| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkBitmapProcState.h" |
| |
| #include "include/core/SkAlphaType.h" |
| #include "include/core/SkColorPriv.h" |
| #include "include/core/SkColorType.h" |
| #include "include/core/SkImageInfo.h" |
| #include "include/core/SkTileMode.h" |
| #include "include/private/base/SkMacros.h" |
| #include "include/private/base/SkTPin.h" |
| #include "src/core/SkMemset.h" |
| #include "src/core/SkMipmapAccessor.h" |
| |
| #include <algorithm> |
| #include <cstring> |
| #include <tuple> |
| |
| class SkImage; |
| class SkImage_Base; |
| |
| // One-stop-shop shader for, |
| // - nearest-neighbor sampling (_nofilter_), |
| // - clamp tiling in X and Y both (Clamp_), |
| // - with at most a scale and translate matrix (_DX_), |
| // - and no extra alpha applied (_opaque_), |
| // - sampling from 8888 (_S32_) and drawing to 8888 (_S32_). |
| static void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void* sIn, int x, int y, |
| SkPMColor* dst, int count) { |
| const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); |
| SkASSERT(s.fInvMatrix.isScaleTranslate()); |
| SkASSERT(s.fAlphaScale == 256); |
| |
| const unsigned maxX = s.fPixmap.width() - 1; |
| SkFractionalInt fx; |
| int dstY; |
| { |
| const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| const unsigned maxY = s.fPixmap.height() - 1; |
| dstY = SkTPin<int>(mapper.intY(), 0, maxY); |
| fx = mapper.fractionalIntX(); |
| } |
| |
| const SkPMColor* src = s.fPixmap.addr32(0, dstY); |
| const SkFractionalInt dx = s.fInvSxFractionalInt; |
| |
| // Check if we're safely inside [0...maxX] so no need to clamp each computed index. |
| // |
| if ((uint64_t)SkFractionalIntToInt(fx) <= maxX && |
| (uint64_t)SkFractionalIntToInt(fx + dx * (count - 1)) <= maxX) |
| { |
| int count4 = count >> 2; |
| for (int i = 0; i < count4; ++i) { |
| SkPMColor src0 = src[SkFractionalIntToInt(fx)]; fx += dx; |
| SkPMColor src1 = src[SkFractionalIntToInt(fx)]; fx += dx; |
| SkPMColor src2 = src[SkFractionalIntToInt(fx)]; fx += dx; |
| SkPMColor src3 = src[SkFractionalIntToInt(fx)]; fx += dx; |
| dst[0] = src0; |
| dst[1] = src1; |
| dst[2] = src2; |
| dst[3] = src3; |
| dst += 4; |
| } |
| for (int i = (count4 << 2); i < count; ++i) { |
| unsigned index = SkFractionalIntToInt(fx); |
| SkASSERT(index <= maxX); |
| *dst++ = src[index]; |
| fx += dx; |
| } |
| } else { |
| for (int i = 0; i < count; ++i) { |
| dst[i] = src[SkTPin<int>(SkFractionalIntToInt(fx), 0, maxX)]; |
| fx += dx; |
| } |
| } |
| } |
| |
| static void S32_alpha_D32_nofilter_DX(const SkBitmapProcState& s, |
| const uint32_t* xy, int count, SkPMColor* colors) { |
| SkASSERT(count > 0 && colors != nullptr); |
| SkASSERT(s.fInvMatrix.isScaleTranslate()); |
| SkASSERT(!s.fBilerp); |
| SkASSERT(4 == s.fPixmap.info().bytesPerPixel()); |
| SkASSERT(s.fAlphaScale <= 256); |
| |
| // xy is a 32-bit y-coordinate, followed by 16-bit x-coordinates. |
| unsigned y = *xy++; |
| SkASSERT(y < (unsigned)s.fPixmap.height()); |
| |
| auto row = (const SkPMColor*)( (const char*)s.fPixmap.addr() + y * s.fPixmap.rowBytes() ); |
| |
| if (1 == s.fPixmap.width()) { |
| SkOpts::memset32(colors, SkAlphaMulQ(row[0], s.fAlphaScale), count); |
| return; |
| } |
| |
| // Step 4 xs == 2 uint32_t at a time. |
| while (count >= 4) { |
| uint32_t x01 = *xy++, |
| x23 = *xy++; |
| |
| SkPMColor p0 = row[UNPACK_PRIMARY_SHORT (x01)]; |
| SkPMColor p1 = row[UNPACK_SECONDARY_SHORT(x01)]; |
| SkPMColor p2 = row[UNPACK_PRIMARY_SHORT (x23)]; |
| SkPMColor p3 = row[UNPACK_SECONDARY_SHORT(x23)]; |
| |
| *colors++ = SkAlphaMulQ(p0, s.fAlphaScale); |
| *colors++ = SkAlphaMulQ(p1, s.fAlphaScale); |
| *colors++ = SkAlphaMulQ(p2, s.fAlphaScale); |
| *colors++ = SkAlphaMulQ(p3, s.fAlphaScale); |
| |
| count -= 4; |
| } |
| |
| // Step 1 x == 1 uint16_t at a time. |
| auto x = (const uint16_t*)xy; |
| while (count --> 0) { |
| *colors++ = SkAlphaMulQ(row[*x++], s.fAlphaScale); |
| } |
| } |
| |
| static void S32_alpha_D32_nofilter_DXDY(const SkBitmapProcState& s, |
| const uint32_t* xy, int count, SkPMColor* colors) { |
| SkASSERT(count > 0 && colors != nullptr); |
| SkASSERT(!s.fBilerp); |
| SkASSERT(4 == s.fPixmap.info().bytesPerPixel()); |
| SkASSERT(s.fAlphaScale <= 256); |
| |
| auto src = (const char*)s.fPixmap.addr(); |
| size_t rb = s.fPixmap.rowBytes(); |
| |
| while (count --> 0) { |
| uint32_t XY = *xy++, |
| x = XY & 0xffff, |
| y = XY >> 16; |
| SkASSERT(x < (unsigned)s.fPixmap.width ()); |
| SkASSERT(y < (unsigned)s.fPixmap.height()); |
| *colors++ = SkAlphaMulQ(((const SkPMColor*)(src + y*rb))[x], s.fAlphaScale); |
| } |
| } |
| |
| SkBitmapProcState::SkBitmapProcState(const SkImage_Base* image, SkTileMode tmx, SkTileMode tmy) |
| : fImage(image) |
| , fTileModeX(tmx) |
| , fTileModeY(tmy) |
| {} |
| |
| // true iff the matrix has a scale and no more than an optional translate. |
| static bool matrix_only_scale_translate(const SkMatrix& m) { |
| return (m.getType() & ~SkMatrix::kTranslate_Mask) == SkMatrix::kScale_Mask; |
| } |
| |
| /** |
| * For the purposes of drawing bitmaps, if a matrix is "almost" translate |
| * go ahead and treat it as if it were, so that subsequent code can go fast. |
| */ |
| static bool just_trans_general(const SkMatrix& matrix) { |
| SkASSERT(matrix_only_scale_translate(matrix)); |
| |
| const SkScalar tol = SK_Scalar1 / 32768; |
| |
| return SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol) |
| && SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol); |
| } |
| |
| /** |
| * Determine if the matrix can be treated as integral-only-translate, |
| * for the purpose of filtering. |
| */ |
| static bool just_trans_integral(const SkMatrix& m) { |
| static constexpr SkScalar tol = SK_Scalar1 / 256; |
| |
| return m.getType() <= SkMatrix::kTranslate_Mask |
| && SkScalarNearlyEqual(m.getTranslateX(), SkScalarRoundToScalar(m.getTranslateX()), tol) |
| && SkScalarNearlyEqual(m.getTranslateY(), SkScalarRoundToScalar(m.getTranslateY()), tol); |
| } |
| |
| static bool valid_for_filtering(unsigned dimension) { |
| // for filtering, width and height must fit in 14bits, since we use steal |
| // 2 bits from each to store our 4bit subpixel data |
| return (dimension & ~0x3FFF) == 0; |
| } |
| |
| bool SkBitmapProcState::init(const SkMatrix& inv, SkAlpha paintAlpha, |
| const SkSamplingOptions& sampling) { |
| SkASSERT(!inv.hasPerspective()); |
| SkASSERT(SkOpts::S32_alpha_D32_filter_DXDY || inv.isScaleTranslate()); |
| SkASSERT(!sampling.isAniso()); |
| SkASSERT(!sampling.useCubic); |
| SkASSERT(sampling.mipmap != SkMipmapMode::kLinear); |
| |
| fPixmap.reset(); |
| fBilerp = false; |
| |
| auto* access = SkMipmapAccessor::Make(&fAlloc, (const SkImage*)fImage, inv, sampling.mipmap); |
| if (!access) { |
| return false; |
| } |
| std::tie(fPixmap, fInvMatrix) = access->level(); |
| fInvMatrix.preConcat(inv); |
| |
| fPaintAlpha = paintAlpha; |
| fBilerp = sampling.filter == SkFilterMode::kLinear; |
| SkASSERT(fPixmap.addr()); |
| |
| bool integral_translate_only = just_trans_integral(fInvMatrix); |
| if (!integral_translate_only) { |
| // Most of the scanline procs deal with "unit" texture coordinates, as this |
| // makes it easy to perform tiling modes (repeat = (x & 0xFFFF)). To generate |
| // those, we divide the matrix by its dimensions here. |
| // |
| // We don't do this if we're either trivial (can ignore the matrix) or clamping |
| // in both X and Y since clamping to width,height is just as easy as to 0xFFFF. |
| |
| if (fTileModeX != SkTileMode::kClamp || fTileModeY != SkTileMode::kClamp) { |
| SkMatrixPriv::PostIDiv(&fInvMatrix, fPixmap.width(), fPixmap.height()); |
| } |
| |
| // Now that all possible changes to the matrix have taken place, check |
| // to see if we're really close to a no-scale matrix. If so, explicitly |
| // set it to be so. Subsequent code may inspect this matrix to choose |
| // a faster path in this case. |
| |
| // This code will only execute if the matrix has some scale component; |
| // if it's already pure translate then we won't do this inversion. |
| |
| if (matrix_only_scale_translate(fInvMatrix)) { |
| SkMatrix forward; |
| if (fInvMatrix.invert(&forward) && just_trans_general(forward)) { |
| fInvMatrix.setTranslate(-forward.getTranslateX(), -forward.getTranslateY()); |
| } |
| } |
| |
| // Recompute the flag after matrix adjustments. |
| integral_translate_only = just_trans_integral(fInvMatrix); |
| } |
| |
| if (fBilerp && |
| (!valid_for_filtering(fPixmap.width() | fPixmap.height()) || integral_translate_only)) { |
| fBilerp = false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Analyze filter-quality and matrix, and decide how to implement that. |
| * |
| * In general, we cascade down the request level [ High ... None ] |
| * - for a given level, if we can fulfill it, fine, else |
| * - else we downgrade to the next lower level and try again. |
| * We can always fulfill requests for Low and None |
| * - sometimes we will "ignore" Low and give None, but this is likely a legacy perf hack |
| * and may be removed. |
| */ |
| bool SkBitmapProcState::chooseProcs() { |
| SkASSERT(!fInvMatrix.hasPerspective()); |
| SkASSERT(SkOpts::S32_alpha_D32_filter_DXDY || fInvMatrix.isScaleTranslate()); |
| SkASSERT(fPixmap.colorType() == kN32_SkColorType); |
| SkASSERT(fPixmap.alphaType() == kPremul_SkAlphaType || |
| fPixmap.alphaType() == kOpaque_SkAlphaType); |
| |
| SkASSERT(fTileModeX != SkTileMode::kDecal); |
| |
| fInvProc = SkMatrixPriv::GetMapXYProc(fInvMatrix); |
| fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX()); |
| fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY ()); |
| |
| fAlphaScale = SkAlpha255To256(fPaintAlpha); |
| |
| bool translate_only = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0; |
| fMatrixProc = this->chooseMatrixProc(translate_only); |
| SkASSERT(fMatrixProc); |
| |
| if (fInvMatrix.isScaleTranslate()) { |
| fSampleProc32 = fBilerp ? SkOpts::S32_alpha_D32_filter_DX : S32_alpha_D32_nofilter_DX ; |
| } else { |
| fSampleProc32 = fBilerp ? SkOpts::S32_alpha_D32_filter_DXDY : S32_alpha_D32_nofilter_DXDY; |
| } |
| SkASSERT(fSampleProc32); |
| |
| // our special-case shaderprocs |
| // TODO: move this one into chooseShaderProc32() or pull all that in here. |
| if (fAlphaScale == 256 |
| && !fBilerp |
| && SkTileMode::kClamp == fTileModeX |
| && SkTileMode::kClamp == fTileModeY |
| && fInvMatrix.isScaleTranslate()) { |
| fShaderProc32 = Clamp_S32_opaque_D32_nofilter_DX_shaderproc; |
| } else { |
| fShaderProc32 = this->chooseShaderProc32(); |
| } |
| |
| return true; |
| } |
| |
| static void Clamp_S32_D32_nofilter_trans_shaderproc(const void* sIn, |
| int x, int y, |
| SkPMColor* colors, |
| int count) { |
| const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); |
| SkASSERT(s.fInvMatrix.isTranslate()); |
| SkASSERT(count > 0 && colors != nullptr); |
| SkASSERT(!s.fBilerp); |
| |
| const int maxX = s.fPixmap.width() - 1; |
| const int maxY = s.fPixmap.height() - 1; |
| int ix = s.fFilterOneX + x; |
| int iy = SkTPin(s.fFilterOneY + y, 0, maxY); |
| const SkPMColor* row = s.fPixmap.addr32(0, iy); |
| |
| // clamp to the left |
| if (ix < 0) { |
| int n = std::min(-ix, count); |
| SkOpts::memset32(colors, row[0], n); |
| count -= n; |
| if (0 == count) { |
| return; |
| } |
| colors += n; |
| SkASSERT(-ix == n); |
| ix = 0; |
| } |
| // copy the middle |
| if (ix <= maxX) { |
| int n = std::min(maxX - ix + 1, count); |
| memcpy(colors, row + ix, n * sizeof(SkPMColor)); |
| count -= n; |
| if (0 == count) { |
| return; |
| } |
| colors += n; |
| } |
| SkASSERT(count > 0); |
| // clamp to the right |
| SkOpts::memset32(colors, row[maxX], count); |
| } |
| |
| static inline int sk_int_mod(int x, int n) { |
| SkASSERT(n > 0); |
| if ((unsigned)x >= (unsigned)n) { |
| if (x < 0) { |
| x = n + ~(~x % n); |
| } else { |
| x = x % n; |
| } |
| } |
| return x; |
| } |
| |
| static inline int sk_int_mirror(int x, int n) { |
| x = sk_int_mod(x, 2 * n); |
| if (x >= n) { |
| x = n + ~(x - n); |
| } |
| return x; |
| } |
| |
| static void Repeat_S32_D32_nofilter_trans_shaderproc(const void* sIn, |
| int x, int y, |
| SkPMColor* colors, |
| int count) { |
| const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); |
| SkASSERT(s.fInvMatrix.isTranslate()); |
| SkASSERT(count > 0 && colors != nullptr); |
| SkASSERT(!s.fBilerp); |
| |
| const int stopX = s.fPixmap.width(); |
| const int stopY = s.fPixmap.height(); |
| int ix = s.fFilterOneX + x; |
| int iy = sk_int_mod(s.fFilterOneY + y, stopY); |
| const SkPMColor* row = s.fPixmap.addr32(0, iy); |
| |
| ix = sk_int_mod(ix, stopX); |
| for (;;) { |
| int n = std::min(stopX - ix, count); |
| memcpy(colors, row + ix, n * sizeof(SkPMColor)); |
| count -= n; |
| if (0 == count) { |
| return; |
| } |
| colors += n; |
| ix = 0; |
| } |
| } |
| |
| static inline void filter_32_alpha(unsigned t, |
| SkPMColor color0, |
| SkPMColor color1, |
| SkPMColor* dstColor, |
| unsigned alphaScale) { |
| SkASSERT((unsigned)t <= 0xF); |
| SkASSERT(alphaScale <= 256); |
| |
| const uint32_t mask = 0xFF00FF; |
| |
| int scale = 256 - 16*t; |
| uint32_t lo = (color0 & mask) * scale; |
| uint32_t hi = ((color0 >> 8) & mask) * scale; |
| |
| scale = 16*t; |
| lo += (color1 & mask) * scale; |
| hi += ((color1 >> 8) & mask) * scale; |
| |
| // TODO: if (alphaScale < 256) ... |
| lo = ((lo >> 8) & mask) * alphaScale; |
| hi = ((hi >> 8) & mask) * alphaScale; |
| |
| *dstColor = ((lo >> 8) & mask) | (hi & ~mask); |
| } |
| |
| static void S32_D32_constX_shaderproc(const void* sIn, |
| int x, int y, |
| SkPMColor* colors, |
| int count) { |
| const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); |
| SkASSERT(s.fInvMatrix.isScaleTranslate()); |
| SkASSERT(count > 0 && colors != nullptr); |
| SkASSERT(1 == s.fPixmap.width()); |
| |
| int iY0; |
| int iY1 SK_INIT_TO_AVOID_WARNING; |
| int iSubY SK_INIT_TO_AVOID_WARNING; |
| |
| if (s.fBilerp) { |
| SkBitmapProcState::MatrixProc mproc = s.getMatrixProc(); |
| uint32_t xy[2]; |
| |
| mproc(s, xy, 1, x, y); |
| |
| iY0 = xy[0] >> 18; |
| iY1 = xy[0] & 0x3FFF; |
| iSubY = (xy[0] >> 14) & 0xF; |
| } else { |
| int yTemp; |
| |
| if (s.fInvMatrix.isTranslate()) { |
| yTemp = s.fFilterOneY + y; |
| } else{ |
| const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| |
| // When the matrix has a scale component the setup code in |
| // chooseProcs multiples the inverse matrix by the inverse of the |
| // bitmap's width and height. Since this method is going to do |
| // its own tiling and sampling we need to undo that here. |
| if (SkTileMode::kClamp != s.fTileModeX || SkTileMode::kClamp != s.fTileModeY) { |
| yTemp = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height()); |
| } else { |
| yTemp = mapper.intY(); |
| } |
| } |
| |
| const int stopY = s.fPixmap.height(); |
| switch (s.fTileModeY) { |
| case SkTileMode::kClamp: |
| iY0 = SkTPin(yTemp, 0, stopY-1); |
| break; |
| case SkTileMode::kRepeat: |
| iY0 = sk_int_mod(yTemp, stopY); |
| break; |
| case SkTileMode::kMirror: |
| default: |
| iY0 = sk_int_mirror(yTemp, stopY); |
| break; |
| } |
| |
| #ifdef SK_DEBUG |
| { |
| const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| int iY2; |
| |
| if (!s.fInvMatrix.isTranslate() && |
| (SkTileMode::kClamp != s.fTileModeX || SkTileMode::kClamp != s.fTileModeY)) { |
| iY2 = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height()); |
| } else { |
| iY2 = mapper.intY(); |
| } |
| |
| switch (s.fTileModeY) { |
| case SkTileMode::kClamp: |
| iY2 = SkTPin(iY2, 0, stopY-1); |
| break; |
| case SkTileMode::kRepeat: |
| iY2 = sk_int_mod(iY2, stopY); |
| break; |
| case SkTileMode::kMirror: |
| default: |
| iY2 = sk_int_mirror(iY2, stopY); |
| break; |
| } |
| |
| SkASSERT(iY0 == iY2); |
| } |
| #endif |
| } |
| |
| const SkPMColor* row0 = s.fPixmap.addr32(0, iY0); |
| SkPMColor color; |
| |
| if (s.fBilerp) { |
| const SkPMColor* row1 = s.fPixmap.addr32(0, iY1); |
| filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale); |
| } else { |
| if (s.fAlphaScale < 256) { |
| color = SkAlphaMulQ(*row0, s.fAlphaScale); |
| } else { |
| color = *row0; |
| } |
| } |
| |
| SkOpts::memset32(colors, color, count); |
| } |
| |
| static void DoNothing_shaderproc(const void*, int x, int y, |
| SkPMColor* colors, int count) { |
| // if we get called, the matrix is too tricky, so we just draw nothing |
| SkOpts::memset32(colors, 0, count); |
| } |
| |
| bool SkBitmapProcState::setupForTranslate() { |
| SkPoint pt; |
| const SkBitmapProcStateAutoMapper mapper(*this, 0, 0, &pt); |
| |
| /* |
| * if the translate is larger than our ints, we can get random results, or |
| * worse, we might get 0x80000000, which wreaks havoc on us, since we can't |
| * negate it. |
| */ |
| const SkScalar too_big = SkIntToScalar(1 << 30); |
| if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) { |
| return false; |
| } |
| |
| // Since we know we're not filtered, we re-purpose these fields allow |
| // us to go from device -> src coordinates w/ just an integer add, |
| // rather than running through the inverse-matrix |
| fFilterOneX = mapper.intX(); |
| fFilterOneY = mapper.intY(); |
| |
| return true; |
| } |
| |
| SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() { |
| |
| if (kN32_SkColorType != fPixmap.colorType()) { |
| return nullptr; |
| } |
| |
| if (1 == fPixmap.width() && fInvMatrix.isScaleTranslate()) { |
| if (!fBilerp && fInvMatrix.isTranslate() && !this->setupForTranslate()) { |
| return DoNothing_shaderproc; |
| } |
| return S32_D32_constX_shaderproc; |
| } |
| |
| if (fAlphaScale < 256) { |
| return nullptr; |
| } |
| if (!fInvMatrix.isTranslate()) { |
| return nullptr; |
| } |
| if (fBilerp) { |
| return nullptr; |
| } |
| |
| SkTileMode tx = fTileModeX; |
| SkTileMode ty = fTileModeY; |
| |
| if (SkTileMode::kClamp == tx && SkTileMode::kClamp == ty) { |
| if (this->setupForTranslate()) { |
| return Clamp_S32_D32_nofilter_trans_shaderproc; |
| } |
| return DoNothing_shaderproc; |
| } |
| if (SkTileMode::kRepeat == tx && SkTileMode::kRepeat == ty) { |
| if (this->setupForTranslate()) { |
| return Repeat_S32_D32_nofilter_trans_shaderproc; |
| } |
| return DoNothing_shaderproc; |
| } |
| return nullptr; |
| } |
| |
| #ifdef SK_DEBUG |
| |
| static void check_scale_nofilter(uint32_t bitmapXY[], int count, |
| unsigned mx, unsigned my) { |
| unsigned y = *bitmapXY++; |
| SkASSERT(y < my); |
| |
| const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY); |
| for (int i = 0; i < count; ++i) { |
| SkASSERT(xptr[i] < mx); |
| } |
| } |
| |
| static void check_scale_filter(uint32_t bitmapXY[], int count, |
| unsigned mx, unsigned my) { |
| uint32_t YY = *bitmapXY++; |
| unsigned y0 = YY >> 18; |
| unsigned y1 = YY & 0x3FFF; |
| SkASSERT(y0 < my); |
| SkASSERT(y1 < my); |
| |
| for (int i = 0; i < count; ++i) { |
| uint32_t XX = bitmapXY[i]; |
| unsigned x0 = XX >> 18; |
| unsigned x1 = XX & 0x3FFF; |
| SkASSERT(x0 < mx); |
| SkASSERT(x1 < mx); |
| } |
| } |
| |
| static void check_affine_nofilter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { |
| for (int i = 0; i < count; ++i) { |
| uint32_t XY = bitmapXY[i]; |
| unsigned x = XY & 0xFFFF; |
| unsigned y = XY >> 16; |
| SkASSERT(x < mx); |
| SkASSERT(y < my); |
| } |
| } |
| |
| static void check_affine_filter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { |
| for (int i = 0; i < count; ++i) { |
| uint32_t YY = *bitmapXY++; |
| unsigned y0 = YY >> 18; |
| unsigned y1 = YY & 0x3FFF; |
| SkASSERT(y0 < my); |
| SkASSERT(y1 < my); |
| |
| uint32_t XX = *bitmapXY++; |
| unsigned x0 = XX >> 18; |
| unsigned x1 = XX & 0x3FFF; |
| SkASSERT(x0 < mx); |
| SkASSERT(x1 < mx); |
| } |
| } |
| |
| void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state, |
| uint32_t bitmapXY[], int count, |
| int x, int y) { |
| SkASSERT(bitmapXY); |
| SkASSERT(count > 0); |
| |
| state.fMatrixProc(state, bitmapXY, count, x, y); |
| |
| void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my); |
| |
| if (state.fInvMatrix.isScaleTranslate()) { |
| proc = state.fBilerp ? check_scale_filter : check_scale_nofilter; |
| } else { |
| proc = state.fBilerp ? check_affine_filter : check_affine_nofilter; |
| } |
| |
| proc(bitmapXY, count, state.fPixmap.width(), state.fPixmap.height()); |
| } |
| |
| SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const { |
| return DebugMatrixProc; |
| } |
| |
| #endif |
| |
| /* |
| The storage requirements for the different matrix procs are as follows, |
| where each X or Y is 2 bytes, and N is the number of pixels/elements: |
| |
| scale/translate nofilter Y(4bytes) + N * X |
| affine/perspective nofilter N * (X Y) |
| scale/translate filter Y Y + N * (X X) |
| affine filter N * (Y Y X X) |
| */ |
| int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const { |
| int32_t size = static_cast<int32_t>(bufferSize); |
| |
| size &= ~3; // only care about 4-byte aligned chunks |
| if (fInvMatrix.isScaleTranslate()) { |
| size -= 4; // the shared Y (or YY) coordinate |
| if (size < 0) { |
| size = 0; |
| } |
| size >>= 1; |
| } else { |
| size >>= 2; |
| } |
| |
| if (fBilerp) { |
| size >>= 1; |
| } |
| |
| return size; |
| } |
| |