|  | /* | 
|  | * Copyright 2014 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "src/core/SkTBlockList.h" | 
|  | #include "tests/Test.h" | 
|  |  | 
|  | namespace { | 
|  | struct C { | 
|  | C() : fID(-1) { ++gInstCnt; } | 
|  | C(int id) : fID(id) { ++gInstCnt; } | 
|  | C(C&& c) : C(c.fID) {} | 
|  | C(const C& c) : C(c.fID) {} | 
|  |  | 
|  | C& operator=(C&&) = default; | 
|  | C& operator=(const C&) = default; | 
|  |  | 
|  | ~C() { --gInstCnt; } | 
|  |  | 
|  | int fID; | 
|  |  | 
|  | // Under the hood, SkTBlockList and SkBlockAllocator round up to max_align_t. If 'C' was | 
|  | // just 4 bytes, that often means the internal blocks can squeeze a few extra instances in. This | 
|  | // is fine, but makes predicting a little trickier, so make sure C is a bit bigger. | 
|  | int fPadding[4]; | 
|  |  | 
|  | static int gInstCnt; | 
|  | }; | 
|  | int C::gInstCnt = 0; | 
|  |  | 
|  | struct D { | 
|  | int fID; | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | class TBlockListTestAccess { | 
|  | public: | 
|  | template<int N> | 
|  | static size_t ScratchBlockSize(SkTBlockList<C, N>& list) { | 
|  | return (size_t) list.fAllocator->scratchBlockSize(); | 
|  | } | 
|  |  | 
|  | template<int N> | 
|  | static size_t TotalSize(SkTBlockList<C, N>& list) { | 
|  | return list.fAllocator->totalSize(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Checks that the allocator has the correct count, etc and that the element IDs are correct. | 
|  | // Then pops popCnt items and checks again. | 
|  | template<int N> | 
|  | static void check_allocator_helper(SkTBlockList<C, N>* allocator, int cnt, int popCnt, | 
|  | skiatest::Reporter* reporter) { | 
|  | REPORTER_ASSERT(reporter, (0 == cnt) == allocator->empty()); | 
|  | REPORTER_ASSERT(reporter, cnt == allocator->count()); | 
|  | REPORTER_ASSERT(reporter, cnt == C::gInstCnt); | 
|  |  | 
|  | int i = 0; | 
|  | for (const C& c : allocator->items()) { | 
|  | REPORTER_ASSERT(reporter, i == c.fID); | 
|  | REPORTER_ASSERT(reporter, allocator->item(i).fID == i); | 
|  | ++i; | 
|  | } | 
|  | REPORTER_ASSERT(reporter, i == cnt); | 
|  |  | 
|  | if (cnt > 0) { | 
|  | REPORTER_ASSERT(reporter, cnt-1 == allocator->back().fID); | 
|  | } | 
|  |  | 
|  | if (popCnt > 0) { | 
|  | for (i = 0; i < popCnt; ++i) { | 
|  | allocator->pop_back(); | 
|  | } | 
|  | check_allocator_helper(allocator, cnt - popCnt, 0, reporter); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int N> | 
|  | static void check_iterator_helper(SkTBlockList<C, N>* allocator, | 
|  | const std::vector<C*>& expected, | 
|  | skiatest::Reporter* reporter) { | 
|  | const SkTBlockList<C, N>* cAlloc = allocator; | 
|  | REPORTER_ASSERT(reporter, (size_t) allocator->count() == expected.size()); | 
|  | // Forward+const | 
|  | int i = 0; | 
|  | for (const C& c : cAlloc->items()) { | 
|  | REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]); | 
|  | ++i; | 
|  | } | 
|  | REPORTER_ASSERT(reporter, (size_t) i == expected.size()); | 
|  |  | 
|  | // Forward+non-const | 
|  | i = 0; | 
|  | for (C& c : allocator->items()) { | 
|  | REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]); | 
|  | ++i; | 
|  | } | 
|  | REPORTER_ASSERT(reporter, (size_t) i == expected.size()); | 
|  |  | 
|  | // Reverse+const | 
|  | i = (int) expected.size() - 1; | 
|  | for (const C& c : cAlloc->ritems()) { | 
|  | REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]); | 
|  | --i; | 
|  | } | 
|  | REPORTER_ASSERT(reporter, i == -1); | 
|  |  | 
|  | // Reverse+non-const | 
|  | i = (int) expected.size() - 1; | 
|  | for (C& c : allocator->ritems()) { | 
|  | REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]); | 
|  | --i; | 
|  | } | 
|  | REPORTER_ASSERT(reporter, i == -1); | 
|  |  | 
|  | // Also test random access | 
|  | for (i = 0; i < allocator->count(); ++i) { | 
|  | REPORTER_ASSERT(reporter, (uintptr_t) &allocator->item(i) == (uintptr_t) expected[i]); | 
|  | REPORTER_ASSERT(reporter, (uintptr_t) &cAlloc->item(i) == (uintptr_t) expected[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adds cnt items to the allocator, tests the cnts and iterators, pops popCnt items and checks | 
|  | // again. Finally it resets the allocator and checks again. | 
|  | template<int N> | 
|  | static void check_allocator(SkTBlockList<C, N>* allocator, int cnt, int popCnt, | 
|  | skiatest::Reporter* reporter) { | 
|  | enum ItemInitializer : int { | 
|  | kCopyCtor, | 
|  | kMoveCtor, | 
|  | kCopyAssign, | 
|  | kMoveAssign, | 
|  | kEmplace, | 
|  | }; | 
|  | static constexpr int kInitCount = (int) kEmplace + 1; | 
|  |  | 
|  | SkASSERT(allocator); | 
|  | SkASSERT(allocator->empty()); | 
|  | std::vector<C*> items; | 
|  | for (int i = 0; i < cnt; ++i) { | 
|  | switch((ItemInitializer) (i % kInitCount)) { | 
|  | case kCopyCtor: | 
|  | allocator->push_back(C(i)); | 
|  | break; | 
|  | case kMoveCtor: | 
|  | allocator->push_back(std::move(C(i))); | 
|  | break; | 
|  | case kCopyAssign: | 
|  | allocator->push_back() = C(i); | 
|  | break; | 
|  | case kMoveAssign: | 
|  | allocator->push_back() = std::move(C(i)); | 
|  | break; | 
|  | case kEmplace: | 
|  | allocator->emplace_back(i); | 
|  | break; | 
|  | } | 
|  | items.push_back(&allocator->back()); | 
|  | } | 
|  | check_iterator_helper(allocator, items, reporter); | 
|  | check_allocator_helper(allocator, cnt, popCnt, reporter); | 
|  | allocator->reset(); | 
|  | check_iterator_helper(allocator, {}, reporter); | 
|  | check_allocator_helper(allocator, 0, 0, reporter); | 
|  | } | 
|  |  | 
|  | template<int N> | 
|  | static void run_allocator_test(SkTBlockList<C, N>* allocator, skiatest::Reporter* reporter) { | 
|  | check_allocator(allocator, 0, 0, reporter); | 
|  | check_allocator(allocator, 1, 1, reporter); | 
|  | check_allocator(allocator, 2, 2, reporter); | 
|  | check_allocator(allocator, 10, 1, reporter); | 
|  | check_allocator(allocator, 10, 5, reporter); | 
|  | check_allocator(allocator, 10, 10, reporter); | 
|  | check_allocator(allocator, 100, 10, reporter); | 
|  | } | 
|  |  | 
|  | template<int N1, int N2> | 
|  | static void run_concat_test(skiatest::Reporter* reporter, int aCount, int bCount) { | 
|  |  | 
|  | SkTBlockList<C, N1> listA; | 
|  | SkTBlockList<C, N2> listB; | 
|  |  | 
|  | for (int i = 0; i < aCount; ++i) { | 
|  | listA.emplace_back(i); | 
|  | } | 
|  | for (int i = 0; i < bCount; ++i) { | 
|  | listB.emplace_back(aCount + i); | 
|  | } | 
|  |  | 
|  | REPORTER_ASSERT(reporter, listA.count() == aCount && listB.count() == bCount); | 
|  | REPORTER_ASSERT(reporter, C::gInstCnt == aCount + bCount); | 
|  |  | 
|  | // Concatenate B into A and verify. | 
|  | listA.concat(std::move(listB)); | 
|  | REPORTER_ASSERT(reporter, listA.count() == aCount + bCount); | 
|  | // SkTBlockList guarantees the moved list is empty, but clang-tidy doesn't know about it; | 
|  | // in practice we won't really be using moved lists so this won't pollute our main code base | 
|  | // with lots of warning disables. | 
|  | REPORTER_ASSERT(reporter, listB.count() == 0); // NOLINT(bugprone-use-after-move) | 
|  | REPORTER_ASSERT(reporter, C::gInstCnt == aCount + bCount); | 
|  |  | 
|  | int i = 0; | 
|  | for (const C& item : listA.items()) { | 
|  | // By construction of A and B originally, the concatenated id sequence is continuous | 
|  | REPORTER_ASSERT(reporter, i == item.fID); | 
|  | i++; | 
|  | } | 
|  | REPORTER_ASSERT(reporter, i == (aCount + bCount)); | 
|  | } | 
|  |  | 
|  | template<int N1, int N2> | 
|  | static void run_concat_trivial_test(skiatest::Reporter* reporter, int aCount, int bCount) { | 
|  | static_assert(std::is_trivially_copyable<D>::value); | 
|  |  | 
|  | // This is similar to run_concat_test(), except since D is trivial we can't verify the instant | 
|  | // counts that are tracked via ctor/dtor. | 
|  | SkTBlockList<D, N1> listA; | 
|  | SkTBlockList<D, N2> listB; | 
|  |  | 
|  | for (int i = 0; i < aCount; ++i) { | 
|  | listA.push_back({i}); | 
|  | } | 
|  | for (int i = 0; i < bCount; ++i) { | 
|  | listB.push_back({aCount + i}); | 
|  | } | 
|  |  | 
|  | REPORTER_ASSERT(reporter, listA.count() == aCount && listB.count() == bCount); | 
|  | // Concatenate B into A and verify. | 
|  | listA.concat(std::move(listB)); | 
|  | REPORTER_ASSERT(reporter, listA.count() == aCount + bCount); | 
|  | REPORTER_ASSERT(reporter, listB.count() == 0); // NOLINT(bugprone-use-after-move): see above | 
|  |  | 
|  | int i = 0; | 
|  | for (const D& item : listA.items()) { | 
|  | // By construction of A and B originally, the concatenated id sequence is continuous | 
|  | REPORTER_ASSERT(reporter, i == item.fID); | 
|  | i++; | 
|  | } | 
|  | REPORTER_ASSERT(reporter, i == (aCount + bCount)); | 
|  | } | 
|  |  | 
|  | template<int N> | 
|  | static void run_reserve_test(skiatest::Reporter* reporter) { | 
|  | constexpr int kItemsPerBlock = N + 4; // Make this a number > 1, even if N starting items == 1 | 
|  |  | 
|  | SkTBlockList<C, N> list(kItemsPerBlock); | 
|  | size_t initialSize = TBlockListTestAccess::TotalSize(list); | 
|  | // Should be able to add N instances of T w/o changing size from initialSize | 
|  | for (int i = 0; i < N; ++i) { | 
|  | list.push_back(C(i)); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, initialSize == TBlockListTestAccess::TotalSize(list)); | 
|  |  | 
|  | // Reserve room for 2*kItemsPerBlock items | 
|  | list.reserve(2 * kItemsPerBlock); | 
|  | REPORTER_ASSERT(reporter, list.count() == N); // count shouldn't change though | 
|  |  | 
|  | size_t reservedSize = TBlockListTestAccess::TotalSize(list); | 
|  | REPORTER_ASSERT(reporter, reservedSize >= initialSize + 2 * kItemsPerBlock * sizeof(C)); | 
|  | for (int i = 0; i < 2 * kItemsPerBlock; ++i) { | 
|  | list.push_back(C(i)); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, reservedSize == TBlockListTestAccess::TotalSize(list)); | 
|  |  | 
|  | // Make the next block partially fully (N > 0 but < kItemsPerBlock) | 
|  | for (int i = 0; i < N; ++i) { | 
|  | list.push_back(C(i)); | 
|  | } | 
|  |  | 
|  | // Reserve room again for 2*kItemsPerBlock, but reserve should automatically take account of the | 
|  | // (kItemsPerBlock-N) that are still available in the active block | 
|  | list.reserve(2 * kItemsPerBlock); | 
|  | int extraReservedCount = kItemsPerBlock + N; | 
|  | // Because SkTBlockList normally allocates blocks in fixed sizes, and extraReservedCount > | 
|  | // items-per-block, it will always use that size and not that of the growth policy. | 
|  | REPORTER_ASSERT(reporter, TBlockListTestAccess::ScratchBlockSize(list) >= | 
|  | extraReservedCount * sizeof(C)); | 
|  |  | 
|  | reservedSize = TBlockListTestAccess::TotalSize(list); | 
|  | for (int i = 0; i < 2 * kItemsPerBlock; ++i) { | 
|  | list.push_back(C(i)); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, reservedSize == TBlockListTestAccess::TotalSize(list)); | 
|  |  | 
|  | // If we reserve a count < items-per-block, it will use the fixed size from the growth policy. | 
|  | list.reserve(2); | 
|  | REPORTER_ASSERT(reporter, TBlockListTestAccess::ScratchBlockSize(list) >= | 
|  | kItemsPerBlock * sizeof(C)); | 
|  |  | 
|  | // Ensure the reservations didn't initialize any more D's than anticipated | 
|  | int expectedInstanceCount = 2 * (N + 2 * kItemsPerBlock); | 
|  | REPORTER_ASSERT(reporter, expectedInstanceCount == C::gInstCnt); | 
|  |  | 
|  | list.reset(); | 
|  | REPORTER_ASSERT(reporter, 0 == C::gInstCnt); | 
|  | } | 
|  |  | 
|  | DEF_TEST(SkTBlockList, reporter) { | 
|  | // Test combinations of allocators with and without stack storage and with different block sizes | 
|  | SkTBlockList<C> a1(1); | 
|  | run_allocator_test(&a1, reporter); | 
|  |  | 
|  | SkTBlockList<C> a2(2); | 
|  | run_allocator_test(&a2, reporter); | 
|  |  | 
|  | SkTBlockList<C> a5(5); | 
|  | run_allocator_test(&a5, reporter); | 
|  |  | 
|  | SkTBlockList<C, 1> sa1; | 
|  | run_allocator_test(&sa1, reporter); | 
|  |  | 
|  | SkTBlockList<C, 3> sa3; | 
|  | run_allocator_test(&sa3, reporter); | 
|  |  | 
|  | SkTBlockList<C, 4> sa4; | 
|  | run_allocator_test(&sa4, reporter); | 
|  |  | 
|  | run_reserve_test<1>(reporter); | 
|  | run_reserve_test<2>(reporter); | 
|  | run_reserve_test<3>(reporter); | 
|  | run_reserve_test<4>(reporter); | 
|  | run_reserve_test<5>(reporter); | 
|  |  | 
|  | run_concat_test<1, 1>(reporter, 10, 10); | 
|  | run_concat_test<5, 1>(reporter, 50, 10); | 
|  | run_concat_test<1, 5>(reporter, 10, 50); | 
|  | run_concat_test<5, 5>(reporter, 100, 100); | 
|  |  | 
|  | run_concat_trivial_test<1, 1>(reporter, 10, 10); | 
|  | run_concat_trivial_test<5, 1>(reporter, 50, 10); | 
|  | run_concat_trivial_test<1, 5>(reporter, 10, 50); | 
|  | run_concat_trivial_test<5, 5>(reporter, 100, 100); | 
|  | } |