blob: 1cbc4410b5db08b53ccfbbafa4962fe058d17b05 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkSLCompiler.h"
#include "ast/SkSLASTPrecision.h"
#include "SkSLCFGGenerator.h"
#include "SkSLGLSLCodeGenerator.h"
#include "SkSLIRGenerator.h"
#include "SkSLParser.h"
#include "SkSLSPIRVCodeGenerator.h"
#include "ir/SkSLExpression.h"
#include "ir/SkSLIntLiteral.h"
#include "ir/SkSLModifiersDeclaration.h"
#include "ir/SkSLSymbolTable.h"
#include "ir/SkSLUnresolvedFunction.h"
#include "ir/SkSLVarDeclarations.h"
#include "SkMutex.h"
#ifdef SK_ENABLE_SPIRV_VALIDATION
#include "spirv-tools/libspirv.hpp"
#endif
#define STRINGIFY(x) #x
// include the built-in shader symbols as static strings
static const char* SKSL_INCLUDE =
#include "sksl.include"
;
static const char* SKSL_VERT_INCLUDE =
#include "sksl_vert.include"
;
static const char* SKSL_FRAG_INCLUDE =
#include "sksl_frag.include"
;
static const char* SKSL_GEOM_INCLUDE =
#include "sksl_geom.include"
;
namespace SkSL {
Compiler::Compiler()
: fErrorCount(0) {
auto types = std::shared_ptr<SymbolTable>(new SymbolTable(*this));
auto symbols = std::shared_ptr<SymbolTable>(new SymbolTable(types, *this));
fIRGenerator = new IRGenerator(&fContext, symbols, *this);
fTypes = types;
#define ADD_TYPE(t) types->addWithoutOwnership(fContext.f ## t ## _Type->fName, \
fContext.f ## t ## _Type.get())
ADD_TYPE(Void);
ADD_TYPE(Float);
ADD_TYPE(Vec2);
ADD_TYPE(Vec3);
ADD_TYPE(Vec4);
ADD_TYPE(Double);
ADD_TYPE(DVec2);
ADD_TYPE(DVec3);
ADD_TYPE(DVec4);
ADD_TYPE(Int);
ADD_TYPE(IVec2);
ADD_TYPE(IVec3);
ADD_TYPE(IVec4);
ADD_TYPE(UInt);
ADD_TYPE(UVec2);
ADD_TYPE(UVec3);
ADD_TYPE(UVec4);
ADD_TYPE(Bool);
ADD_TYPE(BVec2);
ADD_TYPE(BVec3);
ADD_TYPE(BVec4);
ADD_TYPE(Mat2x2);
types->addWithoutOwnership(SkString("mat2x2"), fContext.fMat2x2_Type.get());
ADD_TYPE(Mat2x3);
ADD_TYPE(Mat2x4);
ADD_TYPE(Mat3x2);
ADD_TYPE(Mat3x3);
types->addWithoutOwnership(SkString("mat3x3"), fContext.fMat3x3_Type.get());
ADD_TYPE(Mat3x4);
ADD_TYPE(Mat4x2);
ADD_TYPE(Mat4x3);
ADD_TYPE(Mat4x4);
types->addWithoutOwnership(SkString("mat4x4"), fContext.fMat4x4_Type.get());
ADD_TYPE(GenType);
ADD_TYPE(GenDType);
ADD_TYPE(GenIType);
ADD_TYPE(GenUType);
ADD_TYPE(GenBType);
ADD_TYPE(Mat);
ADD_TYPE(Vec);
ADD_TYPE(GVec);
ADD_TYPE(GVec2);
ADD_TYPE(GVec3);
ADD_TYPE(GVec4);
ADD_TYPE(DVec);
ADD_TYPE(IVec);
ADD_TYPE(UVec);
ADD_TYPE(BVec);
ADD_TYPE(Sampler1D);
ADD_TYPE(Sampler2D);
ADD_TYPE(Sampler3D);
ADD_TYPE(SamplerExternalOES);
ADD_TYPE(SamplerCube);
ADD_TYPE(Sampler2DRect);
ADD_TYPE(Sampler1DArray);
ADD_TYPE(Sampler2DArray);
ADD_TYPE(SamplerCubeArray);
ADD_TYPE(SamplerBuffer);
ADD_TYPE(Sampler2DMS);
ADD_TYPE(Sampler2DMSArray);
ADD_TYPE(ISampler2D);
ADD_TYPE(Image2D);
ADD_TYPE(IImage2D);
ADD_TYPE(SubpassInput);
ADD_TYPE(SubpassInputMS);
ADD_TYPE(GSampler1D);
ADD_TYPE(GSampler2D);
ADD_TYPE(GSampler3D);
ADD_TYPE(GSamplerCube);
ADD_TYPE(GSampler2DRect);
ADD_TYPE(GSampler1DArray);
ADD_TYPE(GSampler2DArray);
ADD_TYPE(GSamplerCubeArray);
ADD_TYPE(GSamplerBuffer);
ADD_TYPE(GSampler2DMS);
ADD_TYPE(GSampler2DMSArray);
ADD_TYPE(Sampler1DShadow);
ADD_TYPE(Sampler2DShadow);
ADD_TYPE(SamplerCubeShadow);
ADD_TYPE(Sampler2DRectShadow);
ADD_TYPE(Sampler1DArrayShadow);
ADD_TYPE(Sampler2DArrayShadow);
ADD_TYPE(SamplerCubeArrayShadow);
ADD_TYPE(GSampler2DArrayShadow);
ADD_TYPE(GSamplerCubeArrayShadow);
SkString skCapsName("sk_Caps");
Variable* skCaps = new Variable(Position(), Modifiers(), skCapsName,
*fContext.fSkCaps_Type, Variable::kGlobal_Storage);
fIRGenerator->fSymbolTable->add(skCapsName, std::unique_ptr<Symbol>(skCaps));
Modifiers::Flag ignored1;
std::vector<std::unique_ptr<ProgramElement>> ignored2;
this->internalConvertProgram(SkString(SKSL_INCLUDE), &ignored1, &ignored2);
fIRGenerator->fSymbolTable->markAllFunctionsBuiltin();
ASSERT(!fErrorCount);
}
Compiler::~Compiler() {
delete fIRGenerator;
}
// add the definition created by assigning to the lvalue to the definition set
void Compiler::addDefinition(const Expression* lvalue, std::unique_ptr<Expression>* expr,
DefinitionMap* definitions) {
switch (lvalue->fKind) {
case Expression::kVariableReference_Kind: {
const Variable& var = ((VariableReference*) lvalue)->fVariable;
if (var.fStorage == Variable::kLocal_Storage) {
(*definitions)[&var] = expr;
}
break;
}
case Expression::kSwizzle_Kind:
// We consider the variable written to as long as at least some of its components have
// been written to. This will lead to some false negatives (we won't catch it if you
// write to foo.x and then read foo.y), but being stricter could lead to false positives
// (we write to foo.x, and then pass foo to a function which happens to only read foo.x,
// but since we pass foo as a whole it is flagged as an error) unless we perform a much
// more complicated whole-program analysis. This is probably good enough.
this->addDefinition(((Swizzle*) lvalue)->fBase.get(),
(std::unique_ptr<Expression>*) &fContext.fDefined_Expression,
definitions);
break;
case Expression::kIndex_Kind:
// see comments in Swizzle
this->addDefinition(((IndexExpression*) lvalue)->fBase.get(),
(std::unique_ptr<Expression>*) &fContext.fDefined_Expression,
definitions);
break;
case Expression::kFieldAccess_Kind:
// see comments in Swizzle
this->addDefinition(((FieldAccess*) lvalue)->fBase.get(),
(std::unique_ptr<Expression>*) &fContext.fDefined_Expression,
definitions);
break;
default:
// not an lvalue, can't happen
ASSERT(false);
}
}
// add local variables defined by this node to the set
void Compiler::addDefinitions(const BasicBlock::Node& node,
DefinitionMap* definitions) {
switch (node.fKind) {
case BasicBlock::Node::kExpression_Kind: {
ASSERT(node.fExpression);
const Expression* expr = (Expression*) node.fExpression->get();
switch (expr->fKind) {
case Expression::kBinary_Kind: {
BinaryExpression* b = (BinaryExpression*) expr;
if (b->fOperator == Token::EQ) {
this->addDefinition(b->fLeft.get(), &b->fRight, definitions);
} else if (Token::IsAssignment(b->fOperator)) {
this->addDefinition(
b->fLeft.get(),
(std::unique_ptr<Expression>*) &fContext.fDefined_Expression,
definitions);
}
break;
}
case Expression::kPrefix_Kind: {
const PrefixExpression* p = (PrefixExpression*) expr;
if (p->fOperator == Token::MINUSMINUS || p->fOperator == Token::PLUSPLUS) {
this->addDefinition(
p->fOperand.get(),
(std::unique_ptr<Expression>*) &fContext.fDefined_Expression,
definitions);
}
break;
}
case Expression::kPostfix_Kind: {
const PostfixExpression* p = (PostfixExpression*) expr;
if (p->fOperator == Token::MINUSMINUS || p->fOperator == Token::PLUSPLUS) {
this->addDefinition(
p->fOperand.get(),
(std::unique_ptr<Expression>*) &fContext.fDefined_Expression,
definitions);
}
break;
}
default:
break;
}
break;
}
case BasicBlock::Node::kStatement_Kind: {
const Statement* stmt = (Statement*) node.fStatement;
if (stmt->fKind == Statement::kVarDeclarations_Kind) {
VarDeclarationsStatement* vd = (VarDeclarationsStatement*) stmt;
for (VarDeclaration& decl : vd->fDeclaration->fVars) {
if (decl.fValue) {
(*definitions)[decl.fVar] = &decl.fValue;
}
}
}
break;
}
}
}
void Compiler::scanCFG(CFG* cfg, BlockId blockId, std::set<BlockId>* workList) {
BasicBlock& block = cfg->fBlocks[blockId];
// compute definitions after this block
DefinitionMap after = block.fBefore;
for (const BasicBlock::Node& n : block.fNodes) {
this->addDefinitions(n, &after);
}
// propagate definitions to exits
for (BlockId exitId : block.fExits) {
BasicBlock& exit = cfg->fBlocks[exitId];
for (const auto& pair : after) {
std::unique_ptr<Expression>* e1 = pair.second;
auto found = exit.fBefore.find(pair.first);
if (found == exit.fBefore.end()) {
// exit has no definition for it, just copy it
workList->insert(exitId);
exit.fBefore[pair.first] = e1;
} else {
// exit has a (possibly different) value already defined
std::unique_ptr<Expression>* e2 = exit.fBefore[pair.first];
if (e1 != e2) {
// definition has changed, merge and add exit block to worklist
workList->insert(exitId);
if (e1 && e2) {
exit.fBefore[pair.first] =
(std::unique_ptr<Expression>*) &fContext.fDefined_Expression;
} else {
exit.fBefore[pair.first] = nullptr;
}
}
}
}
}
}
// returns a map which maps all local variables in the function to null, indicating that their value
// is initially unknown
static DefinitionMap compute_start_state(const CFG& cfg) {
DefinitionMap result;
for (const auto& block : cfg.fBlocks) {
for (const auto& node : block.fNodes) {
if (node.fKind == BasicBlock::Node::kStatement_Kind) {
ASSERT(node.fStatement);
const Statement* s = node.fStatement;
if (s->fKind == Statement::kVarDeclarations_Kind) {
const VarDeclarationsStatement* vd = (const VarDeclarationsStatement*) s;
for (const VarDeclaration& decl : vd->fDeclaration->fVars) {
result[decl.fVar] = nullptr;
}
}
}
}
}
return result;
}
void Compiler::scanCFG(const FunctionDefinition& f) {
CFG cfg = CFGGenerator().getCFG(f);
// compute the data flow
cfg.fBlocks[cfg.fStart].fBefore = compute_start_state(cfg);
std::set<BlockId> workList;
for (BlockId i = 0; i < cfg.fBlocks.size(); i++) {
workList.insert(i);
}
while (workList.size()) {
BlockId next = *workList.begin();
workList.erase(workList.begin());
this->scanCFG(&cfg, next, &workList);
}
// check for unreachable code
for (size_t i = 0; i < cfg.fBlocks.size(); i++) {
if (i != cfg.fStart && !cfg.fBlocks[i].fEntrances.size() &&
cfg.fBlocks[i].fNodes.size()) {
Position p;
switch (cfg.fBlocks[i].fNodes[0].fKind) {
case BasicBlock::Node::kStatement_Kind:
p = cfg.fBlocks[i].fNodes[0].fStatement->fPosition;
break;
case BasicBlock::Node::kExpression_Kind:
p = (*cfg.fBlocks[i].fNodes[0].fExpression)->fPosition;
break;
}
this->error(p, SkString("unreachable"));
}
}
if (fErrorCount) {
return;
}
// check for undefined variables, perform constant propagation
for (BasicBlock& b : cfg.fBlocks) {
DefinitionMap definitions = b.fBefore;
for (BasicBlock::Node& n : b.fNodes) {
if (n.fKind == BasicBlock::Node::kExpression_Kind) {
ASSERT(n.fExpression);
Expression* expr = n.fExpression->get();
if (n.fConstantPropagation) {
std::unique_ptr<Expression> optimized = expr->constantPropagate(*fIRGenerator,
definitions);
if (optimized) {
n.fExpression->reset(optimized.release());
expr = n.fExpression->get();
}
}
if (expr->fKind == Expression::kVariableReference_Kind) {
const Variable& var = ((VariableReference*) expr)->fVariable;
if (var.fStorage == Variable::kLocal_Storage &&
!definitions[&var]) {
this->error(expr->fPosition,
"'" + var.fName + "' has not been assigned");
}
}
}
this->addDefinitions(n, &definitions);
}
}
// check for missing return
if (f.fDeclaration.fReturnType != *fContext.fVoid_Type) {
if (cfg.fBlocks[cfg.fExit].fEntrances.size()) {
this->error(f.fPosition, SkString("function can exit without returning a value"));
}
}
}
void Compiler::internalConvertProgram(SkString text,
Modifiers::Flag* defaultPrecision,
std::vector<std::unique_ptr<ProgramElement>>* result) {
Parser parser(text, *fTypes, *this);
std::vector<std::unique_ptr<ASTDeclaration>> parsed = parser.file();
if (fErrorCount) {
return;
}
*defaultPrecision = Modifiers::kHighp_Flag;
for (size_t i = 0; i < parsed.size(); i++) {
ASTDeclaration& decl = *parsed[i];
switch (decl.fKind) {
case ASTDeclaration::kVar_Kind: {
std::unique_ptr<VarDeclarations> s = fIRGenerator->convertVarDeclarations(
(ASTVarDeclarations&) decl,
Variable::kGlobal_Storage);
if (s) {
result->push_back(std::move(s));
}
break;
}
case ASTDeclaration::kFunction_Kind: {
std::unique_ptr<FunctionDefinition> f = fIRGenerator->convertFunction(
(ASTFunction&) decl);
if (!fErrorCount && f) {
this->scanCFG(*f);
result->push_back(std::move(f));
}
break;
}
case ASTDeclaration::kModifiers_Kind: {
std::unique_ptr<ModifiersDeclaration> f = fIRGenerator->convertModifiersDeclaration(
(ASTModifiersDeclaration&) decl);
if (f) {
result->push_back(std::move(f));
}
break;
}
case ASTDeclaration::kInterfaceBlock_Kind: {
std::unique_ptr<InterfaceBlock> i = fIRGenerator->convertInterfaceBlock(
(ASTInterfaceBlock&) decl);
if (i) {
result->push_back(std::move(i));
}
break;
}
case ASTDeclaration::kExtension_Kind: {
std::unique_ptr<Extension> e = fIRGenerator->convertExtension((ASTExtension&) decl);
if (e) {
result->push_back(std::move(e));
}
break;
}
case ASTDeclaration::kPrecision_Kind: {
*defaultPrecision = ((ASTPrecision&) decl).fPrecision;
break;
}
default:
ABORT("unsupported declaration: %s\n", decl.description().c_str());
}
}
}
std::unique_ptr<Program> Compiler::convertProgram(Program::Kind kind, SkString text,
const Program::Settings& settings) {
fErrorText = "";
fErrorCount = 0;
fIRGenerator->start(&settings);
std::vector<std::unique_ptr<ProgramElement>> elements;
Modifiers::Flag ignored;
switch (kind) {
case Program::kVertex_Kind:
this->internalConvertProgram(SkString(SKSL_VERT_INCLUDE), &ignored, &elements);
break;
case Program::kFragment_Kind:
this->internalConvertProgram(SkString(SKSL_FRAG_INCLUDE), &ignored, &elements);
break;
case Program::kGeometry_Kind:
this->internalConvertProgram(SkString(SKSL_GEOM_INCLUDE), &ignored, &elements);
break;
}
fIRGenerator->fSymbolTable->markAllFunctionsBuiltin();
Modifiers::Flag defaultPrecision;
this->internalConvertProgram(text, &defaultPrecision, &elements);
auto result = std::unique_ptr<Program>(new Program(kind, settings, defaultPrecision, &fContext,
std::move(elements),
fIRGenerator->fSymbolTable,
fIRGenerator->fInputs));
fIRGenerator->finish();
this->writeErrorCount();
if (fErrorCount) {
return nullptr;
}
return result;
}
bool Compiler::toSPIRV(const Program& program, SkWStream& out) {
#ifdef SK_ENABLE_SPIRV_VALIDATION
SkDynamicMemoryWStream buffer;
SPIRVCodeGenerator cg(&fContext, &program, this, &buffer);
bool result = cg.generateCode();
if (result) {
sk_sp<SkData> data(buffer.detachAsData());
spvtools::SpirvTools tools(SPV_ENV_VULKAN_1_0);
SkASSERT(0 == data->size() % 4);
auto dumpmsg = [](spv_message_level_t, const char*, const spv_position_t&, const char* m) {
SkDebugf("SPIR-V validation error: %s\n", m);
};
tools.SetMessageConsumer(dumpmsg);
// Verify that the SPIR-V we produced is valid. If this assert fails, check the logs prior
// to the failure to see the validation errors.
SkAssertResult(tools.Validate((const uint32_t*) data->data(), data->size() / 4));
out.write(data->data(), data->size());
}
#else
SPIRVCodeGenerator cg(&fContext, &program, this, &out);
bool result = cg.generateCode();
#endif
this->writeErrorCount();
return result;
}
bool Compiler::toSPIRV(const Program& program, SkString* out) {
SkDynamicMemoryWStream buffer;
bool result = this->toSPIRV(program, buffer);
if (result) {
sk_sp<SkData> data(buffer.detachAsData());
*out = SkString((const char*) data->data(), data->size());
}
return result;
}
bool Compiler::toGLSL(const Program& program, SkWStream& out) {
GLSLCodeGenerator cg(&fContext, &program, this, &out);
bool result = cg.generateCode();
this->writeErrorCount();
return result;
}
bool Compiler::toGLSL(const Program& program, SkString* out) {
SkDynamicMemoryWStream buffer;
bool result = this->toGLSL(program, buffer);
if (result) {
sk_sp<SkData> data(buffer.detachAsData());
*out = SkString((const char*) data->data(), data->size());
}
return result;
}
void Compiler::error(Position position, SkString msg) {
fErrorCount++;
fErrorText += "error: " + position.description() + ": " + msg.c_str() + "\n";
}
SkString Compiler::errorText() {
SkString result = fErrorText;
return result;
}
void Compiler::writeErrorCount() {
if (fErrorCount) {
fErrorText += to_string(fErrorCount) + " error";
if (fErrorCount > 1) {
fErrorText += "s";
}
fErrorText += "\n";
}
}
} // namespace