| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "src/gpu/ganesh/geometry/GrStyledShape.h" |
| |
| #include "include/core/SkPaint.h" |
| #include "include/core/SkPathEffect.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkStrokeRec.h" |
| #include "include/private/SkIDChangeListener.h" |
| #include "include/private/base/SkAlign.h" |
| #include "include/private/base/SkDebug.h" |
| #include "include/private/base/SkMalloc.h" |
| #include "include/private/base/SkTo.h" |
| |
| #include <algorithm> |
| #include <cstring> |
| #include <utility> |
| |
| |
| GrStyledShape& GrStyledShape::operator=(const GrStyledShape& that) { |
| fShape = that.fShape; |
| fStyle = that.fStyle; |
| fGenID = that.fGenID; |
| fSimplified = that.fSimplified; |
| |
| fInheritedKey.reset(that.fInheritedKey.count()); |
| sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(), |
| sizeof(uint32_t) * fInheritedKey.count()); |
| if (that.fInheritedPathForListeners.isValid()) { |
| fInheritedPathForListeners.set(*that.fInheritedPathForListeners); |
| } else { |
| fInheritedPathForListeners.reset(); |
| } |
| return *this; |
| } |
| |
| static bool is_inverted(bool originalIsInverted, GrStyledShape::FillInversion inversion) { |
| switch (inversion) { |
| case GrStyledShape::FillInversion::kPreserve: |
| return originalIsInverted; |
| case GrStyledShape::FillInversion::kFlip: |
| return !originalIsInverted; |
| case GrStyledShape::FillInversion::kForceInverted: |
| return true; |
| case GrStyledShape::FillInversion::kForceNoninverted: |
| return false; |
| } |
| return false; |
| } |
| |
| GrStyledShape GrStyledShape::MakeFilled(const GrStyledShape& original, FillInversion inversion) { |
| bool newIsInverted = is_inverted(original.fShape.inverted(), inversion); |
| if (original.style().isSimpleFill() && newIsInverted == original.fShape.inverted()) { |
| // By returning the original rather than falling through we can preserve any inherited style |
| // key. Otherwise, we wipe it out below since the style change invalidates it. |
| return original; |
| } |
| GrStyledShape result; |
| SkASSERT(result.fStyle.isSimpleFill()); |
| if (original.fInheritedPathForListeners.isValid()) { |
| result.fInheritedPathForListeners.set(*original.fInheritedPathForListeners); |
| } |
| |
| result.fShape = original.fShape; |
| result.fGenID = original.fGenID; |
| result.fShape.setInverted(newIsInverted); |
| |
| if (!original.style().isSimpleFill()) { |
| // Going from a non-filled style to fill may allow additional simplifications (e.g. |
| // closing an open rect that wasn't closed in the original shape because it had |
| // stroke style). |
| result.simplify(); |
| // The above simplify() call only sets simplified to true if its geometry was changed, |
| // since it already sees its style as a simple fill. Since the original style was not a |
| // simple fill, MakeFilled always simplifies. |
| result.fSimplified = true; |
| } |
| |
| // Verify that lines/points were converted to empty by the style change |
| SkASSERT((!original.fShape.isLine() && !original.fShape.isPoint()) || result.fShape.isEmpty()); |
| |
| // We don't copy the inherited key since it can contain path effect information that we just |
| // stripped. |
| return result; |
| } |
| |
| SkRect GrStyledShape::styledBounds() const { |
| if (this->isEmpty() && !fStyle.hasNonDashPathEffect()) { |
| return SkRect::MakeEmpty(); |
| } |
| |
| SkRect bounds; |
| fStyle.adjustBounds(&bounds, this->bounds()); |
| return bounds; |
| } |
| |
| // If the path is small enough to be keyed from its data this returns key length, otherwise -1. |
| static int path_key_from_data_size(const SkPath& path) { |
| const int verbCnt = path.countVerbs(); |
| if (verbCnt > GrStyledShape::kMaxKeyFromDataVerbCnt) { |
| return -1; |
| } |
| const int pointCnt = path.countPoints(); |
| const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path); |
| |
| static_assert(sizeof(SkPoint) == 2 * sizeof(uint32_t)); |
| static_assert(sizeof(SkScalar) == sizeof(uint32_t)); |
| // 1 is for the verb count. Each verb is a byte but we'll pad the verb data out to |
| // a uint32_t length. |
| return 1 + (SkAlign4(verbCnt) >> 2) + 2 * pointCnt + conicWeightCnt; |
| } |
| |
| // Writes the path data key into the passed pointer. |
| static void write_path_key_from_data(const SkPath& path, uint32_t* origKey) { |
| uint32_t* key = origKey; |
| // The check below should take care of negative values casted positive. |
| const int verbCnt = path.countVerbs(); |
| const int pointCnt = path.countPoints(); |
| const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path); |
| SkASSERT(verbCnt <= GrStyledShape::kMaxKeyFromDataVerbCnt); |
| SkASSERT(pointCnt && verbCnt); |
| *key++ = verbCnt; |
| memcpy(key, SkPathPriv::VerbData(path), verbCnt * sizeof(uint8_t)); |
| int verbKeySize = SkAlign4(verbCnt); |
| // pad out to uint32_t alignment using value that will stand out when debugging. |
| uint8_t* pad = reinterpret_cast<uint8_t*>(key)+ verbCnt; |
| memset(pad, 0xDE, verbKeySize - verbCnt); |
| key += verbKeySize >> 2; |
| |
| memcpy(key, SkPathPriv::PointData(path), sizeof(SkPoint) * pointCnt); |
| static_assert(sizeof(SkPoint) == 2 * sizeof(uint32_t)); |
| key += 2 * pointCnt; |
| sk_careful_memcpy(key, SkPathPriv::ConicWeightData(path), sizeof(SkScalar) * conicWeightCnt); |
| static_assert(sizeof(SkScalar) == sizeof(uint32_t)); |
| SkDEBUGCODE(key += conicWeightCnt); |
| SkASSERT(key - origKey == path_key_from_data_size(path)); |
| } |
| |
| int GrStyledShape::unstyledKeySize() const { |
| if (fInheritedKey.count()) { |
| return fInheritedKey.count(); |
| } |
| |
| int count = 1; // Every key has the state flags from the GrShape |
| switch(fShape.type()) { |
| case GrShape::Type::kPoint: |
| static_assert(0 == sizeof(SkPoint) % sizeof(uint32_t)); |
| count += sizeof(SkPoint) / sizeof(uint32_t); |
| break; |
| case GrShape::Type::kRect: |
| static_assert(0 == sizeof(SkRect) % sizeof(uint32_t)); |
| count += sizeof(SkRect) / sizeof(uint32_t); |
| break; |
| case GrShape::Type::kRRect: |
| static_assert(0 == SkRRect::kSizeInMemory % sizeof(uint32_t)); |
| count += SkRRect::kSizeInMemory / sizeof(uint32_t); |
| break; |
| case GrShape::Type::kArc: |
| static_assert(0 == sizeof(GrArc) % sizeof(uint32_t)); |
| count += sizeof(GrArc) / sizeof(uint32_t); |
| break; |
| case GrShape::Type::kLine: |
| static_assert(0 == sizeof(GrLineSegment) % sizeof(uint32_t)); |
| count += sizeof(GrLineSegment) / sizeof(uint32_t); |
| break; |
| case GrShape::Type::kPath: { |
| if (0 == fGenID) { |
| return -1; // volatile, so won't be keyed |
| } |
| int dataKeySize = path_key_from_data_size(fShape.path()); |
| if (dataKeySize >= 0) { |
| count += dataKeySize; |
| } else { |
| count++; // Just adds the gen ID. |
| } |
| break; } |
| default: |
| // else it's empty, which just needs the state flags for its key |
| SkASSERT(fShape.isEmpty()); |
| } |
| return count; |
| } |
| |
| void GrStyledShape::writeUnstyledKey(uint32_t* key) const { |
| SkASSERT(this->unstyledKeySize()); |
| SkDEBUGCODE(uint32_t* origKey = key;) |
| if (fInheritedKey.count()) { |
| memcpy(key, fInheritedKey.get(), sizeof(uint32_t) * fInheritedKey.count()); |
| SkDEBUGCODE(key += fInheritedKey.count();) |
| } else { |
| // Dir and start are only used for rect and rrect shapes, so are not included in other |
| // shape type keys. Make sure that they are the defaults for other shapes so it doesn't |
| // matter that we universally include them in the flag key value. |
| SkASSERT((fShape.isRect() || fShape.isRRect()) || |
| (fShape.dir() == GrShape::kDefaultDir && |
| fShape.startIndex() == GrShape::kDefaultStart)); |
| |
| // Every key starts with the state from the GrShape (this includes path fill type, |
| // and any tracked winding, start, inversion, as well as the class of geometry). |
| *key++ = fShape.stateKey(); |
| |
| switch(fShape.type()) { |
| case GrShape::Type::kPath: { |
| SkASSERT(fGenID != 0); |
| // Ensure that the path's inversion matches our state so that the path's key suffices. |
| SkASSERT(fShape.inverted() == fShape.path().isInverseFillType()); |
| |
| int dataKeySize = path_key_from_data_size(fShape.path()); |
| if (dataKeySize >= 0) { |
| write_path_key_from_data(fShape.path(), key); |
| return; |
| } else { |
| *key++ = fGenID; |
| } |
| break; } |
| case GrShape::Type::kPoint: |
| memcpy(key, &fShape.point(), sizeof(SkPoint)); |
| key += sizeof(SkPoint) / sizeof(uint32_t); |
| break; |
| case GrShape::Type::kRect: |
| memcpy(key, &fShape.rect(), sizeof(SkRect)); |
| key += sizeof(SkRect) / sizeof(uint32_t); |
| break; |
| case GrShape::Type::kRRect: |
| fShape.rrect().writeToMemory(key); |
| key += SkRRect::kSizeInMemory / sizeof(uint32_t); |
| break; |
| case GrShape::Type::kArc: |
| // Write dense floats first |
| memcpy(key, &fShape.arc(), sizeof(SkRect) + 2 * sizeof(float)); |
| key += (sizeof(GrArc) / sizeof(uint32_t) - 1); |
| // Then write the final bool as an int, to make sure upper bits are set |
| *key++ = fShape.arc().fUseCenter ? 1 : 0; |
| break; |
| case GrShape::Type::kLine: |
| memcpy(key, &fShape.line(), sizeof(GrLineSegment)); |
| key += sizeof(GrLineSegment) / sizeof(uint32_t); |
| break; |
| default: |
| // Nothing other than the flag state is needed in the key for an empty shape |
| SkASSERT(fShape.isEmpty()); |
| } |
| } |
| SkASSERT(key - origKey == this->unstyledKeySize()); |
| } |
| |
| void GrStyledShape::setInheritedKey(const GrStyledShape &parent, GrStyle::Apply apply, |
| SkScalar scale) { |
| SkASSERT(!fInheritedKey.count()); |
| // If the output shape turns out to be simple, then we will just use its geometric key |
| if (fShape.isPath()) { |
| // We want ApplyFullStyle(ApplyPathEffect(shape)) to have the same key as |
| // ApplyFullStyle(shape). |
| // The full key is structured as (geo,path_effect,stroke). |
| // If we do ApplyPathEffect we get geo,path_effect as the inherited key. If we then |
| // do ApplyFullStyle we'll memcpy geo,path_effect into the new inherited key |
| // and then append the style key (which should now be stroke only) at the end. |
| int parentCnt = parent.fInheritedKey.count(); |
| bool useParentGeoKey = !parentCnt; |
| if (useParentGeoKey) { |
| parentCnt = parent.unstyledKeySize(); |
| if (parentCnt < 0) { |
| // The parent's geometry has no key so we will have no key. |
| fGenID = 0; |
| return; |
| } |
| } |
| uint32_t styleKeyFlags = 0; |
| if (parent.knownToBeClosed()) { |
| styleKeyFlags |= GrStyle::kClosed_KeyFlag; |
| } |
| if (parent.asLine(nullptr, nullptr)) { |
| styleKeyFlags |= GrStyle::kNoJoins_KeyFlag; |
| } |
| int styleCnt = GrStyle::KeySize(parent.fStyle, apply, styleKeyFlags); |
| if (styleCnt < 0) { |
| // The style doesn't allow a key, set the path gen ID to 0 so that we fail when |
| // we try to get a key for the shape. |
| fGenID = 0; |
| return; |
| } |
| fInheritedKey.reset(parentCnt + styleCnt); |
| if (useParentGeoKey) { |
| // This will be the geo key. |
| parent.writeUnstyledKey(fInheritedKey.get()); |
| } else { |
| // This should be (geo,path_effect). |
| memcpy(fInheritedKey.get(), parent.fInheritedKey.get(), |
| parentCnt * sizeof(uint32_t)); |
| } |
| // Now turn (geo,path_effect) or (geo) into (geo,path_effect,stroke) |
| GrStyle::WriteKey(fInheritedKey.get() + parentCnt, parent.fStyle, apply, scale, |
| styleKeyFlags); |
| } |
| } |
| |
| const SkPath* GrStyledShape::originalPathForListeners() const { |
| if (fInheritedPathForListeners.isValid()) { |
| return fInheritedPathForListeners.get(); |
| } else if (fShape.isPath() && !fShape.path().isVolatile()) { |
| return &fShape.path(); |
| } |
| return nullptr; |
| } |
| |
| void GrStyledShape::addGenIDChangeListener(sk_sp<SkIDChangeListener> listener) const { |
| if (const auto* lp = this->originalPathForListeners()) { |
| SkPathPriv::AddGenIDChangeListener(*lp, std::move(listener)); |
| } |
| } |
| |
| GrStyledShape GrStyledShape::MakeArc(const SkRect& oval, SkScalar startAngleDegrees, |
| SkScalar sweepAngleDegrees, bool useCenter, |
| const GrStyle& style, DoSimplify doSimplify) { |
| GrStyledShape result; |
| result.fShape.setArc({oval.makeSorted(), startAngleDegrees, sweepAngleDegrees, useCenter}); |
| result.fStyle = style; |
| if (doSimplify == DoSimplify::kYes) { |
| result.simplify(); |
| } |
| return result; |
| } |
| |
| GrStyledShape::GrStyledShape(const GrStyledShape& that) |
| : fShape(that.fShape) |
| , fStyle(that.fStyle) |
| , fGenID(that.fGenID) |
| , fSimplified(that.fSimplified) { |
| fInheritedKey.reset(that.fInheritedKey.count()); |
| sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(), |
| sizeof(uint32_t) * fInheritedKey.count()); |
| if (that.fInheritedPathForListeners.isValid()) { |
| fInheritedPathForListeners.set(*that.fInheritedPathForListeners); |
| } |
| } |
| |
| GrStyledShape::GrStyledShape(const GrStyledShape& parent, GrStyle::Apply apply, SkScalar scale) { |
| // TODO: Add some quantization of scale for better cache performance here or leave that up |
| // to caller? |
| // TODO: For certain shapes and stroke params we could ignore the scale. (e.g. miter or bevel |
| // stroke of a rect). |
| if (!parent.style().applies() || |
| (GrStyle::Apply::kPathEffectOnly == apply && !parent.style().pathEffect())) { |
| *this = parent; |
| return; |
| } |
| |
| SkPathEffect* pe = parent.fStyle.pathEffect(); |
| SkTLazy<SkPath> tmpPath; |
| const GrStyledShape* parentForKey = &parent; |
| SkTLazy<GrStyledShape> tmpParent; |
| |
| // Start out as an empty path that is filled in by the applied style |
| fShape.setPath(SkPath()); |
| |
| if (pe) { |
| const SkPath* srcForPathEffect; |
| if (parent.fShape.isPath()) { |
| srcForPathEffect = &parent.fShape.path(); |
| } else { |
| srcForPathEffect = tmpPath.init(); |
| parent.asPath(tmpPath.get()); |
| } |
| // Should we consider bounds? Would have to include in key, but it'd be nice to know |
| // if the bounds actually modified anything before including in key. |
| SkStrokeRec strokeRec = parent.fStyle.strokeRec(); |
| if (!parent.fStyle.applyPathEffectToPath(&fShape.path(), &strokeRec, *srcForPathEffect, |
| scale)) { |
| tmpParent.init(*srcForPathEffect, GrStyle(strokeRec, nullptr)); |
| *this = tmpParent->applyStyle(apply, scale); |
| return; |
| } |
| // A path effect has access to change the res scale but we aren't expecting it to and it |
| // would mess up our key computation. |
| SkASSERT(scale == strokeRec.getResScale()); |
| if (GrStyle::Apply::kPathEffectAndStrokeRec == apply && strokeRec.needToApply()) { |
| // The intermediate shape may not be a general path. If we we're just applying |
| // the path effect then attemptToReduceFromPath would catch it. This means that |
| // when we subsequently applied the remaining strokeRec we would have a non-path |
| // parent shape that would be used to determine the the stroked path's key. |
| // We detect that case here and change parentForKey to a temporary that represents |
| // the simpler shape so that applying both path effect and the strokerec all at |
| // once produces the same key. |
| tmpParent.init(fShape.path(), GrStyle(strokeRec, nullptr)); |
| tmpParent->setInheritedKey(parent, GrStyle::Apply::kPathEffectOnly, scale); |
| if (!tmpPath.isValid()) { |
| tmpPath.init(); |
| } |
| tmpParent->asPath(tmpPath.get()); |
| SkStrokeRec::InitStyle fillOrHairline; |
| // The parent shape may have simplified away the strokeRec, check for that here. |
| if (tmpParent->style().applies()) { |
| SkAssertResult(tmpParent.get()->style().applyToPath(&fShape.path(), &fillOrHairline, |
| *tmpPath.get(), scale)); |
| } else if (tmpParent->style().isSimpleFill()) { |
| fillOrHairline = SkStrokeRec::kFill_InitStyle; |
| } else { |
| SkASSERT(tmpParent.get()->style().isSimpleHairline()); |
| fillOrHairline = SkStrokeRec::kHairline_InitStyle; |
| } |
| fStyle.resetToInitStyle(fillOrHairline); |
| parentForKey = tmpParent.get(); |
| } else { |
| fStyle = GrStyle(strokeRec, nullptr); |
| } |
| } else { |
| const SkPath* srcForParentStyle; |
| if (parent.fShape.isPath()) { |
| srcForParentStyle = &parent.fShape.path(); |
| } else { |
| srcForParentStyle = tmpPath.init(); |
| parent.asPath(tmpPath.get()); |
| } |
| SkStrokeRec::InitStyle fillOrHairline; |
| SkASSERT(parent.fStyle.applies()); |
| SkASSERT(!parent.fStyle.pathEffect()); |
| SkAssertResult(parent.fStyle.applyToPath(&fShape.path(), &fillOrHairline, |
| *srcForParentStyle, scale)); |
| fStyle.resetToInitStyle(fillOrHairline); |
| } |
| |
| if (parent.fInheritedPathForListeners.isValid()) { |
| fInheritedPathForListeners.set(*parent.fInheritedPathForListeners); |
| } else if (parent.fShape.isPath() && !parent.fShape.path().isVolatile()) { |
| fInheritedPathForListeners.set(parent.fShape.path()); |
| } |
| this->simplify(); |
| this->setInheritedKey(*parentForKey, apply, scale); |
| } |
| |
| bool GrStyledShape::asRRect(SkRRect* rrect, SkPathDirection* dir, unsigned* start, |
| bool* inverted) const { |
| if (!fShape.isRRect() && !fShape.isRect()) { |
| return false; |
| } |
| |
| // Validity check here, if we don't have a path effect on the style, we should have passed |
| // appropriate flags to GrShape::simplify() to have reset these parameters. |
| SkASSERT(fStyle.hasPathEffect() || (fShape.dir() == GrShape::kDefaultDir && |
| fShape.startIndex() == GrShape::kDefaultStart)); |
| |
| // If the shape is a regular rect, map to round rect winding parameters, including accounting |
| // for the automatic sorting of edges that SkRRect::MakeRect() performs. |
| if (fShape.isRect()) { |
| if (rrect) { |
| *rrect = SkRRect::MakeRect(fShape.rect()); |
| } |
| // Don't bother mapping these if we don't have a path effect, however. |
| if (!fStyle.hasPathEffect()) { |
| if (dir) { |
| *dir = GrShape::kDefaultDir; |
| } |
| if (start) { |
| *start = GrShape::kDefaultStart; |
| } |
| } else { |
| // In SkPath a rect starts at index 0 by default. This is the top left corner. However, |
| // we store rects as rrects. RRects don't preserve the invertedness, but rather sort the |
| // rect edges. Thus, we may need to modify the rrect's start index and direction. |
| SkPathDirection rectDir = fShape.dir(); |
| unsigned rectStart = fShape.startIndex(); |
| |
| if (fShape.rect().fLeft > fShape.rect().fRight) { |
| // Toggle direction, and modify index by mapping through the array |
| static const unsigned kMapping[] = {1, 0, 3, 2}; |
| rectDir = rectDir == SkPathDirection::kCCW ? SkPathDirection::kCW |
| : SkPathDirection::kCCW; |
| rectStart = kMapping[rectStart]; |
| } |
| if (fShape.rect().fTop > fShape.rect().fBottom) { |
| // Toggle direction and map index by 3 - start |
| // NOTE: if we earlier flipped for X as well, this results in no net direction |
| // change and effectively flipping the start index to the diagonal corners of the |
| // rect (matching what we'd expect for a rect with both X and Y flipped). |
| rectDir = rectDir == SkPathDirection::kCCW ? SkPathDirection::kCW |
| : SkPathDirection::kCCW; |
| rectStart = 3 - rectStart; |
| } |
| |
| if (dir) { |
| *dir = rectDir; |
| } |
| if (start) { |
| // Convert to round rect indexing |
| *start = 2 * rectStart; |
| } |
| } |
| } else { |
| // Straight forward export |
| if (rrect) { |
| *rrect = fShape.rrect(); |
| } |
| if (dir) { |
| *dir = fShape.dir(); |
| } |
| if (start) { |
| *start = fShape.startIndex(); |
| // Canonicalize the index if the rrect is an oval, which GrShape doesn't treat special |
| // but we do for dashing placement |
| if (fShape.rrect().isOval()) { |
| *start &= 0b110; |
| } |
| } |
| } |
| |
| if (inverted) { |
| *inverted = fShape.inverted(); |
| } |
| |
| return true; |
| } |
| |
| bool GrStyledShape::asLine(SkPoint pts[2], bool* inverted) const { |
| if (!fShape.isLine()) { |
| return false; |
| } |
| |
| if (pts) { |
| pts[0] = fShape.line().fP1; |
| pts[1] = fShape.line().fP2; |
| } |
| if (inverted) { |
| *inverted = fShape.inverted(); |
| } |
| return true; |
| } |
| |
| bool GrStyledShape::asNestedRects(SkRect rects[2]) const { |
| if (!fShape.isPath()) { |
| return false; |
| } |
| |
| // TODO: it would be better two store DRRects natively in the shape rather than converting |
| // them to a path and then reextracting the nested rects |
| if (fShape.path().isInverseFillType()) { |
| return false; |
| } |
| |
| SkPathDirection dirs[2]; |
| if (!SkPathPriv::IsNestedFillRects(fShape.path(), rects, dirs)) { |
| return false; |
| } |
| |
| if (SkPathFillType::kWinding == fShape.path().getFillType() && dirs[0] == dirs[1]) { |
| // The two rects need to be wound opposite to each other |
| return false; |
| } |
| |
| // Right now, nested rects where the margin is not the same width |
| // all around do not render correctly |
| const SkScalar* outer = rects[0].asScalars(); |
| const SkScalar* inner = rects[1].asScalars(); |
| |
| bool allEq = true; |
| |
| SkScalar margin = SkScalarAbs(outer[0] - inner[0]); |
| bool allGoE1 = margin >= SK_Scalar1; |
| |
| for (int i = 1; i < 4; ++i) { |
| SkScalar temp = SkScalarAbs(outer[i] - inner[i]); |
| if (temp < SK_Scalar1) { |
| allGoE1 = false; |
| } |
| if (!SkScalarNearlyEqual(margin, temp)) { |
| allEq = false; |
| } |
| } |
| |
| return allEq || allGoE1; |
| } |
| |
| class AutoRestoreInverseness { |
| public: |
| AutoRestoreInverseness(GrShape* shape, const GrStyle& style) |
| // Dashing ignores inverseness skbug.com/5421. |
| : fShape(shape), fInverted(!style.isDashed() && fShape->inverted()) {} |
| |
| ~AutoRestoreInverseness() { |
| // Restore invertedness after any modifications were made to the shape type |
| fShape->setInverted(fInverted); |
| SkASSERT(!fShape->isPath() || fInverted == fShape->path().isInverseFillType()); |
| } |
| |
| private: |
| GrShape* fShape; |
| bool fInverted; |
| }; |
| |
| void GrStyledShape::simplify() { |
| AutoRestoreInverseness ari(&fShape, fStyle); |
| |
| unsigned simplifyFlags = 0; |
| if (fStyle.isSimpleFill()) { |
| simplifyFlags = GrShape::kAll_Flags; |
| } else if (!fStyle.hasPathEffect()) { |
| // Everything but arcs with caps that might extend beyond the oval edge can ignore winding |
| if (!fShape.isArc() || fStyle.strokeRec().getCap() == SkPaint::kButt_Cap) { |
| simplifyFlags |= GrShape::kIgnoreWinding_Flag; |
| } |
| simplifyFlags |= GrShape::kMakeCanonical_Flag; |
| } // else if there's a path effect, every destructive simplification is disabledd |
| |
| // Remember if the original shape was closed; in the event we simplify to a point or line |
| // because of degenerate geometry, we need to update joins and caps. |
| GrShape::Type oldType = fShape.type(); |
| fClosed = fShape.simplify(simplifyFlags); |
| fSimplified = oldType != fShape.type(); |
| |
| if (fShape.isPath()) { |
| // The shape remains a path, so configure the gen ID and canonicalize fill type if possible |
| if (fInheritedKey.count() || fShape.path().isVolatile()) { |
| fGenID = 0; |
| } else { |
| fGenID = fShape.path().getGenerationID(); |
| } |
| if (!fStyle.hasNonDashPathEffect() && |
| (fStyle.strokeRec().getStyle() == SkStrokeRec::kStroke_Style || |
| fStyle.strokeRec().getStyle() == SkStrokeRec::kHairline_Style || |
| fShape.path().isConvex())) { |
| // Stroke styles don't differentiate between winding and even/odd. There is no |
| // distinction between even/odd and non-zero winding count for convex paths. |
| // Moreover, dashing ignores inverseness (skbug.com/5421) |
| fShape.path().setFillType(GrShape::kDefaultFillType); |
| } |
| } else { |
| fInheritedKey.reset(0); |
| // Whenever we simplify to a non-path, break the chain so we no longer refer to the |
| // original path. This prevents attaching genID listeners to temporary paths created when |
| // drawing simple shapes. |
| fInheritedPathForListeners.reset(); |
| // Further simplifications to the shape based on the style |
| this->simplifyStroke(); |
| } |
| } |
| |
| void GrStyledShape::simplifyStroke() { |
| AutoRestoreInverseness ari(&fShape, fStyle); |
| |
| // For stroke+filled rects, a mitered shape becomes a larger rect and a rounded shape |
| // becomes a round rect. |
| if (!fStyle.hasPathEffect() && fShape.isRect() && |
| fStyle.strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style) { |
| if (fStyle.strokeRec().getJoin() == SkPaint::kBevel_Join || |
| (fStyle.strokeRec().getJoin() == SkPaint::kMiter_Join && |
| fStyle.strokeRec().getMiter() < SK_ScalarSqrt2)) { |
| // Bevel-stroked rect needs path rendering |
| return; |
| } |
| |
| SkScalar r = fStyle.strokeRec().getWidth() / 2; |
| fShape.rect().outset(r, r); |
| if (fStyle.strokeRec().getJoin() == SkPaint::kRound_Join) { |
| // There's no dashing to worry about if we got here, so it's okay that this resets |
| // winding parameters |
| fShape.setRRect(SkRRect::MakeRectXY(fShape.rect(), r, r)); |
| } |
| fStyle = GrStyle::SimpleFill(); |
| fSimplified = true; |
| return; |
| } |
| |
| // Otherwise, if we're a point or a line, we might be able to explicitly apply some of the |
| // stroking (and even some of the dashing). Any other shape+style is too complicated to reduce. |
| if ((!fShape.isPoint() && !fShape.isLine()) || fStyle.hasNonDashPathEffect() || |
| fStyle.strokeRec().isHairlineStyle()) { |
| return; |
| } |
| |
| // Tracks style simplifications, even if the geometry can't be further simplified. |
| bool styleSimplified = false; |
| if (fStyle.isDashed()) { |
| // For dashing a point, if the first interval is on, we can drop the dash and just draw |
| // the caps. For dashing a line, if every off interval is 0 length, its a stroke. |
| bool dropDash = false; |
| if (fShape.isPoint()) { |
| dropDash = fStyle.dashIntervalCnt() > 0 && |
| SkToBool(fStyle.dashIntervals()[0]); |
| } else { |
| dropDash = true; |
| for (int i = 1; i < fStyle.dashIntervalCnt(); i += 2) { |
| if (SkToBool(fStyle.dashIntervals()[i])) { |
| // An off interval has non-zero length so this won't convert to a simple line |
| dropDash = false; |
| break; |
| } |
| } |
| } |
| |
| if (!dropDash) { |
| return; |
| } |
| // Fall through to modifying the shape to respect the new stroke geometry |
| fStyle = GrStyle(fStyle.strokeRec(), nullptr); |
| // Since the reduced the line or point after dashing is dependent on the caps of the dashes, |
| // we reset to be unclosed so we don't override the style based on joins later. |
| fClosed = false; |
| styleSimplified = true; |
| } |
| |
| // At this point, we're a line or point with no path effects. Any fill portion of the style |
| // is empty, so a fill-only style can be empty, and a stroke+fill becomes a stroke. |
| if (fStyle.isSimpleFill()) { |
| fShape.reset(); |
| fSimplified = true; |
| return; |
| } else if (fStyle.strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style) { |
| // Stroke only |
| SkStrokeRec rec = fStyle.strokeRec(); |
| rec.setStrokeStyle(fStyle.strokeRec().getWidth(), false); |
| fStyle = GrStyle(rec, nullptr); |
| styleSimplified = true; |
| } |
| |
| // A point or line that was formed by a degenerate closed shape needs its style updated to |
| // reflect the fact that it doesn't actually produce caps. |
| if (fClosed) { |
| SkPaint::Cap cap; |
| if (fShape.isLine() && fStyle.strokeRec().getJoin() == SkPaint::kRound_Join) { |
| // As a closed shape, the line moves from a to b and back to a, producing a 180 degree |
| // turn. With round joins, this would make a semi-circle at each end, which is visually |
| // identical to a round cap on the reduced line geometry. |
| cap = SkPaint::kRound_Cap; |
| } else { |
| // If this were a closed line, the 180 degree turn either is a miter join that exceeds |
| // the miter limit and becomes a bevel, or a bevel join. In either case, the bevel shape |
| // of a 180 degreen corner is equivalent to a butt cap. |
| // - to match the SVG spec, the 0-length sides of an empty rectangle are skipped, so |
| // it fits this closed line description (it is not two 90 degree turns that could |
| // produce miter geometry). |
| cap = SkPaint::kButt_Cap; |
| } |
| |
| if (cap != fStyle.strokeRec().getCap() || |
| SkPaint::kDefault_Join != fStyle.strokeRec().getJoin()) { |
| SkStrokeRec rec = fStyle.strokeRec(); |
| rec.setStrokeParams(cap, SkPaint::kDefault_Join, fStyle.strokeRec().getMiter()); |
| fStyle = GrStyle(rec, nullptr); |
| styleSimplified = true; |
| } |
| } |
| |
| if (fShape.isPoint()) { |
| // The drawn geometry is entirely based on the cap style and stroke width. A butt cap point |
| // doesn't draw anything, a round cap is an oval and a square cap is a square. |
| if (fStyle.strokeRec().getCap() == SkPaint::kButt_Cap) { |
| fShape.reset(); |
| } else { |
| SkScalar w = fStyle.strokeRec().getWidth() / 2.f; |
| SkRect r = {fShape.point().fX, fShape.point().fY, fShape.point().fX, fShape.point().fY}; |
| r.outset(w, w); |
| |
| if (fStyle.strokeRec().getCap() == SkPaint::kRound_Cap) { |
| fShape.setRRect(SkRRect::MakeOval(r)); |
| } else { |
| fShape.setRect(r); |
| } |
| } |
| } else { |
| // Stroked lines reduce to rectangles or round rects when they are axis-aligned. If we |
| // allowed rotation angle, this would work for any lines. |
| SkRect rect; |
| SkVector outset; |
| if (fShape.line().fP1.fY == fShape.line().fP2.fY) { |
| rect.fLeft = std::min(fShape.line().fP1.fX, fShape.line().fP2.fX); |
| rect.fRight = std::max(fShape.line().fP1.fX, fShape.line().fP2.fX); |
| rect.fTop = rect.fBottom = fShape.line().fP1.fY; |
| outset.fY = fStyle.strokeRec().getWidth() / 2.f; |
| outset.fX = SkPaint::kButt_Cap == fStyle.strokeRec().getCap() ? 0.f : outset.fY; |
| } else if (fShape.line().fP1.fX == fShape.line().fP2.fX) { |
| rect.fTop = std::min(fShape.line().fP1.fY, fShape.line().fP2.fY); |
| rect.fBottom = std::max(fShape.line().fP1.fY, fShape.line().fP2.fY); |
| rect.fLeft = rect.fRight = fShape.line().fP1.fX; |
| outset.fX = fStyle.strokeRec().getWidth() / 2.f; |
| outset.fY = SkPaint::kButt_Cap == fStyle.strokeRec().getCap() ? 0.f : outset.fX; |
| } else { |
| // Geometrically can't apply the style and turn into a fill, but might still be simpler |
| // than before based solely on changes to fStyle. |
| fSimplified |= styleSimplified; |
| return; |
| } |
| rect.outset(outset.fX, outset.fY); |
| if (rect.isEmpty()) { |
| fShape.reset(); |
| } else if (fStyle.strokeRec().getCap() == SkPaint::kRound_Cap) { |
| SkASSERT(outset.fX == outset.fY); |
| fShape.setRRect(SkRRect::MakeRectXY(rect, outset.fX, outset.fY)); |
| } else { |
| fShape.setRect(rect); |
| } |
| } |
| // If we made it here, the stroke was fully applied to the new shape so we can become a fill. |
| fStyle = GrStyle::SimpleFill(); |
| fSimplified = true; |
| } |