|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "GrPath.h" | 
|  | #include "GrStyle.h" | 
|  |  | 
|  | namespace { | 
|  | // Verb count limit for generating path key from content of a volatile path. | 
|  | // The value should accomodate at least simple rects and rrects. | 
|  | static const int kSimpleVolatilePathVerbLimit = 10; | 
|  |  | 
|  | static inline int style_data_cnt(const GrStyle& style) { | 
|  | int cnt = GrStyle::KeySize(style, GrStyle::Apply::kPathEffectAndStrokeRec); | 
|  | // This should only fail for an arbitrary path effect, and we should not have gotten | 
|  | // here with anything other than a dash path effect. | 
|  | SkASSERT(cnt >= 0); | 
|  | return cnt; | 
|  | } | 
|  |  | 
|  | static inline void write_style_key(uint32_t* dst, const GrStyle& style) { | 
|  | // Pass 1 for the scale since the GPU will apply the style not GrStyle::applyToPath(). | 
|  | GrStyle::WriteKey(dst, style, GrStyle::Apply::kPathEffectAndStrokeRec, SK_Scalar1); | 
|  | } | 
|  |  | 
|  |  | 
|  | inline static bool compute_key_for_line_path(const SkPath& path, const GrStyle& style, | 
|  | GrUniqueKey* key) { | 
|  | SkPoint pts[2]; | 
|  | if (!path.isLine(pts)) { | 
|  | return false; | 
|  | } | 
|  | static_assert((sizeof(pts) % sizeof(uint32_t)) == 0 && sizeof(pts) > sizeof(uint32_t), | 
|  | "pts_needs_padding"); | 
|  | int styleDataCnt = style_data_cnt(style); | 
|  |  | 
|  | const int kBaseData32Cnt = 1 + sizeof(pts) / sizeof(uint32_t); | 
|  | static const GrUniqueKey::Domain kOvalPathDomain = GrUniqueKey::GenerateDomain(); | 
|  | GrUniqueKey::Builder builder(key, kOvalPathDomain, kBaseData32Cnt + styleDataCnt); | 
|  | builder[0] = path.getFillType(); | 
|  | memcpy(&builder[1], &pts, sizeof(pts)); | 
|  | if (styleDataCnt > 0) { | 
|  | write_style_key(&builder[kBaseData32Cnt], style); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | inline static bool compute_key_for_oval_path(const SkPath& path, const GrStyle& style, | 
|  | GrUniqueKey* key) { | 
|  | SkRect rect; | 
|  | // Point order is significant when dashing, so we cannot devolve to a rect key. | 
|  | if (style.pathEffect() || !path.isOval(&rect)) { | 
|  | return false; | 
|  | } | 
|  | static_assert((sizeof(rect) % sizeof(uint32_t)) == 0 && sizeof(rect) > sizeof(uint32_t), | 
|  | "rect_needs_padding"); | 
|  |  | 
|  | const int kBaseData32Cnt = 1 + sizeof(rect) / sizeof(uint32_t); | 
|  | int styleDataCnt = style_data_cnt(style); | 
|  | static const GrUniqueKey::Domain kOvalPathDomain = GrUniqueKey::GenerateDomain(); | 
|  | GrUniqueKey::Builder builder(key, kOvalPathDomain, kBaseData32Cnt + styleDataCnt); | 
|  | builder[0] = path.getFillType(); | 
|  | memcpy(&builder[1], &rect, sizeof(rect)); | 
|  | if (styleDataCnt > 0) { | 
|  | write_style_key(&builder[kBaseData32Cnt], style); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Encodes the full path data to the unique key for very small, volatile paths. This is typically | 
|  | // hit when clipping stencils the clip stack. Intention is that this handles rects too, since | 
|  | // SkPath::isRect seems to do non-trivial amount of work. | 
|  | inline static bool compute_key_for_simple_path(const SkPath& path, const GrStyle& style, | 
|  | GrUniqueKey* key) { | 
|  | if (!path.isVolatile()) { | 
|  | return false; | 
|  | } | 
|  | // The check below should take care of negative values casted positive. | 
|  | const int verbCnt = path.countVerbs(); | 
|  | if (verbCnt > kSimpleVolatilePathVerbLimit) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If somebody goes wild with the constant, it might cause an overflow. | 
|  | static_assert(kSimpleVolatilePathVerbLimit <= 100, | 
|  | "big_simple_volatile_path_verb_limit_may_cause_overflow"); | 
|  |  | 
|  | const int pointCnt = path.countPoints(); | 
|  | if (pointCnt < 0) { | 
|  | SkASSERT(false); | 
|  | return false; | 
|  | } | 
|  | SkSTArray<16, SkScalar, true> conicWeights(16); | 
|  | if ((path.getSegmentMasks() & SkPath::kConic_SegmentMask) != 0) { | 
|  | SkPath::RawIter iter(path); | 
|  | SkPath::Verb verb; | 
|  | SkPoint points[4]; | 
|  | while ((verb = iter.next(points)) != SkPath::kDone_Verb) { | 
|  | if (verb == SkPath::kConic_Verb) { | 
|  | conicWeights.push_back(iter.conicWeight()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const int conicWeightCnt = conicWeights.count(); | 
|  |  | 
|  | // Construct counts that align as uint32_t counts. | 
|  | #define ARRAY_DATA32_COUNT(array_type, count) \ | 
|  | static_cast<int>((((count) * sizeof(array_type) + sizeof(uint32_t) - 1) / sizeof(uint32_t))) | 
|  |  | 
|  | const int verbData32Cnt = ARRAY_DATA32_COUNT(uint8_t, verbCnt); | 
|  | const int pointData32Cnt = ARRAY_DATA32_COUNT(SkPoint, pointCnt); | 
|  | const int conicWeightData32Cnt = ARRAY_DATA32_COUNT(SkScalar, conicWeightCnt); | 
|  |  | 
|  | #undef ARRAY_DATA32_COUNT | 
|  |  | 
|  | // The unique key data is a "message" with following fragments: | 
|  | // 0) domain, key length, uint32_t for fill type and uint32_t for verbCnt | 
|  | //   (fragment 0, fixed size) | 
|  | // 1) verb, point data and conic weights (varying size) | 
|  | // 2) stroke data (varying size) | 
|  |  | 
|  | const int baseData32Cnt = 2 + verbData32Cnt + pointData32Cnt + conicWeightData32Cnt; | 
|  | const int styleDataCnt = style_data_cnt(style); | 
|  | static const GrUniqueKey::Domain kSimpleVolatilePathDomain = GrUniqueKey::GenerateDomain(); | 
|  | GrUniqueKey::Builder builder(key, kSimpleVolatilePathDomain, baseData32Cnt + styleDataCnt); | 
|  | int i = 0; | 
|  | builder[i++] = path.getFillType(); | 
|  |  | 
|  | // Serialize the verbCnt to make the whole message unambiguous. | 
|  | // We serialize two variable length fragments to the message: | 
|  | // * verbs, point data and conic weights (fragment 1) | 
|  | // * stroke data (fragment 2) | 
|  | // "Proof:" | 
|  | // Verb count establishes unambiguous verb data. | 
|  | // Verbs encode also point data size and conic weight size. | 
|  | // Thus the fragment 1 is unambiguous. | 
|  | // Unambiguous fragment 1 establishes unambiguous fragment 2, since the length of the message | 
|  | // has been established. | 
|  |  | 
|  | builder[i++] = SkToU32(verbCnt); // The path limit is compile-asserted above, so the cast is ok. | 
|  |  | 
|  | // Fill the last uint32_t with 0 first, since the last uint8_ts of the uint32_t may be | 
|  | // uninitialized. This does not produce ambiguous verb data, since we have serialized the exact | 
|  | // verb count. | 
|  | if (verbData32Cnt != static_cast<int>((verbCnt * sizeof(uint8_t) / sizeof(uint32_t)))) { | 
|  | builder[i + verbData32Cnt - 1] = 0; | 
|  | } | 
|  | path.getVerbs(reinterpret_cast<uint8_t*>(&builder[i]), verbCnt); | 
|  | i += verbData32Cnt; | 
|  |  | 
|  | static_assert(((sizeof(SkPoint) % sizeof(uint32_t)) == 0) && sizeof(SkPoint) > sizeof(uint32_t), | 
|  | "skpoint_array_needs_padding"); | 
|  |  | 
|  | // Here we assume getPoints does a memcpy, so that we do not need to worry about the alignment. | 
|  | path.getPoints(reinterpret_cast<SkPoint*>(&builder[i]), pointCnt); | 
|  | i += pointData32Cnt; | 
|  |  | 
|  | if (conicWeightCnt > 0) { | 
|  | if (conicWeightData32Cnt != static_cast<int>( | 
|  | (conicWeightCnt * sizeof(SkScalar) / sizeof(uint32_t)))) { | 
|  | builder[i + conicWeightData32Cnt - 1] = 0; | 
|  | } | 
|  | memcpy(&builder[i], conicWeights.begin(), conicWeightCnt * sizeof(SkScalar)); | 
|  | SkDEBUGCODE(i += conicWeightData32Cnt); | 
|  | } | 
|  | SkASSERT(i == baseData32Cnt); | 
|  | if (styleDataCnt > 0) { | 
|  | write_style_key(&builder[baseData32Cnt], style); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | inline static void compute_key_for_general_path(const SkPath& path, const GrStyle& style, | 
|  | GrUniqueKey* key) { | 
|  | const int kBaseData32Cnt = 2; | 
|  | int styleDataCnt = style_data_cnt(style); | 
|  | static const GrUniqueKey::Domain kGeneralPathDomain = GrUniqueKey::GenerateDomain(); | 
|  | GrUniqueKey::Builder builder(key, kGeneralPathDomain, kBaseData32Cnt + styleDataCnt); | 
|  | builder[0] = path.getGenerationID(); | 
|  | builder[1] = path.getFillType(); | 
|  | if (styleDataCnt > 0) { | 
|  | write_style_key(&builder[kBaseData32Cnt], style); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | void GrPath::ComputeKey(const SkPath& path, const GrStyle& style, GrUniqueKey* key, | 
|  | bool* outIsVolatile) { | 
|  | if (compute_key_for_line_path(path, style, key)) { | 
|  | *outIsVolatile = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (compute_key_for_oval_path(path, style, key)) { | 
|  | *outIsVolatile = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (compute_key_for_simple_path(path, style, key)) { | 
|  | *outIsVolatile = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | compute_key_for_general_path(path, style, key); | 
|  | *outIsVolatile = path.isVolatile(); | 
|  | } | 
|  |  | 
|  | #ifdef SK_DEBUG | 
|  | bool GrPath::isEqualTo(const SkPath& path, const GrStyle& style) const { | 
|  | // Since this is only called in debug we don't care about performance. | 
|  | int cnt0 = GrStyle::KeySize(fStyle, GrStyle::Apply::kPathEffectAndStrokeRec); | 
|  | int cnt1 = GrStyle::KeySize(style, GrStyle::Apply::kPathEffectAndStrokeRec); | 
|  | if (cnt0 < 0 || cnt1 < 0 || cnt0 != cnt1) { | 
|  | return false; | 
|  | } | 
|  | if (cnt0) { | 
|  | SkAutoTArray<uint32_t> key0(cnt0); | 
|  | SkAutoTArray<uint32_t> key1(cnt0); | 
|  | write_style_key(key0.get(), fStyle); | 
|  | write_style_key(key1.get(), style); | 
|  | if (0 != memcmp(key0.get(), key1.get(), cnt0)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // We treat same-rect ovals as identical - but only when not dashing. | 
|  | SkRect ovalBounds; | 
|  | if (!fStyle.isDashed() && fSkPath.isOval(&ovalBounds)) { | 
|  | SkRect otherOvalBounds; | 
|  | return path.isOval(&otherOvalBounds) && ovalBounds == otherOvalBounds; | 
|  | } | 
|  |  | 
|  | return fSkPath == path; | 
|  | } | 
|  | #endif |