|  | /* | 
|  | * Copyright 2006 The Android Open Source Project | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #ifndef SkRect_DEFINED | 
|  | #define SkRect_DEFINED | 
|  |  | 
|  | #include "SkPoint.h" | 
|  | #include "SkSize.h" | 
|  |  | 
|  | /** \struct SkIRect | 
|  |  | 
|  | SkIRect holds four 32 bit integer coordinates for a rectangle | 
|  | */ | 
|  | struct SK_API SkIRect { | 
|  | int32_t fLeft, fTop, fRight, fBottom; | 
|  |  | 
|  | static SkIRect SK_WARN_UNUSED_RESULT MakeEmpty() { | 
|  | SkIRect r; | 
|  | r.setEmpty(); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static SkIRect SK_WARN_UNUSED_RESULT MakeLargest() { | 
|  | SkIRect r; | 
|  | r.setLargest(); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static SkIRect SK_WARN_UNUSED_RESULT MakeWH(int32_t w, int32_t h) { | 
|  | SkIRect r; | 
|  | r.set(0, 0, w, h); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static SkIRect SK_WARN_UNUSED_RESULT MakeSize(const SkISize& size) { | 
|  | SkIRect r; | 
|  | r.set(0, 0, size.width(), size.height()); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static SkIRect SK_WARN_UNUSED_RESULT MakeLTRB(int32_t l, int32_t t, int32_t r, int32_t b) { | 
|  | SkIRect rect; | 
|  | rect.set(l, t, r, b); | 
|  | return rect; | 
|  | } | 
|  |  | 
|  | static SkIRect SK_WARN_UNUSED_RESULT MakeXYWH(int32_t x, int32_t y, int32_t w, int32_t h) { | 
|  | SkIRect r; | 
|  | r.set(x, y, x + w, y + h); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int left() const { return fLeft; } | 
|  | int top() const { return fTop; } | 
|  | int right() const { return fRight; } | 
|  | int bottom() const { return fBottom; } | 
|  |  | 
|  | /** return the left edge of the rect */ | 
|  | int x() const { return fLeft; } | 
|  | /** return the top edge of the rect */ | 
|  | int y() const { return fTop; } | 
|  | /** | 
|  | *  Returns the rectangle's width. This does not check for a valid rect | 
|  | *  (i.e. left <= right) so the result may be negative. | 
|  | */ | 
|  | int width() const { return fRight - fLeft; } | 
|  |  | 
|  | /** | 
|  | *  Returns the rectangle's height. This does not check for a valid rect | 
|  | *  (i.e. top <= bottom) so the result may be negative. | 
|  | */ | 
|  | int height() const { return fBottom - fTop; } | 
|  |  | 
|  | SkISize size() const { return SkISize::Make(this->width(), this->height()); } | 
|  |  | 
|  | /** | 
|  | *  Since the center of an integer rect may fall on a factional value, this | 
|  | *  method is defined to return (right + left) >> 1. | 
|  | * | 
|  | *  This is a specific "truncation" of the average, which is different than | 
|  | *  (right + left) / 2 when the sum is negative. | 
|  | */ | 
|  | int centerX() const { return (fRight + fLeft) >> 1; } | 
|  |  | 
|  | /** | 
|  | *  Since the center of an integer rect may fall on a factional value, this | 
|  | *  method is defined to return (bottom + top) >> 1 | 
|  | * | 
|  | *  This is a specific "truncation" of the average, which is different than | 
|  | *  (bottom + top) / 2 when the sum is negative. | 
|  | */ | 
|  | int centerY() const { return (fBottom + fTop) >> 1; } | 
|  |  | 
|  | /** | 
|  | *  Return true if the rectangle's width or height are <= 0 | 
|  | */ | 
|  | bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } | 
|  |  | 
|  | bool isLargest() const { return SK_MinS32 == fLeft && | 
|  | SK_MinS32 == fTop && | 
|  | SK_MaxS32 == fRight && | 
|  | SK_MaxS32 == fBottom; } | 
|  |  | 
|  | friend bool operator==(const SkIRect& a, const SkIRect& b) { | 
|  | return !memcmp(&a, &b, sizeof(a)); | 
|  | } | 
|  |  | 
|  | friend bool operator!=(const SkIRect& a, const SkIRect& b) { | 
|  | return !(a == b); | 
|  | } | 
|  |  | 
|  | bool is16Bit() const { | 
|  | return  SkIsS16(fLeft) && SkIsS16(fTop) && | 
|  | SkIsS16(fRight) && SkIsS16(fBottom); | 
|  | } | 
|  |  | 
|  | /** Set the rectangle to (0,0,0,0) | 
|  | */ | 
|  | void setEmpty() { memset(this, 0, sizeof(*this)); } | 
|  |  | 
|  | void set(int32_t left, int32_t top, int32_t right, int32_t bottom) { | 
|  | fLeft   = left; | 
|  | fTop    = top; | 
|  | fRight  = right; | 
|  | fBottom = bottom; | 
|  | } | 
|  | // alias for set(l, t, r, b) | 
|  | void setLTRB(int32_t left, int32_t top, int32_t right, int32_t bottom) { | 
|  | this->set(left, top, right, bottom); | 
|  | } | 
|  |  | 
|  | void setXYWH(int32_t x, int32_t y, int32_t width, int32_t height) { | 
|  | fLeft = x; | 
|  | fTop = y; | 
|  | fRight = x + width; | 
|  | fBottom = y + height; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Make the largest representable rectangle | 
|  | */ | 
|  | void setLargest() { | 
|  | fLeft = fTop = SK_MinS32; | 
|  | fRight = fBottom = SK_MaxS32; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Make the largest representable rectangle, but inverted (e.g. fLeft will | 
|  | *  be max 32bit and right will be min 32bit). | 
|  | */ | 
|  | void setLargestInverted() { | 
|  | fLeft = fTop = SK_MaxS32; | 
|  | fRight = fBottom = SK_MinS32; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Return a new IRect, built as an offset of this rect. | 
|  | */ | 
|  | SkIRect makeOffset(int dx, int dy) const { | 
|  | return MakeLTRB(fLeft + dx, fTop + dy, fRight + dx, fBottom + dy); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Return a new IRect, built as an inset of this rect. | 
|  | */ | 
|  | SkIRect makeInset(int dx, int dy) const { | 
|  | return MakeLTRB(fLeft + dx, fTop + dy, fRight - dx, fBottom - dy); | 
|  | } | 
|  |  | 
|  | /** Offset set the rectangle by adding dx to its left and right, | 
|  | and adding dy to its top and bottom. | 
|  | */ | 
|  | void offset(int32_t dx, int32_t dy) { | 
|  | fLeft   += dx; | 
|  | fTop    += dy; | 
|  | fRight  += dx; | 
|  | fBottom += dy; | 
|  | } | 
|  |  | 
|  | void offset(const SkIPoint& delta) { | 
|  | this->offset(delta.fX, delta.fY); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Offset this rect such its new x() and y() will equal newX and newY. | 
|  | */ | 
|  | void offsetTo(int32_t newX, int32_t newY) { | 
|  | fRight += newX - fLeft; | 
|  | fBottom += newY - fTop; | 
|  | fLeft = newX; | 
|  | fTop = newY; | 
|  | } | 
|  |  | 
|  | /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards, | 
|  | making the rectangle narrower. If dx is negative, then the sides are moved outwards, | 
|  | making the rectangle wider. The same holds true for dy and the top and bottom. | 
|  | */ | 
|  | void inset(int32_t dx, int32_t dy) { | 
|  | fLeft   += dx; | 
|  | fTop    += dy; | 
|  | fRight  -= dx; | 
|  | fBottom -= dy; | 
|  | } | 
|  |  | 
|  | /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are | 
|  | moved outwards, making the rectangle wider. If dx is negative, then the | 
|  | sides are moved inwards, making the rectangle narrower. The same holds | 
|  | true for dy and the top and bottom. | 
|  | */ | 
|  | void outset(int32_t dx, int32_t dy)  { this->inset(-dx, -dy); } | 
|  |  | 
|  | bool quickReject(int l, int t, int r, int b) const { | 
|  | return l >= fRight || fLeft >= r || t >= fBottom || fTop >= b; | 
|  | } | 
|  |  | 
|  | /** Returns true if (x,y) is inside the rectangle and the rectangle is not | 
|  | empty. The left and top are considered to be inside, while the right | 
|  | and bottom are not. Thus for the rectangle (0, 0, 5, 10), the | 
|  | points (0,0) and (0,9) are inside, while (-1,0) and (5,9) are not. | 
|  | */ | 
|  | bool contains(int32_t x, int32_t y) const { | 
|  | return  (unsigned)(x - fLeft) < (unsigned)(fRight - fLeft) && | 
|  | (unsigned)(y - fTop) < (unsigned)(fBottom - fTop); | 
|  | } | 
|  |  | 
|  | /** Returns true if the 4 specified sides of a rectangle are inside or equal to this rectangle. | 
|  | If either rectangle is empty, contains() returns false. | 
|  | */ | 
|  | bool contains(int32_t left, int32_t top, int32_t right, int32_t bottom) const { | 
|  | return  left < right && top < bottom && !this->isEmpty() && // check for empties | 
|  | fLeft <= left && fTop <= top && | 
|  | fRight >= right && fBottom >= bottom; | 
|  | } | 
|  |  | 
|  | /** Returns true if the specified rectangle r is inside or equal to this rectangle. | 
|  | */ | 
|  | bool contains(const SkIRect& r) const { | 
|  | return  !r.isEmpty() && !this->isEmpty() &&     // check for empties | 
|  | fLeft <= r.fLeft && fTop <= r.fTop && | 
|  | fRight >= r.fRight && fBottom >= r.fBottom; | 
|  | } | 
|  |  | 
|  | /** Return true if this rectangle contains the specified rectangle. | 
|  | For speed, this method does not check if either this or the specified | 
|  | rectangles are empty, and if either is, its return value is undefined. | 
|  | In the debugging build however, we assert that both this and the | 
|  | specified rectangles are non-empty. | 
|  | */ | 
|  | bool containsNoEmptyCheck(int32_t left, int32_t top, | 
|  | int32_t right, int32_t bottom) const { | 
|  | SkASSERT(fLeft < fRight && fTop < fBottom); | 
|  | SkASSERT(left < right && top < bottom); | 
|  |  | 
|  | return fLeft <= left && fTop <= top && | 
|  | fRight >= right && fBottom >= bottom; | 
|  | } | 
|  |  | 
|  | bool containsNoEmptyCheck(const SkIRect& r) const { | 
|  | return containsNoEmptyCheck(r.fLeft, r.fTop, r.fRight, r.fBottom); | 
|  | } | 
|  |  | 
|  | /** If r intersects this rectangle, return true and set this rectangle to that | 
|  | intersection, otherwise return false and do not change this rectangle. | 
|  | If either rectangle is empty, do nothing and return false. | 
|  | */ | 
|  | bool intersect(const SkIRect& r) { | 
|  | SkASSERT(&r); | 
|  | return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom); | 
|  | } | 
|  |  | 
|  | /** If rectangles a and b intersect, return true and set this rectangle to | 
|  | that intersection, otherwise return false and do not change this | 
|  | rectangle. If either rectangle is empty, do nothing and return false. | 
|  | */ | 
|  | bool intersect(const SkIRect& a, const SkIRect& b) { | 
|  |  | 
|  | if (!a.isEmpty() && !b.isEmpty() && | 
|  | a.fLeft < b.fRight && b.fLeft < a.fRight && | 
|  | a.fTop < b.fBottom && b.fTop < a.fBottom) { | 
|  | fLeft   = SkMax32(a.fLeft,   b.fLeft); | 
|  | fTop    = SkMax32(a.fTop,    b.fTop); | 
|  | fRight  = SkMin32(a.fRight,  b.fRight); | 
|  | fBottom = SkMin32(a.fBottom, b.fBottom); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** If rectangles a and b intersect, return true and set this rectangle to | 
|  | that intersection, otherwise return false and do not change this | 
|  | rectangle. For speed, no check to see if a or b are empty is performed. | 
|  | If either is, then the return result is undefined. In the debug build, | 
|  | we assert that both rectangles are non-empty. | 
|  | */ | 
|  | bool intersectNoEmptyCheck(const SkIRect& a, const SkIRect& b) { | 
|  | SkASSERT(!a.isEmpty() && !b.isEmpty()); | 
|  |  | 
|  | if (a.fLeft < b.fRight && b.fLeft < a.fRight && | 
|  | a.fTop < b.fBottom && b.fTop < a.fBottom) { | 
|  | fLeft   = SkMax32(a.fLeft,   b.fLeft); | 
|  | fTop    = SkMax32(a.fTop,    b.fTop); | 
|  | fRight  = SkMin32(a.fRight,  b.fRight); | 
|  | fBottom = SkMin32(a.fBottom, b.fBottom); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** If the rectangle specified by left,top,right,bottom intersects this rectangle, | 
|  | return true and set this rectangle to that intersection, | 
|  | otherwise return false and do not change this rectangle. | 
|  | If either rectangle is empty, do nothing and return false. | 
|  | */ | 
|  | bool intersect(int32_t left, int32_t top, int32_t right, int32_t bottom) { | 
|  | if (left < right && top < bottom && !this->isEmpty() && | 
|  | fLeft < right && left < fRight && fTop < bottom && top < fBottom) { | 
|  | if (fLeft < left) fLeft = left; | 
|  | if (fTop < top) fTop = top; | 
|  | if (fRight > right) fRight = right; | 
|  | if (fBottom > bottom) fBottom = bottom; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** Returns true if a and b are not empty, and they intersect | 
|  | */ | 
|  | static bool Intersects(const SkIRect& a, const SkIRect& b) { | 
|  | return  !a.isEmpty() && !b.isEmpty() &&              // check for empties | 
|  | a.fLeft < b.fRight && b.fLeft < a.fRight && | 
|  | a.fTop < b.fBottom && b.fTop < a.fBottom; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Returns true if a and b intersect. debug-asserts that neither are empty. | 
|  | */ | 
|  | static bool IntersectsNoEmptyCheck(const SkIRect& a, const SkIRect& b) { | 
|  | SkASSERT(!a.isEmpty()); | 
|  | SkASSERT(!b.isEmpty()); | 
|  | return  a.fLeft < b.fRight && b.fLeft < a.fRight && | 
|  | a.fTop < b.fBottom && b.fTop < a.fBottom; | 
|  | } | 
|  |  | 
|  | /** Update this rectangle to enclose itself and the specified rectangle. | 
|  | If this rectangle is empty, just set it to the specified rectangle. If the specified | 
|  | rectangle is empty, do nothing. | 
|  | */ | 
|  | void join(int32_t left, int32_t top, int32_t right, int32_t bottom); | 
|  |  | 
|  | /** Update this rectangle to enclose itself and the specified rectangle. | 
|  | If this rectangle is empty, just set it to the specified rectangle. If the specified | 
|  | rectangle is empty, do nothing. | 
|  | */ | 
|  | void join(const SkIRect& r) { | 
|  | this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); | 
|  | } | 
|  |  | 
|  | /** Swap top/bottom or left/right if there are flipped. | 
|  | This can be called if the edges are computed separately, | 
|  | and may have crossed over each other. | 
|  | When this returns, left <= right && top <= bottom | 
|  | */ | 
|  | void sort(); | 
|  |  | 
|  | static const SkIRect& SK_WARN_UNUSED_RESULT EmptyIRect() { | 
|  | static const SkIRect gEmpty = { 0, 0, 0, 0 }; | 
|  | return gEmpty; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \struct SkRect | 
|  | */ | 
|  | struct SK_API SkRect { | 
|  | SkScalar    fLeft, fTop, fRight, fBottom; | 
|  |  | 
|  | static SkRect SK_WARN_UNUSED_RESULT MakeEmpty() { | 
|  | SkRect r; | 
|  | r.setEmpty(); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static SkRect SK_WARN_UNUSED_RESULT MakeLargest() { | 
|  | SkRect r; | 
|  | r.setLargest(); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static SkRect SK_WARN_UNUSED_RESULT MakeWH(SkScalar w, SkScalar h) { | 
|  | SkRect r; | 
|  | r.set(0, 0, w, h); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static SkRect SK_WARN_UNUSED_RESULT MakeSize(const SkSize& size) { | 
|  | SkRect r; | 
|  | r.set(0, 0, size.width(), size.height()); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static SkRect SK_WARN_UNUSED_RESULT MakeLTRB(SkScalar l, SkScalar t, SkScalar r, SkScalar b) { | 
|  | SkRect rect; | 
|  | rect.set(l, t, r, b); | 
|  | return rect; | 
|  | } | 
|  |  | 
|  | static SkRect SK_WARN_UNUSED_RESULT MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h) { | 
|  | SkRect r; | 
|  | r.set(x, y, x + w, y + h); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | SK_ATTR_DEPRECATED("use Make()") | 
|  | static SkRect SK_WARN_UNUSED_RESULT MakeFromIRect(const SkIRect& irect) { | 
|  | SkRect r; | 
|  | r.set(SkIntToScalar(irect.fLeft), | 
|  | SkIntToScalar(irect.fTop), | 
|  | SkIntToScalar(irect.fRight), | 
|  | SkIntToScalar(irect.fBottom)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static SkRect SK_WARN_UNUSED_RESULT Make(const SkIRect& irect) { | 
|  | SkRect r; | 
|  | r.set(SkIntToScalar(irect.fLeft), | 
|  | SkIntToScalar(irect.fTop), | 
|  | SkIntToScalar(irect.fRight), | 
|  | SkIntToScalar(irect.fBottom)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Return true if the rectangle's width or height are <= 0 | 
|  | */ | 
|  | bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } | 
|  |  | 
|  | bool isLargest() const { return SK_ScalarMin == fLeft && | 
|  | SK_ScalarMin == fTop && | 
|  | SK_ScalarMax == fRight && | 
|  | SK_ScalarMax == fBottom; } | 
|  |  | 
|  | /** | 
|  | *  Returns true iff all values in the rect are finite. If any are | 
|  | *  infinite or NaN (or SK_FixedNaN when SkScalar is fixed) then this | 
|  | *  returns false. | 
|  | */ | 
|  | bool isFinite() const { | 
|  | float accum = 0; | 
|  | accum *= fLeft; | 
|  | accum *= fTop; | 
|  | accum *= fRight; | 
|  | accum *= fBottom; | 
|  |  | 
|  | // accum is either NaN or it is finite (zero). | 
|  | SkASSERT(0 == accum || !(accum == accum)); | 
|  |  | 
|  | // value==value will be true iff value is not NaN | 
|  | // TODO: is it faster to say !accum or accum==accum? | 
|  | return accum == accum; | 
|  | } | 
|  |  | 
|  | SkScalar    x() const { return fLeft; } | 
|  | SkScalar    y() const { return fTop; } | 
|  | SkScalar    left() const { return fLeft; } | 
|  | SkScalar    top() const { return fTop; } | 
|  | SkScalar    right() const { return fRight; } | 
|  | SkScalar    bottom() const { return fBottom; } | 
|  | SkScalar    width() const { return fRight - fLeft; } | 
|  | SkScalar    height() const { return fBottom - fTop; } | 
|  | SkScalar    centerX() const { return SkScalarHalf(fLeft + fRight); } | 
|  | SkScalar    centerY() const { return SkScalarHalf(fTop + fBottom); } | 
|  |  | 
|  | friend bool operator==(const SkRect& a, const SkRect& b) { | 
|  | return SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); | 
|  | } | 
|  |  | 
|  | friend bool operator!=(const SkRect& a, const SkRect& b) { | 
|  | return !SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); | 
|  | } | 
|  |  | 
|  | /** return the 4 points that enclose the rectangle (top-left, top-right, bottom-right, | 
|  | bottom-left). TODO: Consider adding param to control whether quad is CW or CCW. | 
|  | */ | 
|  | void toQuad(SkPoint quad[4]) const; | 
|  |  | 
|  | /** Set this rectangle to the empty rectangle (0,0,0,0) | 
|  | */ | 
|  | void setEmpty() { memset(this, 0, sizeof(*this)); } | 
|  |  | 
|  | void set(const SkIRect& src) { | 
|  | fLeft   = SkIntToScalar(src.fLeft); | 
|  | fTop    = SkIntToScalar(src.fTop); | 
|  | fRight  = SkIntToScalar(src.fRight); | 
|  | fBottom = SkIntToScalar(src.fBottom); | 
|  | } | 
|  |  | 
|  | void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { | 
|  | fLeft   = left; | 
|  | fTop    = top; | 
|  | fRight  = right; | 
|  | fBottom = bottom; | 
|  | } | 
|  | // alias for set(l, t, r, b) | 
|  | void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { | 
|  | this->set(left, top, right, bottom); | 
|  | } | 
|  |  | 
|  | /** Initialize the rect with the 4 specified integers. The routine handles | 
|  | converting them to scalars (by calling SkIntToScalar) | 
|  | */ | 
|  | void iset(int left, int top, int right, int bottom) { | 
|  | fLeft   = SkIntToScalar(left); | 
|  | fTop    = SkIntToScalar(top); | 
|  | fRight  = SkIntToScalar(right); | 
|  | fBottom = SkIntToScalar(bottom); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Set this rectangle to be left/top at 0,0, and have the specified width | 
|  | *  and height (automatically converted to SkScalar). | 
|  | */ | 
|  | void isetWH(int width, int height) { | 
|  | fLeft = fTop = 0; | 
|  | fRight = SkIntToScalar(width); | 
|  | fBottom = SkIntToScalar(height); | 
|  | } | 
|  |  | 
|  | /** Set this rectangle to be the bounds of the array of points. | 
|  | If the array is empty (count == 0), then set this rectangle | 
|  | to the empty rectangle (0,0,0,0) | 
|  | */ | 
|  | void set(const SkPoint pts[], int count) { | 
|  | // set() had been checking for non-finite values, so keep that behavior | 
|  | // for now. Now that we have setBoundsCheck(), we may decide to make | 
|  | // set() be simpler/faster, and not check for those. | 
|  | (void)this->setBoundsCheck(pts, count); | 
|  | } | 
|  |  | 
|  | // alias for set(pts, count) | 
|  | void setBounds(const SkPoint pts[], int count) { | 
|  | (void)this->setBoundsCheck(pts, count); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Compute the bounds of the array of points, and set this rect to that | 
|  | *  bounds and return true... unless a non-finite value is encountered, | 
|  | *  in which case this rect is set to empty and false is returned. | 
|  | */ | 
|  | bool setBoundsCheck(const SkPoint pts[], int count); | 
|  |  | 
|  | void set(const SkPoint& p0, const SkPoint& p1) { | 
|  | fLeft =   SkMinScalar(p0.fX, p1.fX); | 
|  | fRight =  SkMaxScalar(p0.fX, p1.fX); | 
|  | fTop =    SkMinScalar(p0.fY, p1.fY); | 
|  | fBottom = SkMaxScalar(p0.fY, p1.fY); | 
|  | } | 
|  |  | 
|  | void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height) { | 
|  | fLeft = x; | 
|  | fTop = y; | 
|  | fRight = x + width; | 
|  | fBottom = y + height; | 
|  | } | 
|  |  | 
|  | void setWH(SkScalar width, SkScalar height) { | 
|  | fLeft = 0; | 
|  | fTop = 0; | 
|  | fRight = width; | 
|  | fBottom = height; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Make the largest representable rectangle | 
|  | */ | 
|  | void setLargest() { | 
|  | fLeft = fTop = SK_ScalarMin; | 
|  | fRight = fBottom = SK_ScalarMax; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Make the largest representable rectangle, but inverted (e.g. fLeft will | 
|  | *  be max and right will be min). | 
|  | */ | 
|  | void setLargestInverted() { | 
|  | fLeft = fTop = SK_ScalarMax; | 
|  | fRight = fBottom = SK_ScalarMin; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Return a new Rect, built as an offset of this rect. | 
|  | */ | 
|  | SkRect makeOffset(SkScalar dx, SkScalar dy) const { | 
|  | return MakeLTRB(fLeft + dx, fTop + dy, fRight + dx, fBottom + dy); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Return a new Rect, built as an inset of this rect. | 
|  | */ | 
|  | SkRect makeInset(SkScalar dx, SkScalar dy) const { | 
|  | return MakeLTRB(fLeft + dx, fTop + dy, fRight - dx, fBottom - dy); | 
|  | } | 
|  |  | 
|  | /** Offset set the rectangle by adding dx to its left and right, | 
|  | and adding dy to its top and bottom. | 
|  | */ | 
|  | void offset(SkScalar dx, SkScalar dy) { | 
|  | fLeft   += dx; | 
|  | fTop    += dy; | 
|  | fRight  += dx; | 
|  | fBottom += dy; | 
|  | } | 
|  |  | 
|  | void offset(const SkPoint& delta) { | 
|  | this->offset(delta.fX, delta.fY); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Offset this rect such its new x() and y() will equal newX and newY. | 
|  | */ | 
|  | void offsetTo(SkScalar newX, SkScalar newY) { | 
|  | fRight += newX - fLeft; | 
|  | fBottom += newY - fTop; | 
|  | fLeft = newX; | 
|  | fTop = newY; | 
|  | } | 
|  |  | 
|  | /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are | 
|  | moved inwards, making the rectangle narrower. If dx is negative, then | 
|  | the sides are moved outwards, making the rectangle wider. The same holds | 
|  | true for dy and the top and bottom. | 
|  | */ | 
|  | void inset(SkScalar dx, SkScalar dy)  { | 
|  | fLeft   += dx; | 
|  | fTop    += dy; | 
|  | fRight  -= dx; | 
|  | fBottom -= dy; | 
|  | } | 
|  |  | 
|  | /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are | 
|  | moved outwards, making the rectangle wider. If dx is negative, then the | 
|  | sides are moved inwards, making the rectangle narrower. The same holds | 
|  | true for dy and the top and bottom. | 
|  | */ | 
|  | void outset(SkScalar dx, SkScalar dy)  { this->inset(-dx, -dy); } | 
|  |  | 
|  | /** If this rectangle intersects r, return true and set this rectangle to that | 
|  | intersection, otherwise return false and do not change this rectangle. | 
|  | If either rectangle is empty, do nothing and return false. | 
|  | */ | 
|  | bool intersect(const SkRect& r); | 
|  |  | 
|  | /** If this rectangle intersects the rectangle specified by left, top, right, bottom, | 
|  | return true and set this rectangle to that intersection, otherwise return false | 
|  | and do not change this rectangle. | 
|  | If either rectangle is empty, do nothing and return false. | 
|  | */ | 
|  | bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); | 
|  |  | 
|  | /** | 
|  | *  If rectangles a and b intersect, return true and set this rectangle to | 
|  | *  that intersection, otherwise return false and do not change this | 
|  | *  rectangle. If either rectangle is empty, do nothing and return false. | 
|  | */ | 
|  | bool intersect(const SkRect& a, const SkRect& b); | 
|  |  | 
|  |  | 
|  | private: | 
|  | static bool Intersects(SkScalar al, SkScalar at, SkScalar ar, SkScalar ab, | 
|  | SkScalar bl, SkScalar bt, SkScalar br, SkScalar bb) { | 
|  | SkScalar L = SkMaxScalar(al, bl); | 
|  | SkScalar R = SkMinScalar(ar, br); | 
|  | SkScalar T = SkMaxScalar(at, bt); | 
|  | SkScalar B = SkMinScalar(ab, bb); | 
|  | return L < R && T < B; | 
|  | } | 
|  |  | 
|  | public: | 
|  | /** | 
|  | *  Return true if this rectangle is not empty, and the specified sides of | 
|  | *  a rectangle are not empty, and they intersect. | 
|  | */ | 
|  | bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const { | 
|  | return Intersects(fLeft, fTop, fRight, fBottom, left, top, right, bottom); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Return true if rectangles a and b are not empty and intersect. | 
|  | */ | 
|  | static bool Intersects(const SkRect& a, const SkRect& b) { | 
|  | return Intersects(a.fLeft, a.fTop, a.fRight, a.fBottom, | 
|  | b.fLeft, b.fTop, b.fRight, b.fBottom); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Update this rectangle to enclose itself and the specified rectangle. | 
|  | *  If this rectangle is empty, just set it to the specified rectangle. | 
|  | *  If the specified rectangle is empty, do nothing. | 
|  | */ | 
|  | void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); | 
|  |  | 
|  | /** Update this rectangle to enclose itself and the specified rectangle. | 
|  | If this rectangle is empty, just set it to the specified rectangle. If the specified | 
|  | rectangle is empty, do nothing. | 
|  | */ | 
|  | void join(const SkRect& r) { | 
|  | this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); | 
|  | } | 
|  |  | 
|  | void joinNonEmptyArg(const SkRect& r) { | 
|  | SkASSERT(!r.isEmpty()); | 
|  | // if we are empty, just assign | 
|  | if (fLeft >= fRight || fTop >= fBottom) { | 
|  | *this = r; | 
|  | } else { | 
|  | fLeft   = SkMinScalar(fLeft, r.left()); | 
|  | fTop    = SkMinScalar(fTop, r.top()); | 
|  | fRight  = SkMaxScalar(fRight, r.right()); | 
|  | fBottom = SkMaxScalar(fBottom, r.bottom()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Grow the rect to include the specified (x,y). After this call, the | 
|  | *  following will be true: fLeft <= x <= fRight && fTop <= y <= fBottom. | 
|  | * | 
|  | *  This is close, but not quite the same contract as contains(), since | 
|  | *  contains() treats the left and top different from the right and bottom. | 
|  | *  contains(x,y) -> fLeft <= x < fRight && fTop <= y < fBottom. Also note | 
|  | *  that contains(x,y) always returns false if the rect is empty. | 
|  | */ | 
|  | void growToInclude(SkScalar x, SkScalar y) { | 
|  | fLeft  = SkMinScalar(x, fLeft); | 
|  | fRight = SkMaxScalar(x, fRight); | 
|  | fTop    = SkMinScalar(y, fTop); | 
|  | fBottom = SkMaxScalar(y, fBottom); | 
|  | } | 
|  |  | 
|  | /** Bulk version of growToInclude */ | 
|  | void growToInclude(const SkPoint pts[], int count) { | 
|  | this->growToInclude(pts, sizeof(SkPoint), count); | 
|  | } | 
|  |  | 
|  | /** Bulk version of growToInclude with stride. */ | 
|  | void growToInclude(const SkPoint pts[], size_t stride, int count) { | 
|  | SkASSERT(count >= 0); | 
|  | SkASSERT(stride >= sizeof(SkPoint)); | 
|  | const SkPoint* end = (const SkPoint*)((intptr_t)pts + count * stride); | 
|  | for (; pts < end; pts = (const SkPoint*)((intptr_t)pts + stride)) { | 
|  | this->growToInclude(pts->fX, pts->fY); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Return true if this rectangle contains r, and if both rectangles are | 
|  | *  not empty. | 
|  | */ | 
|  | bool contains(const SkRect& r) const { | 
|  | // todo: can we eliminate the this->isEmpty check? | 
|  | return  !r.isEmpty() && !this->isEmpty() && | 
|  | fLeft <= r.fLeft && fTop <= r.fTop && | 
|  | fRight >= r.fRight && fBottom >= r.fBottom; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Set the dst rectangle by rounding this rectangle's coordinates to their | 
|  | *  nearest integer values using SkScalarRoundToInt. | 
|  | */ | 
|  | void round(SkIRect* dst) const { | 
|  | SkASSERT(dst); | 
|  | dst->set(SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop), | 
|  | SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Variant of round() that explicitly performs the rounding step (i.e. floor(x + 0.5)) using | 
|  | *  double instead of SkScalar (float). It does this by calling SkDScalarRoundToInt(), which | 
|  | *  may be slower than calling SkScalarRountToInt(), but gives slightly more accurate results. | 
|  | * | 
|  | *  e.g. | 
|  | *      SkScalar x = 0.49999997f; | 
|  | *      int ix = SkScalarRoundToInt(x); | 
|  | *      SkASSERT(0 == ix);  // <--- fails | 
|  | *      ix = SkDScalarRoundToInt(x); | 
|  | *      SkASSERT(0 == ix);  // <--- succeeds | 
|  | */ | 
|  | void dround(SkIRect* dst) const { | 
|  | SkASSERT(dst); | 
|  | dst->set(SkDScalarRoundToInt(fLeft), SkDScalarRoundToInt(fTop), | 
|  | SkDScalarRoundToInt(fRight), SkDScalarRoundToInt(fBottom)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Set the dst rectangle by rounding "out" this rectangle, choosing the | 
|  | *  SkScalarFloor of top and left, and the SkScalarCeil of right and bottom. | 
|  | */ | 
|  | void roundOut(SkIRect* dst) const { | 
|  | SkASSERT(dst); | 
|  | dst->set(SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop), | 
|  | SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Set the dst rectangle by rounding "out" this rectangle, choosing the | 
|  | *  SkScalarFloorToScalar of top and left, and the SkScalarCeilToScalar of right and bottom. | 
|  | * | 
|  | *  It is safe for this == dst | 
|  | */ | 
|  | void roundOut(SkRect* dst) const { | 
|  | dst->set(SkScalarFloorToScalar(fLeft), | 
|  | SkScalarFloorToScalar(fTop), | 
|  | SkScalarCeilToScalar(fRight), | 
|  | SkScalarCeilToScalar(fBottom)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Set the dst rectangle by rounding "in" this rectangle, choosing the | 
|  | *  ceil of top and left, and the floor of right and bottom. This does *not* | 
|  | *  call sort(), so it is possible that the resulting rect is inverted... | 
|  | *  e.g. left >= right or top >= bottom. Call isEmpty() to detect that. | 
|  | */ | 
|  | void roundIn(SkIRect* dst) const { | 
|  | SkASSERT(dst); | 
|  | dst->set(SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop), | 
|  | SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom)); | 
|  | } | 
|  |  | 
|  | //! Returns the result of calling round(&dst) | 
|  | SkIRect round() const { | 
|  | SkIRect ir; | 
|  | this->round(&ir); | 
|  | return ir; | 
|  | } | 
|  |  | 
|  | //! Returns the result of calling roundOut(&dst) | 
|  | SkIRect roundOut() const { | 
|  | SkIRect ir; | 
|  | this->roundOut(&ir); | 
|  | return ir; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Swap top/bottom or left/right if there are flipped (i.e. if width() | 
|  | *  or height() would have returned a negative value.) This should be called | 
|  | *  if the edges are computed separately, and may have crossed over each | 
|  | *  other. When this returns, left <= right && top <= bottom | 
|  | */ | 
|  | void sort() { | 
|  | if (fLeft > fRight) { | 
|  | SkTSwap<SkScalar>(fLeft, fRight); | 
|  | } | 
|  |  | 
|  | if (fTop > fBottom) { | 
|  | SkTSwap<SkScalar>(fTop, fBottom); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  cast-safe way to treat the rect as an array of (4) SkScalars. | 
|  | */ | 
|  | const SkScalar* asScalars() const { return &fLeft; } | 
|  |  | 
|  | #ifdef SK_DEVELOPER | 
|  | /** | 
|  | * Dumps the rect using SkDebugf. This is intended for Skia development debugging. Don't | 
|  | * rely on the existence of this function or the formatting of its output. | 
|  | */ | 
|  | void dump() const { | 
|  | SkDebugf("{ l: %f, t: %f, r: %f, b: %f }", fLeft, fTop, fRight, fBottom); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | }; | 
|  |  | 
|  | #endif |