| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef skgpu_ResourceKey_DEFINED |
| #define skgpu_ResourceKey_DEFINED |
| |
| #include "include/core/SkData.h" |
| #include "include/core/SkRefCnt.h" |
| #include "include/core/SkTypes.h" |
| #include "include/private/base/SkAlign.h" |
| #include "include/private/base/SkAlignedStorage.h" |
| #include "include/private/base/SkDebug.h" |
| #include "include/private/base/SkTemplates.h" |
| #include "include/private/base/SkTo.h" |
| |
| #include <cstdint> |
| #include <cstring> |
| #include <new> |
| #include <utility> |
| |
| class TestResource; |
| |
| namespace skgpu { |
| |
| uint32_t ResourceKeyHash(const uint32_t* data, size_t size); |
| |
| /** |
| * Base class for all gpu Resource cache keys. There are two types of cache keys. Refer to the |
| * comments for each key type below. |
| */ |
| class ResourceKey { |
| public: |
| uint32_t hash() const { |
| this->validate(); |
| return fKey[kHash_MetaDataIdx]; |
| } |
| |
| size_t size() const { |
| this->validate(); |
| SkASSERT(this->isValid()); |
| return this->internalSize(); |
| } |
| |
| /** Reset to an invalid key. */ |
| void reset() { |
| fKey.reset(kMetaDataCnt); |
| fKey[kHash_MetaDataIdx] = 0; |
| fKey[kDomainAndSize_MetaDataIdx] = kInvalidDomain; |
| } |
| |
| bool isValid() const { return kInvalidDomain != this->domain(); } |
| |
| /** Used to initialize a key. */ |
| class Builder { |
| public: |
| ~Builder() { this->finish(); } |
| |
| void finish() { |
| if (nullptr == fKey) { |
| return; |
| } |
| uint32_t* hash = &fKey->fKey[kHash_MetaDataIdx]; |
| *hash = ResourceKeyHash(hash + 1, fKey->internalSize() - sizeof(uint32_t)); |
| fKey->validate(); |
| fKey = nullptr; |
| } |
| |
| uint32_t& operator[](int dataIdx) { |
| SkASSERT(fKey); |
| SkDEBUGCODE(size_t dataCount = fKey->internalSize() / sizeof(uint32_t) - kMetaDataCnt;) |
| SkASSERT(SkToU32(dataIdx) < dataCount); |
| return fKey->fKey[(int)kMetaDataCnt + dataIdx]; |
| } |
| |
| protected: |
| Builder(ResourceKey* key, uint32_t domain, int data32Count) : fKey(key) { |
| size_t count = SkToSizeT(data32Count); |
| SkASSERT(domain != kInvalidDomain); |
| key->fKey.reset(kMetaDataCnt + count); |
| size_t size = (count + kMetaDataCnt) * sizeof(uint32_t); |
| SkASSERT(SkToU16(size) == size); |
| SkASSERT(SkToU16(domain) == domain); |
| key->fKey[kDomainAndSize_MetaDataIdx] = SkToU32(domain | (size << 16)); |
| } |
| |
| private: |
| ResourceKey* fKey; |
| }; |
| |
| protected: |
| static const uint32_t kInvalidDomain = 0; |
| |
| ResourceKey() { this->reset(); } |
| |
| bool operator==(const ResourceKey& that) const { |
| // Both keys should be sized to at least contain the meta data. The metadata contains each |
| // key's length. So the second memcmp should only run if the keys have the same length. |
| return 0 == memcmp(fKey.get(), that.fKey.get(), kMetaDataCnt*sizeof(uint32_t)) && |
| 0 == memcmp(&fKey[kMetaDataCnt], &that.fKey[kMetaDataCnt], this->dataSize()); |
| } |
| |
| ResourceKey& operator=(const ResourceKey& that) { |
| if (this != &that) { |
| if (!that.isValid()) { |
| this->reset(); |
| } else { |
| size_t bytes = that.size(); |
| SkASSERT(SkIsAlign4(bytes)); |
| fKey.reset(bytes / sizeof(uint32_t)); |
| memcpy(fKey.get(), that.fKey.get(), bytes); |
| this->validate(); |
| } |
| } |
| return *this; |
| } |
| |
| uint32_t domain() const { return fKey[kDomainAndSize_MetaDataIdx] & 0xffff; } |
| |
| /** size of the key data, excluding meta-data (hash, domain, etc). */ |
| size_t dataSize() const { return this->size() - 4 * kMetaDataCnt; } |
| |
| /** ptr to the key data, excluding meta-data (hash, domain, etc). */ |
| const uint32_t* data() const { |
| this->validate(); |
| return &fKey[kMetaDataCnt]; |
| } |
| |
| #ifdef SK_DEBUG |
| void dump() const { |
| if (!this->isValid()) { |
| SkDebugf("Invalid Key\n"); |
| } else { |
| SkDebugf("hash: %u ", this->hash()); |
| SkDebugf("domain: %u ", this->domain()); |
| SkDebugf("size: %zuB ", this->internalSize()); |
| size_t dataCount = this->internalSize() / sizeof(uint32_t) - kMetaDataCnt; |
| for (size_t i = 0; i < dataCount; ++i) { |
| SkDebugf("%u ", fKey[SkTo<int>(kMetaDataCnt+i)]); |
| } |
| SkDebugf("\n"); |
| } |
| } |
| #endif |
| |
| private: |
| enum MetaDataIdx { |
| kHash_MetaDataIdx, |
| // The key domain and size are packed into a single uint32_t. |
| kDomainAndSize_MetaDataIdx, |
| |
| kLastMetaDataIdx = kDomainAndSize_MetaDataIdx |
| }; |
| static const uint32_t kMetaDataCnt = kLastMetaDataIdx + 1; |
| |
| size_t internalSize() const { return fKey[kDomainAndSize_MetaDataIdx] >> 16; } |
| |
| void validate() const { |
| SkASSERT(this->isValid()); |
| SkASSERT(fKey[kHash_MetaDataIdx] == |
| ResourceKeyHash(&fKey[kHash_MetaDataIdx] + 1, |
| this->internalSize() - sizeof(uint32_t))); |
| SkASSERT(SkIsAlign4(this->internalSize())); |
| } |
| |
| friend class ::TestResource; // For unit test to access kMetaDataCnt. |
| |
| // For Ganesh, bmp textures require 5 uint32_t values. Graphite requires 6 (due to |
| // storing mipmap status as part of the key). |
| skia_private::AutoSTMalloc<kMetaDataCnt + 6, uint32_t> fKey; |
| }; |
| |
| /** |
| * A key used for scratch resources. There are three important rules about scratch keys: |
| * * Multiple resources can share the same scratch key. Therefore resources assigned the same |
| * scratch key should be interchangeable with respect to the code that uses them. |
| * * A resource can have at most one scratch key and it is set at resource creation by the |
| * resource itself. |
| * * When a scratch resource is ref'ed it will not be returned from the |
| * cache for a subsequent cache request until all refs are released. This facilitates using |
| * a scratch key for multiple render-to-texture scenarios. An example is a separable blur: |
| * |
| * GrTexture* texture[2]; |
| * texture[0] = get_scratch_texture(scratchKey); |
| * texture[1] = get_scratch_texture(scratchKey); // texture[0] is already owned so we will get a |
| * // different one for texture[1] |
| * draw_mask(texture[0], path); // draws path mask to texture[0] |
| * blur_x(texture[0], texture[1]); // blurs texture[0] in y and stores result in texture[1] |
| * blur_y(texture[1], texture[0]); // blurs texture[1] in y and stores result in texture[0] |
| * texture[1]->unref(); // texture 1 can now be recycled for the next request with scratchKey |
| * consume_blur(texture[0]); |
| * texture[0]->unref(); // texture 0 can now be recycled for the next request with scratchKey |
| */ |
| class ScratchKey : public ResourceKey { |
| public: |
| /** Uniquely identifies the type of resource that is cached as scratch. */ |
| typedef uint32_t ResourceType; |
| |
| /** Generate a unique ResourceType. */ |
| static ResourceType GenerateResourceType(); |
| |
| /** Creates an invalid scratch key. It must be initialized using a Builder object before use. */ |
| ScratchKey() {} |
| |
| ScratchKey(const ScratchKey& that) { *this = that; } |
| |
| ResourceType resourceType() const { return this->domain(); } |
| |
| ScratchKey& operator=(const ScratchKey& that) { |
| this->ResourceKey::operator=(that); |
| return *this; |
| } |
| |
| bool operator==(const ScratchKey& that) const { return this->ResourceKey::operator==(that); } |
| bool operator!=(const ScratchKey& that) const { return !(*this == that); } |
| |
| class Builder : public ResourceKey::Builder { |
| public: |
| Builder(ScratchKey* key, ResourceType type, int data32Count) |
| : ResourceKey::Builder(key, type, data32Count) {} |
| }; |
| }; |
| |
| /** |
| * A key that allows for exclusive use of a resource for a use case (AKA "domain"). There are three |
| * rules governing the use of unique keys: |
| * * Only one resource can have a given unique key at a time. Hence, "unique". |
| * * A resource can have at most one unique key at a time. |
| * * Unlike scratch keys, multiple requests for a unique key will return the same |
| * resource even if the resource already has refs. |
| * This key type allows a code path to create cached resources for which it is the exclusive user. |
| * The code path creates a domain which it sets on its keys. This guarantees that there are no |
| * cross-domain collisions. |
| * |
| * Unique keys preempt scratch keys. While a resource has a unique key it is inaccessible via its |
| * scratch key. It can become scratch again if the unique key is removed. |
| */ |
| class UniqueKey : public ResourceKey { |
| public: |
| typedef uint32_t Domain; |
| /** Generate a Domain for unique keys. */ |
| static Domain GenerateDomain(); |
| |
| /** Creates an invalid unique key. It must be initialized using a Builder object before use. */ |
| UniqueKey() : fTag(nullptr) {} |
| |
| UniqueKey(const UniqueKey& that) { *this = that; } |
| |
| UniqueKey& operator=(const UniqueKey& that) { |
| this->ResourceKey::operator=(that); |
| this->setCustomData(sk_ref_sp(that.getCustomData())); |
| fTag = that.fTag; |
| return *this; |
| } |
| |
| bool operator==(const UniqueKey& that) const { return this->ResourceKey::operator==(that); } |
| bool operator!=(const UniqueKey& that) const { return !(*this == that); } |
| |
| void setCustomData(sk_sp<SkData> data) { fData = std::move(data); } |
| SkData* getCustomData() const { return fData.get(); } |
| sk_sp<SkData> refCustomData() const { return fData; } |
| |
| const char* tag() const { return fTag; } |
| |
| const uint32_t* data() const { return this->ResourceKey::data(); } |
| |
| #ifdef SK_DEBUG |
| uint32_t domain() const { return this->ResourceKey::domain(); } |
| size_t dataSize() const { return this->ResourceKey::dataSize(); } |
| |
| void dump(const char* label) const { |
| SkDebugf("%s tag: %s\n", label, fTag ? fTag : "None"); |
| this->ResourceKey::dump(); |
| } |
| #endif |
| |
| class Builder : public ResourceKey::Builder { |
| public: |
| Builder(UniqueKey* key, Domain type, int data32Count, const char* tag = nullptr) |
| : ResourceKey::Builder(key, type, data32Count) { |
| key->fTag = tag; |
| } |
| |
| /** Used to build a key that wraps another key and adds additional data. */ |
| Builder(UniqueKey* key, const UniqueKey& innerKey, Domain domain, int extraData32Cnt, |
| const char* tag = nullptr) |
| : ResourceKey::Builder(key, |
| domain, |
| Data32CntForInnerKey(innerKey) + extraData32Cnt) { |
| SkASSERT(&innerKey != key); |
| // add the inner key to the end of the key so that op[] can be indexed normally. |
| uint32_t* innerKeyData = &this->operator[](extraData32Cnt); |
| const uint32_t* srcData = innerKey.data(); |
| (*innerKeyData++) = innerKey.domain(); |
| memcpy(innerKeyData, srcData, innerKey.dataSize()); |
| key->fTag = tag; |
| } |
| |
| private: |
| static int Data32CntForInnerKey(const UniqueKey& innerKey) { |
| // key data + domain |
| return SkToInt((innerKey.dataSize() >> 2) + 1); |
| } |
| }; |
| |
| private: |
| sk_sp<SkData> fData; |
| const char* fTag; |
| }; |
| |
| /** |
| * It is common to need a frequently reused UniqueKey where the only requirement is that the key |
| * is unique. These macros create such a key in a thread safe manner so the key can be truly global |
| * and only constructed once. |
| */ |
| |
| /** Place outside of function/class definitions. */ |
| #define SKGPU_DECLARE_STATIC_UNIQUE_KEY(name) static SkOnce name##_once |
| |
| /** Place inside function where the key is used. */ |
| #define SKGPU_DEFINE_STATIC_UNIQUE_KEY(name) \ |
| static SkAlignedSTStorage<1, skgpu::UniqueKey> name##_storage; \ |
| name##_once(skgpu::skgpu_init_static_unique_key_once, &name##_storage); \ |
| static const skgpu::UniqueKey& name = \ |
| *reinterpret_cast<skgpu::UniqueKey*>(name##_storage.get()) |
| |
| static inline void skgpu_init_static_unique_key_once(SkAlignedSTStorage<1, UniqueKey>* keyStorage) { |
| UniqueKey* key = new (keyStorage->get()) UniqueKey; |
| UniqueKey::Builder builder(key, UniqueKey::GenerateDomain(), 0); |
| } |
| |
| // The cache listens for these messages to purge junk resources proactively. |
| class UniqueKeyInvalidatedMessage { |
| public: |
| UniqueKeyInvalidatedMessage() = default; |
| UniqueKeyInvalidatedMessage(const UniqueKey& key, |
| uint32_t contextUniqueID, |
| bool inThreadSafeCache = false) |
| : fKey(key), fContextID(contextUniqueID), fInThreadSafeCache(inThreadSafeCache) { |
| SkASSERT(SK_InvalidUniqueID != contextUniqueID); |
| } |
| |
| UniqueKeyInvalidatedMessage(const UniqueKeyInvalidatedMessage&) = default; |
| |
| UniqueKeyInvalidatedMessage& operator=(const UniqueKeyInvalidatedMessage&) = default; |
| |
| const UniqueKey& key() const { return fKey; } |
| uint32_t contextID() const { return fContextID; } |
| bool inThreadSafeCache() const { return fInThreadSafeCache; } |
| |
| private: |
| UniqueKey fKey; |
| uint32_t fContextID = SK_InvalidUniqueID; |
| bool fInThreadSafeCache = false; |
| }; |
| |
| static inline bool SkShouldPostMessageToBus(const UniqueKeyInvalidatedMessage& msg, |
| uint32_t msgBusUniqueID) { |
| return msg.contextID() == msgBusUniqueID; |
| } |
| |
| class UniqueKeyInvalidatedMsg_Graphite { |
| public: |
| UniqueKeyInvalidatedMsg_Graphite() = default; |
| UniqueKeyInvalidatedMsg_Graphite(const UniqueKey& key, uint32_t recorderID) |
| : fKey(key), fRecorderID(recorderID) { |
| SkASSERT(SK_InvalidUniqueID != fRecorderID); |
| } |
| |
| UniqueKeyInvalidatedMsg_Graphite(const UniqueKeyInvalidatedMsg_Graphite&) = default; |
| |
| UniqueKeyInvalidatedMsg_Graphite& operator=(const UniqueKeyInvalidatedMsg_Graphite&) = default; |
| |
| const UniqueKey& key() const { return fKey; } |
| uint32_t recorderID() const { return fRecorderID; } |
| |
| private: |
| UniqueKey fKey; |
| uint32_t fRecorderID = SK_InvalidUniqueID; |
| }; |
| |
| static inline bool SkShouldPostMessageToBus(const UniqueKeyInvalidatedMsg_Graphite& msg, |
| uint32_t msgBusUniqueID) { |
| return msg.recorderID() == msgBusUniqueID; |
| } |
| |
| } // namespace skgpu |
| |
| #endif // skgpu_ResourceKey_DEFINED |