| /* |
| * Copyright 2020 Google LLC. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkAlphaType.h" |
| #include "include/core/SkBitmap.h" |
| #include "include/core/SkBlendMode.h" |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkColor.h" |
| #include "include/core/SkColorSpace.h" |
| #include "include/core/SkColorType.h" |
| #include "include/core/SkImage.h" |
| #include "include/core/SkImageInfo.h" |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkPaint.h" |
| #include "include/core/SkPixmap.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkRefCnt.h" |
| #include "include/core/SkSamplingOptions.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkString.h" |
| #include "include/core/SkSurface.h" |
| #include "include/core/SkTileMode.h" |
| #include "include/core/SkTypes.h" |
| #include "include/effects/SkGradientShader.h" |
| #include "include/gpu/GpuTypes.h" |
| #include "include/gpu/GrBackendSurface.h" |
| #include "include/gpu/GrDirectContext.h" |
| #include "include/gpu/GrRecordingContext.h" |
| #include "include/gpu/GrTypes.h" |
| #include "include/private/base/SkTArray.h" |
| #include "include/private/gpu/ganesh/GrTypesPriv.h" |
| #include "src/core/SkAutoPixmapStorage.h" |
| #include "src/core/SkConvertPixels.h" |
| #include "src/core/SkImageInfoPriv.h" |
| #include "src/gpu/SkBackingFit.h" |
| #include "src/gpu/ganesh/GrCaps.h" |
| #include "src/gpu/ganesh/GrDataUtils.h" |
| #include "src/gpu/ganesh/GrDirectContextPriv.h" |
| #include "src/gpu/ganesh/GrFragmentProcessor.h" |
| #include "src/gpu/ganesh/GrImageInfo.h" |
| #include "src/gpu/ganesh/GrPixmap.h" |
| #include "src/gpu/ganesh/GrSamplerState.h" |
| #include "src/gpu/ganesh/GrSurfaceProxy.h" |
| #include "src/gpu/ganesh/SurfaceContext.h" |
| #include "src/gpu/ganesh/SurfaceFillContext.h" |
| #include "src/gpu/ganesh/effects/GrTextureEffect.h" |
| #include "tests/CtsEnforcement.h" |
| #include "tests/Test.h" |
| #include "tests/TestUtils.h" |
| #include "tools/ToolUtils.h" |
| #include "tools/gpu/BackendSurfaceFactory.h" |
| #include "tools/gpu/BackendTextureImageFactory.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <cstring> |
| #include <functional> |
| #include <initializer_list> |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| struct GrContextOptions; |
| |
| static constexpr int min_rgb_channel_bits(SkColorType ct) { |
| switch (ct) { |
| case kUnknown_SkColorType: return 0; |
| case kAlpha_8_SkColorType: return 0; |
| case kA16_unorm_SkColorType: return 0; |
| case kA16_float_SkColorType: return 0; |
| case kRGB_565_SkColorType: return 5; |
| case kARGB_4444_SkColorType: return 4; |
| case kR8G8_unorm_SkColorType: return 8; |
| case kR16G16_unorm_SkColorType: return 16; |
| case kR16G16_float_SkColorType: return 16; |
| case kRGBA_8888_SkColorType: return 8; |
| case kSRGBA_8888_SkColorType: return 8; |
| case kRGB_888x_SkColorType: return 8; |
| case kBGRA_8888_SkColorType: return 8; |
| case kRGBA_1010102_SkColorType: return 10; |
| case kRGB_101010x_SkColorType: return 10; |
| case kBGRA_1010102_SkColorType: return 10; |
| case kBGR_101010x_SkColorType: return 10; |
| case kGray_8_SkColorType: return 8; // counting gray as "rgb" |
| case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa |
| case kRGBA_F16_SkColorType: return 10; // just counting the mantissa |
| case kRGBA_F32_SkColorType: return 23; // just counting the mantissa |
| case kR16G16B16A16_unorm_SkColorType: return 16; |
| case kR8_unorm_SkColorType: return 8; |
| } |
| SkUNREACHABLE; |
| } |
| |
| static constexpr int alpha_channel_bits(SkColorType ct) { |
| switch (ct) { |
| case kUnknown_SkColorType: return 0; |
| case kAlpha_8_SkColorType: return 8; |
| case kA16_unorm_SkColorType: return 16; |
| case kA16_float_SkColorType: return 16; |
| case kRGB_565_SkColorType: return 0; |
| case kARGB_4444_SkColorType: return 4; |
| case kR8G8_unorm_SkColorType: return 0; |
| case kR16G16_unorm_SkColorType: return 0; |
| case kR16G16_float_SkColorType: return 0; |
| case kRGBA_8888_SkColorType: return 8; |
| case kSRGBA_8888_SkColorType: return 8; |
| case kRGB_888x_SkColorType: return 0; |
| case kBGRA_8888_SkColorType: return 8; |
| case kRGBA_1010102_SkColorType: return 2; |
| case kRGB_101010x_SkColorType: return 0; |
| case kBGRA_1010102_SkColorType: return 2; |
| case kBGR_101010x_SkColorType: return 0; |
| case kGray_8_SkColorType: return 0; |
| case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa |
| case kRGBA_F16_SkColorType: return 10; // just counting the mantissa |
| case kRGBA_F32_SkColorType: return 23; // just counting the mantissa |
| case kR16G16B16A16_unorm_SkColorType: return 16; |
| case kR8_unorm_SkColorType: return 0; |
| } |
| SkUNREACHABLE; |
| } |
| |
| std::vector<SkIRect> make_long_rect_array(int w, int h) { |
| return { |
| // entire thing |
| SkIRect::MakeWH(w, h), |
| // larger on all sides |
| SkIRect::MakeLTRB(-10, -10, w + 10, h + 10), |
| // fully contained |
| SkIRect::MakeLTRB(w/4, h/4, 3*w/4, 3*h/4), |
| // outside top left |
| SkIRect::MakeLTRB(-10, -10, -1, -1), |
| // touching top left corner |
| SkIRect::MakeLTRB(-10, -10, 0, 0), |
| // overlapping top left corner |
| SkIRect::MakeLTRB(-10, -10, w/4, h/4), |
| // overlapping top left and top right corners |
| SkIRect::MakeLTRB(-10, -10, w + 10, h/4), |
| // touching entire top edge |
| SkIRect::MakeLTRB(-10, -10, w + 10, 0), |
| // overlapping top right corner |
| SkIRect::MakeLTRB(3*w/4, -10, w + 10, h/4), |
| // contained in x, overlapping top edge |
| SkIRect::MakeLTRB(w/4, -10, 3*w/4, h/4), |
| // outside top right corner |
| SkIRect::MakeLTRB(w + 1, -10, w + 10, -1), |
| // touching top right corner |
| SkIRect::MakeLTRB(w, -10, w + 10, 0), |
| // overlapping top left and bottom left corners |
| SkIRect::MakeLTRB(-10, -10, w/4, h + 10), |
| // touching entire left edge |
| SkIRect::MakeLTRB(-10, -10, 0, h + 10), |
| // overlapping bottom left corner |
| SkIRect::MakeLTRB(-10, 3*h/4, w/4, h + 10), |
| // contained in y, overlapping left edge |
| SkIRect::MakeLTRB(-10, h/4, w/4, 3*h/4), |
| // outside bottom left corner |
| SkIRect::MakeLTRB(-10, h + 1, -1, h + 10), |
| // touching bottom left corner |
| SkIRect::MakeLTRB(-10, h, 0, h + 10), |
| // overlapping bottom left and bottom right corners |
| SkIRect::MakeLTRB(-10, 3*h/4, w + 10, h + 10), |
| // touching entire left edge |
| SkIRect::MakeLTRB(0, h, w, h + 10), |
| // overlapping bottom right corner |
| SkIRect::MakeLTRB(3*w/4, 3*h/4, w + 10, h + 10), |
| // overlapping top right and bottom right corners |
| SkIRect::MakeLTRB(3*w/4, -10, w + 10, h + 10), |
| }; |
| } |
| |
| std::vector<SkIRect> make_short_rect_array(int w, int h) { |
| return { |
| // entire thing |
| SkIRect::MakeWH(w, h), |
| // fully contained |
| SkIRect::MakeLTRB(w/4, h/4, 3*w/4, 3*h/4), |
| // overlapping top right corner |
| SkIRect::MakeLTRB(3*w/4, -10, w + 10, h/4), |
| }; |
| } |
| |
| namespace { |
| |
| struct GpuReadPixelTestRules { |
| // Test unpremul sources? We could omit this and detect that creating the source of the read |
| // failed but having it lets us skip generating reference color data. |
| bool fAllowUnpremulSrc = true; |
| // Are reads that are overlapping but not contained by the src bounds expected to succeed? |
| bool fUncontainedRectSucceeds = true; |
| }; |
| |
| // Makes a src populated with the pixmap. The src should get its image info (or equivalent) from |
| // the pixmap. |
| template <typename T> using GpuSrcFactory = T(SkPixmap&); |
| |
| enum class Result { |
| kFail, |
| kSuccess, |
| kExcusedFailure, |
| }; |
| |
| // Does a read from the T into the pixmap. |
| template <typename T> |
| using GpuReadSrcFn = Result(const T&, const SkIPoint& offset, const SkPixmap&); |
| |
| // Makes a dst for testing writes. |
| template <typename T> using GpuDstFactory = T(const SkImageInfo& ii); |
| |
| // Does a write from the pixmap to the T. |
| template <typename T> |
| using GpuWriteDstFn = Result(const T&, const SkIPoint& offset, const SkPixmap&); |
| |
| // To test the results of the write we do a read. This reads the entire src T. It should do a non- |
| // converting read (i.e. the image info of the returned pixmap matches that of the T). |
| template <typename T> |
| using GpuReadDstFn = SkAutoPixmapStorage(const T&); |
| |
| } // anonymous namespace |
| |
| SkPixmap make_pixmap_have_valid_alpha_type(SkPixmap pm) { |
| if (pm.alphaType() == kUnknown_SkAlphaType) { |
| return {pm.info().makeAlphaType(kUnpremul_SkAlphaType), pm.addr(), pm.rowBytes()}; |
| } |
| return pm; |
| } |
| |
| static SkAutoPixmapStorage make_ref_data(const SkImageInfo& info, bool forceOpaque) { |
| SkAutoPixmapStorage result; |
| result.alloc(info); |
| auto surface = SkSurface::MakeRasterDirect(make_pixmap_have_valid_alpha_type(result)); |
| if (!surface) { |
| return result; |
| } |
| |
| SkPoint pts1[] = {{0, 0}, {float(info.width()), float(info.height())}}; |
| static constexpr SkColor kColors1[] = {SK_ColorGREEN, SK_ColorRED}; |
| SkPaint paint; |
| paint.setShader(SkGradientShader::MakeLinear(pts1, kColors1, nullptr, 2, SkTileMode::kClamp)); |
| surface->getCanvas()->drawPaint(paint); |
| |
| SkPoint pts2[] = {{float(info.width()), 0}, {0, float(info.height())}}; |
| static constexpr SkColor kColors2[] = {SK_ColorBLUE, SK_ColorBLACK}; |
| paint.setShader(SkGradientShader::MakeLinear(pts2, kColors2, nullptr, 2, SkTileMode::kClamp)); |
| paint.setBlendMode(SkBlendMode::kPlus); |
| surface->getCanvas()->drawPaint(paint); |
| |
| // If not opaque add some fractional alpha. |
| if (info.alphaType() != kOpaque_SkAlphaType && !forceOpaque) { |
| static constexpr SkColor kColors3[] = {SK_ColorWHITE, |
| SK_ColorWHITE, |
| 0x60FFFFFF, |
| SK_ColorWHITE, |
| SK_ColorWHITE}; |
| static constexpr SkScalar kPos3[] = {0.f, 0.15f, 0.5f, 0.85f, 1.f}; |
| paint.setShader(SkGradientShader::MakeRadial({info.width()/2.f, info.height()/2.f}, |
| (info.width() + info.height())/10.f, |
| kColors3, kPos3, 5, SkTileMode::kMirror)); |
| paint.setBlendMode(SkBlendMode::kDstIn); |
| surface->getCanvas()->drawPaint(paint); |
| } |
| return result; |
| } |
| |
| template <typename T> |
| static void gpu_read_pixels_test_driver(skiatest::Reporter* reporter, |
| const GpuReadPixelTestRules& rules, |
| const std::function<GpuSrcFactory<T>>& srcFactory, |
| const std::function<GpuReadSrcFn<T>>& read, |
| SkString label) { |
| if (!label.isEmpty()) { |
| // Add space for printing. |
| label.append(" "); |
| } |
| // Separate this out just to give it some line width to breathe. Note 'srcPixels' should have |
| // the same image info as src. We will do a converting readPixels() on it to get the data |
| // to compare with the results of 'read'. |
| auto runTest = [&](const T& src, |
| const SkPixmap& srcPixels, |
| const SkImageInfo& readInfo, |
| SkIPoint offset) { |
| const bool csConversion = |
| !SkColorSpace::Equals(readInfo.colorSpace(), srcPixels.info().colorSpace()); |
| const auto readCT = readInfo.colorType(); |
| const auto readAT = readInfo.alphaType(); |
| const auto srcCT = srcPixels.info().colorType(); |
| const auto srcAT = srcPixels.info().alphaType(); |
| const auto rect = SkIRect::MakeWH(readInfo.width(), readInfo.height()).makeOffset(offset); |
| const auto surfBounds = SkIRect::MakeWH(srcPixels.width(), srcPixels.height()); |
| const size_t readBpp = SkColorTypeBytesPerPixel(readCT); |
| |
| // Make the row bytes in the dst be loose for extra stress. |
| const size_t dstRB = readBpp * readInfo.width() + 10 * readBpp; |
| // This will make the last row tight. |
| const size_t dstSize = readInfo.computeByteSize(dstRB); |
| std::unique_ptr<char[]> dstData(new char[dstSize]); |
| SkPixmap dstPixels(readInfo, dstData.get(), dstRB); |
| // Initialize with an arbitrary value for each byte. Later we will check that only the |
| // correct part of the destination gets overwritten by 'read'. |
| static constexpr auto kInitialByte = static_cast<char>(0x1B); |
| std::fill_n(static_cast<char*>(dstPixels.writable_addr()), |
| dstPixels.computeByteSize(), |
| kInitialByte); |
| |
| const Result result = read(src, offset, dstPixels); |
| |
| if (!SkIRect::Intersects(rect, surfBounds)) { |
| REPORTER_ASSERT(reporter, result != Result::kSuccess); |
| } else if (readCT == kUnknown_SkColorType) { |
| REPORTER_ASSERT(reporter, result != Result::kSuccess); |
| } else if ((readAT == kUnknown_SkAlphaType) != (srcAT == kUnknown_SkAlphaType)) { |
| REPORTER_ASSERT(reporter, result != Result::kSuccess); |
| } else if (!rules.fUncontainedRectSucceeds && !surfBounds.contains(rect)) { |
| REPORTER_ASSERT(reporter, result != Result::kSuccess); |
| } else if (result == Result::kFail) { |
| // TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU. |
| if (SkColorTypeToGrColorType(readCT) != GrColorType::kUnknown) { |
| ERRORF(reporter, |
| "Read failed. %sSrc CT: %s, Src AT: %s Read CT: %s, Read AT: %s, " |
| "Rect [%d, %d, %d, %d], CS conversion: %d\n", |
| label.c_str(), |
| ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), |
| ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), |
| rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion); |
| } |
| return result; |
| } |
| |
| bool guardOk = true; |
| auto guardCheck = [](char x) { return x == kInitialByte; }; |
| |
| // Considering the rect we tried to read and the surface bounds figure out which pixels in |
| // both src and dst space should actually have been read and written. |
| SkIRect srcReadRect; |
| if (result == Result::kSuccess && srcReadRect.intersect(surfBounds, rect)) { |
| SkIRect dstWriteRect = srcReadRect.makeOffset(-rect.fLeft, -rect.fTop); |
| |
| const bool lumConversion = |
| !(SkColorTypeChannelFlags(srcCT) & kGray_SkColorChannelFlag) && |
| (SkColorTypeChannelFlags(readCT) & kGray_SkColorChannelFlag); |
| // A CS or luminance conversion allows a 3 value difference and otherwise a 2 value |
| // difference. Note that sometimes read back on GPU can be lossy even when there no |
| // conversion at all because GPU->CPU read may go to a lower bit depth format and then |
| // be promoted back to the original type. For example, GL ES cannot read to 1010102, so |
| // we go through 8888. |
| float numer = (lumConversion || csConversion) ? 3.f : 2.f; |
| // Allow some extra tolerance if unpremuling. |
| if (srcAT == kPremul_SkAlphaType && readAT == kUnpremul_SkAlphaType) { |
| numer += 1; |
| } |
| int rgbBits = std::min({min_rgb_channel_bits(readCT), min_rgb_channel_bits(srcCT), 8}); |
| float tol = numer / (1 << rgbBits); |
| float alphaTol = 0; |
| if (readAT != kOpaque_SkAlphaType && srcAT != kOpaque_SkAlphaType) { |
| // Alpha can also get squashed down to 8 bits going through an intermediate |
| // color format. |
| const int alphaBits = std::min({alpha_channel_bits(readCT), |
| alpha_channel_bits(srcCT), |
| 8}); |
| alphaTol = 2.f / (1 << alphaBits); |
| } |
| |
| const float tols[4] = {tol, tol, tol, alphaTol}; |
| auto error = std::function<ComparePixmapsErrorReporter>([&](int x, int y, |
| const float diffs[4]) { |
| SkASSERT(x >= 0 && y >= 0); |
| ERRORF(reporter, |
| "%sSrc CT: %s, Src AT: %s, Read CT: %s, Read AT: %s, Rect [%d, %d, %d, %d]" |
| ", CS conversion: %d\n" |
| "Error at %d, %d. Diff in floats: (%f, %f, %f, %f)", |
| label.c_str(), |
| ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), |
| ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), |
| rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion, x, y, |
| diffs[0], diffs[1], diffs[2], diffs[3]); |
| }); |
| SkAutoPixmapStorage ref; |
| SkImageInfo refInfo = readInfo.makeDimensions(dstWriteRect.size()); |
| ref.alloc(refInfo); |
| if (readAT == kUnknown_SkAlphaType) { |
| // Do a spoofed read where src and dst alpha type are both kUnpremul. This will |
| // allow SkPixmap readPixels to succeed and won't do any alpha type conversion. |
| SkPixmap unpremulRef(refInfo.makeAlphaType(kUnpremul_SkAlphaType), |
| ref.addr(), |
| ref.rowBytes()); |
| SkPixmap unpremulSRc(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType), |
| srcPixels.addr(), |
| srcPixels.rowBytes()); |
| |
| unpremulSRc.readPixels(unpremulRef, srcReadRect.x(), srcReadRect.y()); |
| } else { |
| srcPixels.readPixels(ref, srcReadRect.x(), srcReadRect.y()); |
| } |
| // This is the part of dstPixels that should have been updated. |
| SkPixmap actual; |
| SkAssertResult(dstPixels.extractSubset(&actual, dstWriteRect)); |
| ComparePixels(ref, actual, tols, error); |
| |
| const auto* v = dstData.get(); |
| const auto* end = dstData.get() + dstSize; |
| guardOk = std::all_of(v, v + dstWriteRect.top() * dstPixels.rowBytes(), guardCheck); |
| v += dstWriteRect.top() * dstPixels.rowBytes(); |
| for (int y = dstWriteRect.top(); y < dstWriteRect.bottom(); ++y) { |
| guardOk |= std::all_of(v, v + dstWriteRect.left() * readBpp, guardCheck); |
| auto pad = v + dstWriteRect.right() * readBpp; |
| auto rowEnd = std::min(end, v + dstPixels.rowBytes()); |
| // min protects against reading past the end of the tight last row. |
| guardOk |= std::all_of(pad, rowEnd, guardCheck); |
| v = rowEnd; |
| } |
| guardOk |= std::all_of(v, end, guardCheck); |
| } else { |
| guardOk = std::all_of(dstData.get(), dstData.get() + dstSize, guardCheck); |
| } |
| if (!guardOk) { |
| ERRORF(reporter, |
| "Result pixels modified result outside read rect [%d, %d, %d, %d]. " |
| "%sSrc CT: %s, Read CT: %s, CS conversion: %d", |
| rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, label.c_str(), |
| ToolUtils::colortype_name(srcCT), ToolUtils::colortype_name(readCT), |
| csConversion); |
| } |
| return result; |
| }; |
| |
| static constexpr int kW = 16; |
| static constexpr int kH = 16; |
| |
| const std::vector<SkIRect> longRectArray = make_long_rect_array(kW, kH); |
| const std::vector<SkIRect> shortRectArray = make_short_rect_array(kW, kH); |
| |
| // We ensure we use the long array once per src and read color type and otherwise use the |
| // short array to improve test run time. |
| // Also, some color types have no alpha values and thus Opaque Premul and Unpremul are |
| // equivalent. Just ensure each redundant AT is tested once with each CT (src and read). |
| // Similarly, alpha-only color types behave the same for all alpha types so just test premul |
| // after one iter. |
| // We consider a src or read CT thoroughly tested once it has run through the long rect array |
| // and full complement of alpha types with one successful read in the loop. |
| std::array<bool, kLastEnum_SkColorType + 1> srcCTTestedThoroughly = {}, |
| readCTTestedThoroughly = {}; |
| for (int sat = 0; sat < kLastEnum_SkAlphaType; ++sat) { |
| const auto srcAT = static_cast<SkAlphaType>(sat); |
| if (srcAT == kUnpremul_SkAlphaType && !rules.fAllowUnpremulSrc) { |
| continue; |
| } |
| for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) { |
| const auto srcCT = static_cast<SkColorType>(sct); |
| // We always make our ref data as F32 |
| auto refInfo = SkImageInfo::Make(kW, kH, |
| kRGBA_F32_SkColorType, |
| srcAT, |
| SkColorSpace::MakeSRGB()); |
| // 1010102 formats have an issue where it's easy to make a resulting |
| // color where r, g, or b is greater than a. CPU/GPU differ in whether the stored color |
| // channels are clipped to the alpha value. CPU clips but GPU does not. |
| // Note that we only currently use srcCT for the 1010102 workaround. If we remove this |
| // we can also put the ref data setup above the srcCT loop. |
| bool forceOpaque = srcAT == kPremul_SkAlphaType && |
| (srcCT == kRGBA_1010102_SkColorType || srcCT == kBGRA_1010102_SkColorType); |
| |
| SkAutoPixmapStorage srcPixels = make_ref_data(refInfo, forceOpaque); |
| auto src = srcFactory(srcPixels); |
| if (!src) { |
| continue; |
| } |
| if (SkColorTypeIsAlwaysOpaque(srcCT) && srcCTTestedThoroughly[srcCT] && |
| (kPremul_SkAlphaType == srcAT || kUnpremul_SkAlphaType == srcAT)) { |
| continue; |
| } |
| if (SkColorTypeIsAlphaOnly(srcCT) && srcCTTestedThoroughly[srcCT] && |
| (kUnpremul_SkAlphaType == srcAT || |
| kOpaque_SkAlphaType == srcAT || |
| kUnknown_SkAlphaType == srcAT)) { |
| continue; |
| } |
| for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) { |
| const auto readCT = static_cast<SkColorType>(rct); |
| for (const sk_sp<SkColorSpace>& readCS : |
| {SkColorSpace::MakeSRGB(), SkColorSpace::MakeSRGBLinear()}) { |
| for (int at = 0; at <= kLastEnum_SkAlphaType; ++at) { |
| const auto readAT = static_cast<SkAlphaType>(at); |
| if (srcAT != kOpaque_SkAlphaType && readAT == kOpaque_SkAlphaType) { |
| // This doesn't make sense. |
| continue; |
| } |
| if (SkColorTypeIsAlwaysOpaque(readCT) && readCTTestedThoroughly[readCT] && |
| (kPremul_SkAlphaType == readAT || kUnpremul_SkAlphaType == readAT)) { |
| continue; |
| } |
| if (SkColorTypeIsAlphaOnly(readCT) && readCTTestedThoroughly[readCT] && |
| (kUnpremul_SkAlphaType == readAT || |
| kOpaque_SkAlphaType == readAT || |
| kUnknown_SkAlphaType == readAT)) { |
| continue; |
| } |
| const auto& rects = |
| srcCTTestedThoroughly[sct] && readCTTestedThoroughly[rct] |
| ? shortRectArray |
| : longRectArray; |
| for (const auto& rect : rects) { |
| const auto readInfo = SkImageInfo::Make(rect.width(), rect.height(), |
| readCT, readAT, readCS); |
| const SkIPoint offset = rect.topLeft(); |
| Result r = runTest(src, srcPixels, readInfo, offset); |
| if (r == Result::kSuccess) { |
| srcCTTestedThoroughly[sct] = true; |
| readCTTestedThoroughly[rct] = true; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SurfaceContextReadPixels, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kApiLevel_T) { |
| using Surface = std::unique_ptr<skgpu::v1::SurfaceContext>; |
| GrDirectContext* direct = ctxInfo.directContext(); |
| auto reader = std::function<GpuReadSrcFn<Surface>>( |
| [direct](const Surface& surface, const SkIPoint& offset, const SkPixmap& pixels) { |
| if (surface->readPixels(direct, pixels, offset)) { |
| return Result::kSuccess; |
| } else { |
| // Reading from a non-renderable format is not guaranteed to work on GL. |
| // We'd have to be able to force a copy or draw draw to a renderable format. |
| const auto& caps = *direct->priv().caps(); |
| if (direct->backend() == GrBackendApi::kOpenGL && |
| !caps.isFormatRenderable(surface->asSurfaceProxy()->backendFormat(), 1)) { |
| return Result::kExcusedFailure; |
| } |
| return Result::kFail; |
| } |
| }); |
| GpuReadPixelTestRules rules; |
| rules.fAllowUnpremulSrc = true; |
| rules.fUncontainedRectSucceeds = true; |
| |
| for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { |
| for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { |
| auto factory = std::function<GpuSrcFactory<Surface>>( |
| [direct, origin, renderable](const SkPixmap& src) { |
| auto sc = CreateSurfaceContext( |
| direct, src.info(), SkBackingFit::kExact, origin, renderable); |
| if (sc) { |
| sc->writePixels(direct, src, {0, 0}); |
| } |
| return sc; |
| }); |
| auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin); |
| gpu_read_pixels_test_driver(reporter, rules, factory, reader, label); |
| } |
| } |
| } |
| |
| DEF_GANESH_TEST_FOR_ALL_CONTEXTS(ReadPixels_InvalidRowBytes_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kApiLevel_T) { |
| auto srcII = SkImageInfo::Make({10, 10}, kRGBA_8888_SkColorType, kPremul_SkAlphaType); |
| auto surf = SkSurface::MakeRenderTarget(ctxInfo.directContext(), skgpu::Budgeted::kYes, srcII); |
| for (int ct = 0; ct < kLastEnum_SkColorType + 1; ++ct) { |
| auto colorType = static_cast<SkColorType>(ct); |
| size_t bpp = SkColorTypeBytesPerPixel(colorType); |
| if (bpp <= 1) { |
| continue; |
| } |
| auto dstII = srcII.makeColorType(colorType); |
| size_t badRowBytes = (surf->width() + 1)*bpp - 1; |
| auto storage = std::make_unique<char[]>(badRowBytes*surf->height()); |
| REPORTER_ASSERT(reporter, !surf->readPixels(dstII, storage.get(), badRowBytes, 0, 0)); |
| } |
| } |
| |
| DEF_GANESH_TEST_FOR_ALL_CONTEXTS(WritePixels_InvalidRowBytes_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kApiLevel_T) { |
| auto dstII = SkImageInfo::Make({10, 10}, kRGBA_8888_SkColorType, kPremul_SkAlphaType); |
| auto surf = SkSurface::MakeRenderTarget(ctxInfo.directContext(), skgpu::Budgeted::kYes, dstII); |
| for (int ct = 0; ct < kLastEnum_SkColorType + 1; ++ct) { |
| auto colorType = static_cast<SkColorType>(ct); |
| size_t bpp = SkColorTypeBytesPerPixel(colorType); |
| if (bpp <= 1) { |
| continue; |
| } |
| auto srcII = dstII.makeColorType(colorType); |
| size_t badRowBytes = (surf->width() + 1)*bpp - 1; |
| auto storage = std::make_unique<char[]>(badRowBytes*surf->height()); |
| memset(storage.get(), 0, badRowBytes * surf->height()); |
| // SkSurface::writePixels doesn't report bool, SkCanvas's does. |
| REPORTER_ASSERT(reporter, |
| !surf->getCanvas()->writePixels(srcII, storage.get(), badRowBytes, 0, 0)); |
| } |
| } |
| |
| namespace { |
| struct AsyncContext { |
| bool fCalled = false; |
| std::unique_ptr<const SkImage::AsyncReadResult> fResult; |
| }; |
| } // anonymous namespace |
| |
| // Making this a lambda in the test functions caused: |
| // "error: cannot compile this forwarded non-trivially copyable parameter yet" |
| // on x86/Win/Clang bot, referring to 'result'. |
| static void async_callback(void* c, std::unique_ptr<const SkImage::AsyncReadResult> result) { |
| auto context = static_cast<AsyncContext*>(c); |
| context->fResult = std::move(result); |
| context->fCalled = true; |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SurfaceAsyncReadPixels, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kApiLevel_T) { |
| using Surface = sk_sp<SkSurface>; |
| auto reader = std::function<GpuReadSrcFn<Surface>>( |
| [](const Surface& surface, const SkIPoint& offset, const SkPixmap& pixels) { |
| auto direct = surface->recordingContext()->asDirectContext(); |
| SkASSERT(direct); |
| |
| AsyncContext context; |
| auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); |
| |
| // Rescale quality and linearity don't matter since we're doing a non-scaling |
| // readback. |
| surface->asyncRescaleAndReadPixels(pixels.info(), rect, |
| SkImage::RescaleGamma::kSrc, |
| SkImage::RescaleMode::kNearest, |
| async_callback, &context); |
| direct->submit(); |
| while (!context.fCalled) { |
| direct->checkAsyncWorkCompletion(); |
| } |
| if (!context.fResult) { |
| return Result::kFail; |
| } |
| SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), context.fResult->data(0), |
| context.fResult->rowBytes(0), pixels.info().minRowBytes(), |
| pixels.height()); |
| return Result::kSuccess; |
| }); |
| GpuReadPixelTestRules rules; |
| rules.fAllowUnpremulSrc = false; |
| rules.fUncontainedRectSucceeds = false; |
| |
| for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { |
| auto factory = std::function<GpuSrcFactory<Surface>>( |
| [context = ctxInfo.directContext(), origin](const SkPixmap& src) { |
| auto surf = SkSurface::MakeRenderTarget(context, |
| skgpu::Budgeted::kYes, |
| src.info(), |
| 1, |
| origin, |
| nullptr); |
| if (surf) { |
| surf->writePixels(src, 0, 0); |
| } |
| return surf; |
| }); |
| auto label = SkStringPrintf("Origin: %d", origin); |
| gpu_read_pixels_test_driver(reporter, rules, factory, reader, label); |
| auto backendRTFactory = std::function<GpuSrcFactory<Surface>>( |
| [context = ctxInfo.directContext(), origin](const SkPixmap& src) { |
| // Dawn backend implementation of backend render targets doesn't support |
| // reading. |
| if (context->backend() == GrBackendApi::kDawn) { |
| return Surface(); |
| } |
| auto surf = sk_gpu_test::MakeBackendRenderTargetSurface(context, |
| src.info(), |
| origin, |
| 1); |
| if (surf) { |
| surf->writePixels(src, 0, 0); |
| } |
| return surf; |
| }); |
| label = SkStringPrintf("BERT Origin: %d", origin); |
| gpu_read_pixels_test_driver(reporter, rules, backendRTFactory, reader, label); |
| } |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageAsyncReadPixels, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kApiLevel_T) { |
| using Image = sk_sp<SkImage>; |
| auto context = ctxInfo.directContext(); |
| auto reader = std::function<GpuReadSrcFn<Image>>([context](const Image& image, |
| const SkIPoint& offset, |
| const SkPixmap& pixels) { |
| AsyncContext asyncContext; |
| auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); |
| // The GPU implementation is based on rendering and will fail for non-renderable color |
| // types. |
| auto ct = SkColorTypeToGrColorType(image->colorType()); |
| auto format = context->priv().caps()->getDefaultBackendFormat(ct, GrRenderable::kYes); |
| if (!context->priv().caps()->isFormatAsColorTypeRenderable(ct, format)) { |
| return Result::kExcusedFailure; |
| } |
| |
| // Rescale quality and linearity don't matter since we're doing a non-scaling readback. |
| image->asyncRescaleAndReadPixels(pixels.info(), rect, |
| SkImage::RescaleGamma::kSrc, |
| SkImage::RescaleMode::kNearest, |
| async_callback, &asyncContext); |
| context->submit(); |
| while (!asyncContext.fCalled) { |
| context->checkAsyncWorkCompletion(); |
| } |
| if (!asyncContext.fResult) { |
| return Result::kFail; |
| } |
| SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), asyncContext.fResult->data(0), |
| asyncContext.fResult->rowBytes(0), pixels.info().minRowBytes(), |
| pixels.height()); |
| return Result::kSuccess; |
| }); |
| |
| GpuReadPixelTestRules rules; |
| rules.fAllowUnpremulSrc = true; |
| rules.fUncontainedRectSucceeds = false; |
| |
| for (auto origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { |
| for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { |
| auto factory = std::function<GpuSrcFactory<Image>>([&](const SkPixmap& src) { |
| return sk_gpu_test::MakeBackendTextureImage(ctxInfo.directContext(), src, |
| renderable, origin); |
| }); |
| auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin); |
| gpu_read_pixels_test_driver(reporter, rules, factory, reader, label); |
| } |
| } |
| } |
| |
| DEF_GANESH_TEST(AsyncReadPixelsContextShutdown, reporter, options, CtsEnforcement::kApiLevel_T) { |
| const auto ii = SkImageInfo::Make(10, 10, kRGBA_8888_SkColorType, kPremul_SkAlphaType, |
| SkColorSpace::MakeSRGB()); |
| enum class ShutdownSequence { |
| kFreeResult_DestroyContext, |
| kDestroyContext_FreeResult, |
| kFreeResult_ReleaseAndAbandon_DestroyContext, |
| kFreeResult_Abandon_DestroyContext, |
| kReleaseAndAbandon_FreeResult_DestroyContext, |
| kAbandon_FreeResult_DestroyContext, |
| kReleaseAndAbandon_DestroyContext_FreeResult, |
| kAbandon_DestroyContext_FreeResult, |
| }; |
| for (int t = 0; t < sk_gpu_test::GrContextFactory::kContextTypeCnt; ++t) { |
| auto type = static_cast<sk_gpu_test::GrContextFactory::ContextType>(t); |
| for (auto sequence : {ShutdownSequence::kFreeResult_DestroyContext, |
| ShutdownSequence::kDestroyContext_FreeResult, |
| ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext, |
| ShutdownSequence::kFreeResult_Abandon_DestroyContext, |
| ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext, |
| ShutdownSequence::kAbandon_FreeResult_DestroyContext, |
| ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult, |
| ShutdownSequence::kAbandon_DestroyContext_FreeResult}) { |
| // Vulkan and D3D context abandoning without resource release has issues outside of the |
| // scope of this test. |
| if ((type == sk_gpu_test::GrContextFactory::kVulkan_ContextType || |
| type == sk_gpu_test::GrContextFactory::kDirect3D_ContextType) && |
| (sequence == ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext || |
| sequence == ShutdownSequence::kFreeResult_Abandon_DestroyContext || |
| sequence == ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext || |
| sequence == ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult || |
| sequence == ShutdownSequence::kAbandon_FreeResult_DestroyContext || |
| sequence == ShutdownSequence::kAbandon_DestroyContext_FreeResult)) { |
| continue; |
| } |
| for (bool yuv : {false, true}) { |
| sk_gpu_test::GrContextFactory factory(options); |
| auto direct = factory.get(type); |
| if (!direct) { |
| continue; |
| } |
| // This test is only meaningful for contexts that support transfer buffers for |
| // reads. |
| if (!direct->priv().caps()->transferFromSurfaceToBufferSupport()) { |
| continue; |
| } |
| auto surf = SkSurface::MakeRenderTarget(direct, skgpu::Budgeted::kYes, ii, 1, |
| nullptr); |
| if (!surf) { |
| continue; |
| } |
| AsyncContext cbContext; |
| if (yuv) { |
| surf->asyncRescaleAndReadPixelsYUV420( |
| kIdentity_SkYUVColorSpace, SkColorSpace::MakeSRGB(), ii.bounds(), |
| ii.dimensions(), SkImage::RescaleGamma::kSrc, |
| SkImage::RescaleMode::kNearest, &async_callback, &cbContext); |
| } else { |
| surf->asyncRescaleAndReadPixels(ii, ii.bounds(), SkImage::RescaleGamma::kSrc, |
| SkImage::RescaleMode::kNearest, &async_callback, |
| &cbContext); |
| } |
| direct->submit(); |
| while (!cbContext.fCalled) { |
| direct->checkAsyncWorkCompletion(); |
| } |
| if (!cbContext.fResult) { |
| ERRORF(reporter, "Callback failed on %s. is YUV: %d", |
| sk_gpu_test::GrContextFactory::ContextTypeName(type), yuv); |
| continue; |
| } |
| // For vulkan we need to release all refs to the GrDirectContext before trying to |
| // destroy the test context. The surface here is holding a ref. |
| surf.reset(); |
| |
| // The real test is that we don't crash, get Vulkan validation errors, etc, during |
| // this shutdown sequence. |
| switch (sequence) { |
| case ShutdownSequence::kFreeResult_DestroyContext: |
| case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext: |
| case ShutdownSequence::kFreeResult_Abandon_DestroyContext: |
| break; |
| case ShutdownSequence::kDestroyContext_FreeResult: |
| factory.destroyContexts(); |
| break; |
| case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext: |
| factory.releaseResourcesAndAbandonContexts(); |
| break; |
| case ShutdownSequence::kAbandon_FreeResult_DestroyContext: |
| factory.abandonContexts(); |
| break; |
| case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult: |
| factory.releaseResourcesAndAbandonContexts(); |
| factory.destroyContexts(); |
| break; |
| case ShutdownSequence::kAbandon_DestroyContext_FreeResult: |
| factory.abandonContexts(); |
| factory.destroyContexts(); |
| break; |
| } |
| cbContext.fResult.reset(); |
| switch (sequence) { |
| case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext: |
| factory.releaseResourcesAndAbandonContexts(); |
| break; |
| case ShutdownSequence::kFreeResult_Abandon_DestroyContext: |
| factory.abandonContexts(); |
| break; |
| case ShutdownSequence::kFreeResult_DestroyContext: |
| case ShutdownSequence::kDestroyContext_FreeResult: |
| case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext: |
| case ShutdownSequence::kAbandon_FreeResult_DestroyContext: |
| case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult: |
| case ShutdownSequence::kAbandon_DestroyContext_FreeResult: |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| template <typename T> |
| static void gpu_write_pixels_test_driver(skiatest::Reporter* reporter, |
| const std::function<GpuDstFactory<T>>& dstFactory, |
| const std::function<GpuWriteDstFn<T>>& write, |
| const std::function<GpuReadDstFn<T>>& read) { |
| // Separate this out just to give it some line width to breathe. |
| auto runTest = [&](const T& dst, |
| const SkImageInfo& dstInfo, |
| const SkPixmap& srcPixels, |
| SkIPoint offset) { |
| const bool csConversion = |
| !SkColorSpace::Equals(dstInfo.colorSpace(), srcPixels.info().colorSpace()); |
| const auto writeCT = srcPixels.colorType(); |
| const auto writeAT = srcPixels.alphaType(); |
| const auto dstCT = dstInfo.colorType(); |
| const auto dstAT = dstInfo.alphaType(); |
| const auto rect = SkIRect::MakePtSize(offset, srcPixels.dimensions()); |
| const auto surfBounds = SkIRect::MakeSize(dstInfo.dimensions()); |
| |
| // Do an initial read before the write. |
| SkAutoPixmapStorage firstReadPM = read(dst); |
| if (!firstReadPM.addr()) { |
| // Particularly with GLES 2 we can have formats that are unreadable with our current |
| // implementation of read pixels. If the format can't be attached to a FBO we don't have |
| // a code path that draws it to another readable color type/format combo and reads from |
| // that. |
| return Result::kExcusedFailure; |
| } |
| |
| const Result result = write(dst, offset, srcPixels); |
| |
| if (!SkIRect::Intersects(rect, surfBounds)) { |
| REPORTER_ASSERT(reporter, result != Result::kSuccess); |
| } else if (writeCT == kUnknown_SkColorType) { |
| REPORTER_ASSERT(reporter, result != Result::kSuccess); |
| } else if ((writeAT == kUnknown_SkAlphaType) != (dstAT == kUnknown_SkAlphaType)) { |
| REPORTER_ASSERT(reporter, result != Result::kSuccess); |
| } else if (result == Result::kExcusedFailure) { |
| return result; |
| } else if (result == Result::kFail) { |
| // TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU. |
| if (SkColorTypeToGrColorType(writeCT) != GrColorType::kUnknown) { |
| ERRORF(reporter, |
| "Write failed. Write CT: %s, Write AT: %s Dst CT: %s, Dst AT: %s, " |
| "Rect [%d, %d, %d, %d], CS conversion: %d\n", |
| ToolUtils::colortype_name(writeCT), ToolUtils::alphatype_name(writeAT), |
| ToolUtils::colortype_name(dstCT), ToolUtils::alphatype_name(dstAT), |
| rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion); |
| } |
| return result; |
| } |
| |
| SkIRect checkRect; |
| if (result != Result::kSuccess || !checkRect.intersect(surfBounds, rect)) { |
| return result; |
| } |
| |
| // Do an initial read before the write. We'll use this to verify that areas outside the |
| // write are unaffected. |
| SkAutoPixmapStorage secondReadPM = read(dst); |
| if (!secondReadPM.addr()) { |
| // The first read succeeded so this one should, too. |
| ERRORF(reporter, |
| "could not read from dst (CT: %s, AT: %s)\n", |
| ToolUtils::colortype_name(dstCT), |
| ToolUtils::alphatype_name(dstAT)); |
| return Result::kFail; |
| } |
| |
| // Sometimes wider types go through 8bit unorm intermediates because of API |
| // restrictions. |
| int rgbBits = std::min({min_rgb_channel_bits(writeCT), min_rgb_channel_bits(dstCT), 8}); |
| float tol = 2.f/(1 << rgbBits); |
| float alphaTol = 0; |
| if (writeAT != kOpaque_SkAlphaType && dstAT != kOpaque_SkAlphaType) { |
| // Alpha can also get squashed down to 8 bits going through an intermediate |
| // color format. |
| const int alphaBits = std::min({alpha_channel_bits(writeCT), |
| alpha_channel_bits(dstCT), |
| 8}); |
| alphaTol = 2.f/(1 << alphaBits); |
| } |
| |
| const float tols[4] = {tol, tol, tol, alphaTol}; |
| auto error = std::function<ComparePixmapsErrorReporter>([&](int x, |
| int y, |
| const float diffs[4]) { |
| SkASSERT(x >= 0 && y >= 0); |
| ERRORF(reporter, |
| "Write CT: %s, Write AT: %s, Dst CT: %s, Dst AT: %s, Rect [%d, %d, %d, %d]" |
| ", CS conversion: %d\n" |
| "Error at %d, %d. Diff in floats: (%f, %f, %f, %f)", |
| ToolUtils::colortype_name(writeCT), |
| ToolUtils::alphatype_name(writeAT), |
| ToolUtils::colortype_name(dstCT), |
| ToolUtils::alphatype_name(dstAT), |
| rect.fLeft, |
| rect.fTop, |
| rect.fRight, |
| rect.fBottom, |
| csConversion, |
| x, |
| y, |
| diffs[0], |
| diffs[1], |
| diffs[2], |
| diffs[3]); |
| }); |
| |
| SkAutoPixmapStorage ref; |
| ref.alloc(secondReadPM.info().makeDimensions(checkRect.size())); |
| // Here we use the CPU backend to do the equivalent conversion as the write we're |
| // testing, using kUnpremul instead of kUnknown since CPU requires a valid alpha type. |
| SkAssertResult(make_pixmap_have_valid_alpha_type(srcPixels).readPixels( |
| make_pixmap_have_valid_alpha_type(ref), |
| std::max(0, -offset.fX), |
| std::max(0, -offset.fY))); |
| // This is the part of secondReadPixels that should have been updated by the write. |
| SkPixmap actual; |
| SkAssertResult(secondReadPM.extractSubset(&actual, checkRect)); |
| ComparePixels(ref, actual, tols, error); |
| // The area around written rect should be the same in the first and second read. |
| SkIRect borders[]{ |
| { 0, 0, secondReadPM.width(), secondReadPM.height()}, |
| {checkRect.fRight, 0, checkRect.fLeft, secondReadPM.height()}, |
| { checkRect.fLeft, 0, checkRect.fRight, checkRect.fTop}, |
| { checkRect.fLeft, checkRect.fBottom, checkRect.fRight, secondReadPM.height()} |
| }; |
| for (const auto r : borders) { |
| if (!r.isEmpty()) { |
| // Make a copy because MSVC for some reason doesn't correctly capture 'r'. |
| SkIPoint tl = r.topLeft(); |
| auto guardError = std::function<ComparePixmapsErrorReporter>( |
| [&](int x, int y, const float diffs[4]) { |
| x += tl.x(); |
| y += tl.y(); |
| ERRORF(reporter, |
| "Write CT: %s, Write AT: %s, Dst CT: %s, Dst AT: %s," |
| "Rect [%d, %d, %d, %d], CS conversion: %d\n" |
| "Error in guard region %d, %d. Diff in floats: (%f, %f, %f, %f)", |
| ToolUtils::colortype_name(writeCT), |
| ToolUtils::alphatype_name(writeAT), |
| ToolUtils::colortype_name(dstCT), |
| ToolUtils::alphatype_name(dstAT), |
| rect.fLeft, |
| rect.fTop, |
| rect.fRight, |
| rect.fBottom, |
| csConversion, |
| x, |
| y, |
| diffs[0], |
| diffs[1], |
| diffs[2], |
| diffs[3]); |
| }); |
| SkPixmap a, b; |
| SkAssertResult(firstReadPM.extractSubset(&a, r)); |
| SkAssertResult(firstReadPM.extractSubset(&b, r)); |
| float zeroTols[4] = {}; |
| ComparePixels(a, b, zeroTols, guardError); |
| } |
| } |
| return result; |
| }; |
| |
| static constexpr int kW = 16; |
| static constexpr int kH = 16; |
| |
| const std::vector<SkIRect> longRectArray = make_long_rect_array(kW, kH); |
| const std::vector<SkIRect> shortRectArray = make_short_rect_array(kW, kH); |
| |
| // We ensure we use the long array once per src and read color type and otherwise use the |
| // short array to improve test run time. |
| // Also, some color types have no alpha values and thus Opaque Premul and Unpremul are |
| // equivalent. Just ensure each redundant AT is tested once with each CT (dst and write). |
| // Similarly, alpha-only color types behave the same for all alpha types so just test premul |
| // after one iter. |
| // We consider a dst or write CT thoroughly tested once it has run through the long rect array |
| // and full complement of alpha types with one successful read in the loop. |
| std::array<bool, kLastEnum_SkColorType + 1> dstCTTestedThoroughly = {}, |
| writeCTTestedThoroughly = {}; |
| for (int dat = 0; dat < kLastEnum_SkAlphaType; ++dat) { |
| const auto dstAT = static_cast<SkAlphaType>(dat); |
| for (int dct = 0; dct <= kLastEnum_SkColorType; ++dct) { |
| const auto dstCT = static_cast<SkColorType>(dct); |
| const auto dstInfo = SkImageInfo::Make(kW, kH, dstCT, dstAT, SkColorSpace::MakeSRGB()); |
| auto dst = dstFactory(dstInfo); |
| if (!dst) { |
| continue; |
| } |
| if (SkColorTypeIsAlwaysOpaque(dstCT) && dstCTTestedThoroughly[dstCT] && |
| (kPremul_SkAlphaType == dstAT || kUnpremul_SkAlphaType == dstAT)) { |
| continue; |
| } |
| if (SkColorTypeIsAlphaOnly(dstCT) && dstCTTestedThoroughly[dstCT] && |
| (kUnpremul_SkAlphaType == dstAT || |
| kOpaque_SkAlphaType == dstAT || |
| kUnknown_SkAlphaType == dstAT)) { |
| continue; |
| } |
| for (int wct = 0; wct <= kLastEnum_SkColorType; ++wct) { |
| const auto writeCT = static_cast<SkColorType>(wct); |
| for (const sk_sp<SkColorSpace>& writeCS : {SkColorSpace::MakeSRGB(), |
| SkColorSpace::MakeSRGBLinear()}) { |
| for (int wat = 0; wat <= kLastEnum_SkAlphaType; ++wat) { |
| const auto writeAT = static_cast<SkAlphaType>(wat); |
| if (writeAT != kOpaque_SkAlphaType && dstAT == kOpaque_SkAlphaType) { |
| // This doesn't make sense. |
| continue; |
| } |
| if (SkColorTypeIsAlwaysOpaque(writeCT) && |
| writeCTTestedThoroughly[writeCT] && |
| (kPremul_SkAlphaType == writeAT || kUnpremul_SkAlphaType == writeAT)) { |
| continue; |
| } |
| if (SkColorTypeIsAlphaOnly(writeCT) && writeCTTestedThoroughly[writeCT] && |
| (kUnpremul_SkAlphaType == writeAT || |
| kOpaque_SkAlphaType == writeAT || |
| kUnknown_SkAlphaType == writeAT)) { |
| continue; |
| } |
| const auto& rects = |
| dstCTTestedThoroughly[dct] && writeCTTestedThoroughly[wct] |
| ? shortRectArray |
| : longRectArray; |
| for (const auto& rect : rects) { |
| auto writeInfo = SkImageInfo::Make(rect.size(), |
| writeCT, |
| writeAT, |
| writeCS); |
| // CPU and GPU handle 1010102 differently. CPU clamps RGB to A, GPU |
| // doesn't. |
| bool forceOpaque = writeCT == kRGBA_1010102_SkColorType || |
| writeCT == kBGRA_1010102_SkColorType; |
| SkAutoPixmapStorage writePixels = make_ref_data(writeInfo, forceOpaque); |
| const SkIPoint offset = rect.topLeft(); |
| Result r = runTest(dst, dstInfo, writePixels, offset); |
| if (r == Result::kSuccess) { |
| dstCTTestedThoroughly[dct] = true; |
| writeCTTestedThoroughly[wct] = true; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SurfaceContextWritePixels, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kApiLevel_T) { |
| using Surface = std::unique_ptr<skgpu::v1::SurfaceContext>; |
| GrDirectContext* direct = ctxInfo.directContext(); |
| auto writer = std::function<GpuWriteDstFn<Surface>>( |
| [direct](const Surface& surface, const SkIPoint& offset, const SkPixmap& pixels) { |
| if (surface->writePixels(direct, pixels, offset)) { |
| return Result::kSuccess; |
| } else { |
| return Result::kFail; |
| } |
| }); |
| auto reader = std::function<GpuReadDstFn<Surface>>([direct](const Surface& s) { |
| SkAutoPixmapStorage result; |
| auto grInfo = s->imageInfo(); |
| SkColorType ct = GrColorTypeToSkColorType(grInfo.colorType()); |
| SkASSERT(ct != kUnknown_SkColorType); |
| auto skInfo = SkImageInfo::Make(grInfo.dimensions(), ct, grInfo.alphaType(), |
| grInfo.refColorSpace()); |
| result.alloc(skInfo); |
| if (!s->readPixels(direct, result, {0, 0})) { |
| SkAutoPixmapStorage badResult; |
| return badResult; |
| } |
| return result; |
| }); |
| |
| for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { |
| for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { |
| auto factory = std::function<GpuDstFactory<Surface>>( |
| [direct, origin, renderable](const SkImageInfo& info) { |
| return CreateSurfaceContext(direct, |
| info, |
| SkBackingFit::kExact, |
| origin, |
| renderable); |
| }); |
| |
| gpu_write_pixels_test_driver(reporter, factory, writer, reader); |
| } |
| } |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SurfaceContextWritePixelsMipped, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kApiLevel_T) { |
| auto direct = ctxInfo.directContext(); |
| if (!direct->priv().caps()->mipmapSupport()) { |
| return; |
| } |
| static constexpr int kW = 25, |
| kH = 37; |
| SkAutoPixmapStorage refP = make_ref_data(SkImageInfo::Make({kW, kH}, |
| kRGBA_F32_SkColorType, |
| kPremul_SkAlphaType, |
| nullptr), |
| false); |
| SkAutoPixmapStorage refO = make_ref_data(SkImageInfo::Make({kW, kH}, |
| kRGBA_F32_SkColorType, |
| kOpaque_SkAlphaType, |
| nullptr), |
| true); |
| |
| for (int c = 0; c < kGrColorTypeCnt; ++c) { |
| auto ct = static_cast<GrColorType>(c); |
| // Below we use rendering to read the level pixels back. |
| auto format = direct->priv().caps()->getDefaultBackendFormat(ct, GrRenderable::kYes); |
| if (!format.isValid()) { |
| continue; |
| } |
| SkAlphaType at = GrColorTypeHasAlpha(ct) ? kPremul_SkAlphaType : kOpaque_SkAlphaType; |
| GrImageInfo info(ct, at, nullptr, kW, kH); |
| SkTArray<GrCPixmap> levels; |
| const auto& ref = at == kPremul_SkAlphaType ? refP : refO; |
| for (int w = kW, h = kH; w || h; w/=2, h/=2) { |
| auto level = GrPixmap::Allocate(info.makeWH(std::max(w, 1), std::max(h, 1))); |
| SkPixmap src; |
| SkAssertResult(ref.extractSubset(&src, SkIRect::MakeSize(level.dimensions()))); |
| SkAssertResult(GrConvertPixels(level, src)); |
| levels.push_back(level); |
| } |
| |
| for (bool unowned : {false, true}) { // test a GrCPixmap that doesn't own its storage. |
| for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { |
| for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, |
| kBottomLeft_GrSurfaceOrigin}) { |
| auto sc = CreateSurfaceContext(direct, |
| info, |
| SkBackingFit::kExact, |
| origin, |
| renderable, |
| /*sample count*/ 1, |
| GrMipmapped::kYes); |
| if (!sc) { |
| continue; |
| } |
| // Keeps pixels in unowned case alive until after writePixels is called but no |
| // longer. |
| GrPixmap keepAlive; |
| GrCPixmap savedLevel = levels[1]; |
| if (unowned) { |
| // Also test non-tight row bytes with the unowned pixmap, bump width by 1. |
| int w = levels[1].width() + 1; |
| int h = levels[1].height(); |
| keepAlive = GrPixmap::Allocate(levels[1].info().makeWH(w, h)); |
| SkPixmap src; |
| // These pixel values will be the same as the original level 1. |
| SkAssertResult(ref.extractSubset(&src, SkIRect::MakeWH(w, h))); |
| SkAssertResult(GrConvertPixels(keepAlive, src)); |
| levels[1] = GrCPixmap(levels[1].info(), |
| keepAlive.addr(), |
| keepAlive.rowBytes()); |
| } |
| // Going through intermediate textures is not supported for MIP levels (because |
| // we don't support rendering to non-base levels). So it's hard to have any hard |
| // rules about when we expect success. |
| if (!sc->writePixels(direct, levels.begin(), levels.size())) { |
| continue; |
| } |
| // Make sure the pixels from the unowned pixmap are released and then put the |
| // original level back in for the comparison after the read below. |
| keepAlive = {}; |
| levels[1] = savedLevel; |
| |
| // TODO: Update this when read pixels supports reading back levels to read |
| // directly rather than using minimizing draws. |
| auto dstSC = CreateSurfaceContext(direct, |
| info, |
| SkBackingFit::kExact, |
| kBottomLeft_GrSurfaceOrigin, |
| GrRenderable::kYes); |
| SkASSERT(dstSC); |
| GrSamplerState sampler(SkFilterMode::kNearest, SkMipmapMode::kNearest); |
| for (int i = 1; i <= 1; ++i) { |
| auto te = GrTextureEffect::Make(sc->readSurfaceView(), |
| info.alphaType(), |
| SkMatrix::I(), |
| sampler, |
| *direct->priv().caps()); |
| dstSC->asFillContext()->fillRectToRectWithFP( |
| SkIRect::MakeSize(sc->dimensions()), |
| SkIRect::MakeSize(levels[i].dimensions()), |
| std::move(te)); |
| GrImageInfo readInfo = |
| dstSC->imageInfo().makeDimensions(levels[i].dimensions()); |
| GrPixmap read = GrPixmap::Allocate(readInfo); |
| if (!dstSC->readPixels(direct, read, {0, 0})) { |
| continue; |
| } |
| |
| auto skCT = GrColorTypeToSkColorType(info.colorType()); |
| int rgbBits = std::min(min_rgb_channel_bits(skCT), 8); |
| float rgbTol = (rgbBits == 0) ? 1.f : 2.f / ((1 << rgbBits) - 1); |
| int alphaBits = std::min(alpha_channel_bits(skCT), 8); |
| float alphaTol = (alphaBits == 0) ? 1.f : 2.f / ((1 << alphaBits) - 1); |
| float tol[] = {rgbTol, rgbTol, rgbTol, alphaTol}; |
| |
| GrCPixmap a = levels[i]; |
| GrCPixmap b = read; |
| // The compare code will linearize when reading the srgb data. This will |
| // magnify differences at the high end. Rather than adjusting the tolerance |
| // to compensate we do the comparison without going through srgb->linear. |
| if (ct == GrColorType::kRGBA_8888_SRGB) { |
| a = GrCPixmap(a.info().makeColorType(GrColorType::kRGBA_8888), |
| a.addr(), |
| a.rowBytes()); |
| b = GrCPixmap(b.info().makeColorType(GrColorType::kRGBA_8888), |
| b.addr(), |
| b.rowBytes()); |
| } |
| |
| auto error = std::function<ComparePixmapsErrorReporter>( |
| [&](int x, int y, const float diffs[4]) { |
| SkASSERT(x >= 0 && y >= 0); |
| ERRORF(reporter, |
| "CT: %s, Level %d, Unowned: %d. " |
| "Error at %d, %d. Diff in floats:" |
| "(%f, %f, %f, %f)", |
| GrColorTypeToStr(info.colorType()), i, unowned, x, y, |
| diffs[0], diffs[1], diffs[2], diffs[3]); |
| }); |
| ComparePixels(a, b, tol, error); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Tests a bug found in OOP-R canvas2d in Chrome. The GPU backend would incorrectly not bind |
| // buffer 0 to GL_PIXEL_PACK_BUFFER before a glReadPixels() that was supposed to read into |
| // client memory if a GrDirectContext::resetContext() occurred. |
| DEF_GANESH_TEST_FOR_GL_RENDERING_CONTEXTS(GLReadPixelsUnbindPBO, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kApiLevel_T) { |
| // Start with a async read so that we bind to GL_PIXEL_PACK_BUFFER. |
| auto info = SkImageInfo::Make(16, 16, kRGBA_8888_SkColorType, kPremul_SkAlphaType); |
| SkAutoPixmapStorage pmap = make_ref_data(info, /*forceOpaque=*/false); |
| auto image = SkImage::MakeFromRaster(pmap, nullptr, nullptr); |
| image = image->makeTextureImage(ctxInfo.directContext()); |
| if (!image) { |
| ERRORF(reporter, "Couldn't make texture image."); |
| return; |
| } |
| |
| AsyncContext asyncContext; |
| image->asyncRescaleAndReadPixels(info, |
| SkIRect::MakeSize(info.dimensions()), |
| SkImage::RescaleGamma::kSrc, |
| SkImage::RescaleMode::kNearest, |
| async_callback, |
| &asyncContext); |
| |
| // This will force the async readback to finish. |
| ctxInfo.directContext()->flushAndSubmit(true); |
| if (!asyncContext.fCalled) { |
| ERRORF(reporter, "async_callback not called."); |
| } |
| if (!asyncContext.fResult) { |
| ERRORF(reporter, "async read failed."); |
| } |
| |
| SkPixmap asyncResult(info, asyncContext.fResult->data(0), asyncContext.fResult->rowBytes(0)); |
| |
| // Bug was that this would cause GrGLGpu to think no buffer was left bound to |
| // GL_PIXEL_PACK_BUFFER even though async transfer did leave one bound. So the sync read |
| // wouldn't bind buffer 0. |
| ctxInfo.directContext()->resetContext(); |
| |
| SkBitmap syncResult; |
| syncResult.allocPixels(info); |
| syncResult.eraseARGB(0xFF, 0xFF, 0xFF, 0xFF); |
| |
| image->readPixels(ctxInfo.directContext(), syncResult.pixmap(), 0, 0); |
| |
| float tol[4] = {}; // expect exactly same pixels, no conversions. |
| auto error = std::function<ComparePixmapsErrorReporter>([&](int x, int y, |
| const float diffs[4]) { |
| SkASSERT(x >= 0 && y >= 0); |
| ERRORF(reporter, "Expect sync and async read to be the same. " |
| "Error at %d, %d. Diff in floats: (%f, %f, %f, %f)", |
| x, y, diffs[0], diffs[1], diffs[2], diffs[3]); |
| }); |
| |
| ComparePixels(syncResult.pixmap(), asyncResult, tol, error); |
| } |