j] == 0xffff);
}
}
}
{
alignas(8) uint16_t data[][4] = {
{0x0000, 0x1000, 0x2000, 0x3000},
{0x0001, 0x1001, 0x2001, 0x3001},
{0x0002, 0x1002, 0x2002, 0x3002},
{0x0003, 0x1003, 0x2003, 0x3003},
};
alignas(8) uint16_t buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_16161616, &src);
p.append(SkRasterPipelineOp::swap_rb);
p.append(SkRasterPipelineOp::store_16161616, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
uint16_t expected[4] = {data[j][2], data[j][1], data[j][0], data[j][3]};
REPORTER_ASSERT(r, !memcmp(&expected[0], &buffer[j], sizeof(expected)));
}
for (int j = i; j < 4; j++) {
for (uint16_t u16 : buffer[j])
REPORTER_ASSERT(r, u16 == 0xffff);
}
}
}
}
DEF_TEST(SkRasterPipeline_lowp, r) {
uint32_t rgba[64];
for (int i = 0; i < 64; i++) {
rgba[i] = (4*i+0) << 0
| (4*i+1) << 8
| (4*i+2) << 16
| (4*i+3) << 24;
}
SkRasterPipeline_MemoryCtx ptr = { rgba, 0 };
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_8888, &ptr);
p.append(SkRasterPipelineOp::swap_rb);
p.append(SkRasterPipelineOp::store_8888, &ptr);
p.run(0,0,64,1);
for (int i = 0; i < 64; i++) {
uint32_t want = (4*i+0) << 16
| (4*i+1) << 8
| (4*i+2) << 0
| (4*i+3) << 24;
if (rgba[i] != want) {
ERRORF(r, "got %08x, want %08x\n", rgba[i], want);
}
}
}
DEF_TEST(SkRasterPipeline_swizzle, r) {
// This takes the lowp code path
{
uint16_t rg[64];
for (int i = 0; i < 64; i++) {
rg[i] = (4*i+0) << 0
| (4*i+1) << 8;
}
skgpu::Swizzle swizzle("g1b1");
SkRasterPipeline_MemoryCtx ptr = { rg, 0 };
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_rg88, &ptr);
swizzle.apply(&p);
p.append(SkRasterPipelineOp::store_rg88, &ptr);
p.run(0,0,64,1);
for (int i = 0; i < 64; i++) {
uint32_t want = 0xff << 8
| (4*i+1) << 0;
if (rg[i] != want) {
ERRORF(r, "got %08x, want %08x\n", rg[i], want);
}
}
}
// This takes the highp code path
{
float rg[64][2];
for (int i = 0; i < 64; i++) {
rg[i][0] = i + 1;
rg[i][1] = 2 * i + 1;
}
skgpu::Swizzle swizzle("0gra");
uint16_t buffer[64][4];
SkRasterPipeline_MemoryCtx src = { rg, 0 },
dst = { buffer, 0};
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_rgf32, &src);
swizzle.apply(&p);
p.append(SkRasterPipelineOp::store_f16, &dst);
p.run(0,0,64,1);
for (int i = 0; i < 64; i++) {
uint16_t want[4] {
h(0),
h(2 * i + 1),
h(i + 1),
h(1),
};
REPORTER_ASSERT(r, !memcmp(want, buffer[i], sizeof(buffer[i])));
}
}
}
DEF_TEST(SkRasterPipeline_lowp_clamp01, r) {
// This may seem like a funny pipeline to create,
// but it certainly shouldn't crash when you run it.
uint32_t rgba = 0xff00ff00;
SkRasterPipeline_MemoryCtx ptr = { &rgba, 0 };
SkRasterPipeline_<256> p;
p.append(SkRasterPipelineOp::load_8888, &ptr);
p.append(SkRasterPipelineOp::swap_rb);
p.append(SkRasterPipelineOp::clamp_01);
p.append(SkRasterPipelineOp::store_8888, &ptr);
p.run(0,0,1,1);
}
// Helper struct that can be used to scrape stack addresses at different points in a pipeline
class StackCheckerCtx : SkRasterPipeline_CallbackCtx {
public:
StackCheckerCtx() {
this->fn = [](SkRasterPipeline_CallbackCtx* self, int active_pixels) {
auto ctx = (StackCheckerCtx*)self;
ctx->fStackAddrs.push_back(&active_pixels);
};
}
enum class Behavior {
kGrowth,
kBaseline,
kUnknown,
};
static Behavior GrowthBehavior() {
// Only some stages use the musttail attribute, so we have no way of knowing what's going to
// happen. In release builds, it's likely that the compiler will apply tail-call
// optimization. Even in some debug builds (on Windows), we don't see stack growth.
return Behavior::kUnknown;
}
// Call one of these two each time the checker callback is added:
StackCheckerCtx* expectGrowth() {
fExpectedBehavior.push_back(GrowthBehavior());
return this;
}
StackCheckerCtx* expectBaseline() {
fExpectedBehavior.push_back(Behavior::kBaseline);
return this;
}
void validate(skiatest::Reporter* r) {
REPORTER_ASSERT(r, fStackAddrs.size() == fExpectedBehavior.size());
// This test is storing and comparing stack pointers (to dead stack frames) as a way of
// measuring stack usage. Unsurprisingly, ASAN doesn't like that. HWASAN actually inserts
// tag bytes in the pointers, causing them not to match. Newer versions of vanilla ASAN
// also appear to salt the stack slightly, causing repeated calls to scrape different
// addresses, even though $rsp is identical on each invocation of the lambda.
#if !defined(SK_SANITIZE_ADDRESS)
void* baseline = fStackAddrs[0];
for