| /* |
| * Copyright 2023 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/private/base/SkFloatingPoint.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstring> |
| #include <limits> |
| |
| // Return the positive magnitude of a double. |
| // * normalized - given 1.bbb...bbb x 2^e return 2^e. |
| // * subnormal - return 0. |
| // * nan & infinity - return infinity |
| static double magnitude(double a) { |
| static constexpr int64_t extractMagnitude = |
| 0b0'11111111111'0000000000000000000000000000000000000000000000000000; |
| int64_t bits; |
| memcpy(&bits, &a, sizeof(bits)); |
| bits &= extractMagnitude; |
| double out; |
| memcpy(&out, &bits, sizeof(out)); |
| return out; |
| } |
| |
| bool sk_doubles_nearly_equal_ulps(double a, double b, uint8_t maxUlpsDiff) { |
| |
| // The maximum magnitude to construct the ulp tolerance. The proper magnitude for |
| // subnormal numbers is minMagnitude, which is 2^-1021, so if a and b are subnormal (having a |
| // magnitude of 0) use minMagnitude. If a or b are infinity or nan, then maxMagnitude will be |
| // +infinity. This means the tolerance will also be infinity, but the expression b - a below |
| // will either be NaN or infinity, so a tolerance of infinity doesn't matter. |
| static constexpr double minMagnitude = std::numeric_limits<double>::min(); |
| const double maxMagnitude = std::max(std::max(magnitude(a), minMagnitude), magnitude(b)); |
| |
| // Given a magnitude, this is the factor that generates the ulp for that magnitude. |
| // In numbers, 2 ^ (-precision + 1) = 2 ^ -52. |
| static constexpr double ulpFactor = std::numeric_limits<double>::epsilon(); |
| |
| // The tolerance in ULPs given the maxMagnitude. Because the return statement must use < |
| // for comparison instead of <= to correctly handle infinities, bump maxUlpsDiff up to get |
| // the full maxUlpsDiff range. |
| const double tolerance = maxMagnitude * (ulpFactor * (maxUlpsDiff + 1)); |
| |
| // The expression a == b is mainly for handling infinities, but it also catches the exact |
| // equals. |
| return a == b || std::abs(b - a) < tolerance; |
| } |
| |
| bool sk_double_nearly_zero(double a) { |
| return a == 0 || fabs(a) < std::numeric_limits<float>::epsilon(); |
| } |