blob: 0a2f07bf6cb382a64f7741fe5f64ab0707f47967 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkBitmap.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkClipOp.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorType.h"
#include "include/core/SkDocument.h"
#include "include/core/SkFlattenable.h"
#include "include/core/SkImageFilter.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkPictureRecorder.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkRegion.h"
#include "include/core/SkSamplingOptions.h"
#include "include/core/SkScalar.h"
#include "include/core/SkShader.h"
#include "include/core/SkSize.h"
#include "include/core/SkStream.h"
#include "include/core/SkSurface.h"
#include "include/core/SkTypes.h"
#include "include/core/SkVertices.h"
#include "include/effects/SkImageFilters.h"
#include "include/private/base/SkMalloc.h"
#include "include/private/base/SkTemplates.h"
#include "include/utils/SkNWayCanvas.h"
#include "include/utils/SkPaintFilterCanvas.h"
#include "src/core/SkBigPicture.h"
#include "src/core/SkImageFilter_Base.h"
#include "src/core/SkRecord.h"
#include "src/core/SkRecords.h"
#include "src/core/SkSpecialImage.h"
#include "src/utils/SkCanvasStack.h"
#include "tests/Test.h"
#include <cstddef>
#include <initializer_list>
#include <memory>
#include <utility>
using namespace skia_private;
class SkPicture;
class SkReadBuffer;
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
#include "include/core/SkColorSpace.h"
#include "include/private/SkColorData.h"
#endif
#ifdef SK_SUPPORT_PDF
#include "include/docs/SkPDFDocument.h"
#endif
struct ClipRectVisitor {
skiatest::Reporter* r;
template <typename T>
SkRect operator()(const T&) {
REPORTER_ASSERT(r, false, "unexpected record");
return {1,1,0,0};
}
SkRect operator()(const SkRecords::ClipRect& op) {
return op.rect;
}
};
DEF_TEST(canvas_unsorted_clip, r) {
// Test that sorted and unsorted clip rects are forwarded
// to picture subclasses and/or devices sorted.
//
// We can't just test this with an SkCanvas on stack and
// SkCanvas::getLocalClipBounds(), as that only tests the raster device,
// which sorts these rects itself.
for (SkRect clip : {SkRect{0,0,5,5}, SkRect{5,5,0,0}}) {
SkPictureRecorder rec;
rec.beginRecording({0,0,10,10})
->clipRect(clip);
sk_sp<SkPicture> pic = rec.finishRecordingAsPicture();
auto bp = (const SkBigPicture*)pic.get();
const SkRecord* record = bp->record();
REPORTER_ASSERT(r, record->count() == 1);
REPORTER_ASSERT(r, record->visit(0, ClipRectVisitor{r})
.isSorted());
}
}
DEF_TEST(canvas_clipbounds, reporter) {
SkCanvas canvas(10, 10);
SkIRect irect, irect2;
SkRect rect, rect2;
irect = canvas.getDeviceClipBounds();
REPORTER_ASSERT(reporter, irect == SkIRect::MakeWH(10, 10));
REPORTER_ASSERT(reporter, canvas.getDeviceClipBounds(&irect2));
REPORTER_ASSERT(reporter, irect == irect2);
// local bounds are always too big today -- can we trim them?
rect = canvas.getLocalClipBounds();
REPORTER_ASSERT(reporter, rect.contains(SkRect::MakeWH(10, 10)));
REPORTER_ASSERT(reporter, canvas.getLocalClipBounds(&rect2));
REPORTER_ASSERT(reporter, rect == rect2);
canvas.clipRect(SkRect::MakeEmpty());
irect = canvas.getDeviceClipBounds();
REPORTER_ASSERT(reporter, irect == SkIRect::MakeEmpty());
REPORTER_ASSERT(reporter, !canvas.getDeviceClipBounds(&irect2));
REPORTER_ASSERT(reporter, irect == irect2);
rect = canvas.getLocalClipBounds();
REPORTER_ASSERT(reporter, rect == SkRect::MakeEmpty());
REPORTER_ASSERT(reporter, !canvas.getLocalClipBounds(&rect2));
REPORTER_ASSERT(reporter, rect == rect2);
// Test for wacky sizes that we (historically) have guarded against
{
SkCanvas c(-10, -20);
REPORTER_ASSERT(reporter, c.getBaseLayerSize() == SkISize::MakeEmpty());
SkPictureRecorder().beginRecording({ 5, 5, 4, 4 });
}
}
#ifdef SK_SUPPORT_PDF
// Will call proc with multiple styles of canvas (recording, raster, pdf)
template <typename F> static void multi_canvas_driver(int w, int h, F proc) {
proc(SkPictureRecorder().beginRecording(SkRect::MakeIWH(w, h)));
SkNullWStream stream;
if (auto doc = SkPDF::MakeDocument(&stream)) {
proc(doc->beginPage(SkIntToScalar(w), SkIntToScalar(h)));
}
proc(SkSurface::MakeRasterN32Premul(w, h, nullptr)->getCanvas());
}
const SkIRect gBaseRestrictedR = { 0, 0, 10, 10 };
static void test_restriction(skiatest::Reporter* reporter, SkCanvas* canvas) {
REPORTER_ASSERT(reporter, canvas->getDeviceClipBounds() == gBaseRestrictedR);
const SkIRect restrictionR = { 2, 2, 8, 8 };
canvas->androidFramework_setDeviceClipRestriction(restrictionR);
REPORTER_ASSERT(reporter, canvas->getDeviceClipBounds() == restrictionR);
const SkIRect clipR = { 4, 4, 6, 6 };
canvas->clipRect(SkRect::Make(clipR), SkClipOp::kIntersect);
REPORTER_ASSERT(reporter, canvas->getDeviceClipBounds() == clipR);
}
/**
* Clip restriction logic exists in the canvas itself, and in various kinds of devices.
*
* This test explicitly tries to exercise that variety:
* - picture : empty device but exercises canvas itself
* - pdf : uses SkClipStack in its device (as does SVG and GPU)
* - raster : uses SkRasterClip in its device
*/
DEF_TEST(canvas_clip_restriction, reporter) {
multi_canvas_driver(gBaseRestrictedR.width(), gBaseRestrictedR.height(),
[reporter](SkCanvas* canvas) { test_restriction(reporter, canvas); });
}
DEF_TEST(canvas_empty_clip, reporter) {
multi_canvas_driver(50, 50, [reporter](SkCanvas* canvas) {
canvas->save();
canvas->clipRect({0, 0, 20, 40 });
REPORTER_ASSERT(reporter, !canvas->isClipEmpty());
canvas->clipRect({30, 0, 50, 40 });
REPORTER_ASSERT(reporter, canvas->isClipEmpty());
});
}
#endif // SK_SUPPORT_PDF
DEF_TEST(CanvasNewRasterTest, reporter) {
SkImageInfo info = SkImageInfo::MakeN32Premul(10, 10);
const size_t minRowBytes = info.minRowBytes();
const size_t size = info.computeByteSize(minRowBytes);
AutoTMalloc<SkPMColor> storage(size);
SkPMColor* baseAddr = storage.get();
sk_bzero(baseAddr, size);
std::unique_ptr<SkCanvas> canvas = SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes);
REPORTER_ASSERT(reporter, canvas);
SkPixmap pmap;
const SkPMColor* addr = canvas->peekPixels(&pmap) ? pmap.addr32() : nullptr;
REPORTER_ASSERT(reporter, addr);
REPORTER_ASSERT(reporter, info == pmap.info());
REPORTER_ASSERT(reporter, minRowBytes == pmap.rowBytes());
for (int y = 0; y < info.height(); ++y) {
for (int x = 0; x < info.width(); ++x) {
REPORTER_ASSERT(reporter, 0 == addr[x]);
}
addr = (const SkPMColor*)((const char*)addr + pmap.rowBytes());
}
// unaligned rowBytes
REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr,
minRowBytes + 1));
// now try a deliberately bad info
info = info.makeWH(-1, info.height());
REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes));
// too big
info = info.makeWH(1 << 30, 1 << 30);
REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes));
// not a valid pixel type
info = SkImageInfo::Make(10, 10, kUnknown_SkColorType, info.alphaType());
REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes));
// We should not succeed with a zero-sized valid info
info = SkImageInfo::MakeN32Premul(0, 0);
canvas = SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes);
REPORTER_ASSERT(reporter, nullptr == canvas);
}
static SkPath make_path_from_rect(SkRect r) {
SkPath path;
path.addRect(r);
return path;
}
static SkRegion make_region_from_irect(SkIRect r) {
SkRegion region;
region.setRect(r);
return region;
}
static SkBitmap make_n32_bitmap(int w, int h, SkColor c = SK_ColorWHITE) {
SkBitmap bm;
bm.allocN32Pixels(w, h);
bm.eraseColor(c);
return bm;
}
// Constants used by test steps
static constexpr SkRect kRect = {0, 0, 2, 1};
static constexpr SkColor kColor = 0x01020304;
static constexpr int kWidth = 2;
static constexpr int kHeight = 2;
using CanvasTest = void (*)(SkCanvas*, skiatest::Reporter*);
static CanvasTest kCanvasTests[] = {
[](SkCanvas* c, skiatest::Reporter* r) {
c->translate(SkIntToScalar(1), SkIntToScalar(2));
},
[](SkCanvas* c, skiatest::Reporter* r) {
c->scale(SkIntToScalar(1), SkIntToScalar(2));
},
[](SkCanvas* c, skiatest::Reporter* r) {
c->rotate(SkIntToScalar(1));
},
[](SkCanvas* c, skiatest::Reporter* r) {
c->skew(SkIntToScalar(1), SkIntToScalar(2));
},
[](SkCanvas* c, skiatest::Reporter* r) {
c->concat(SkMatrix::Scale(2, 3));
},
[](SkCanvas* c, skiatest::Reporter* r) {
c->setMatrix(SkMatrix::Scale(2, 3));
},
[](SkCanvas* c, skiatest::Reporter* r) {
c->clipRect(kRect);
},
[](SkCanvas* c, skiatest::Reporter* r) {
c->clipPath(make_path_from_rect(SkRect{0, 0, 2, 1}));
},
[](SkCanvas* c, skiatest::Reporter* r) {
c->clipRegion(make_region_from_irect(SkIRect{0, 0, 2, 1}));
},
[](SkCanvas* c, skiatest::Reporter* r) {
c->clear(kColor);
},
[](SkCanvas* c, skiatest::Reporter* r) {
int saveCount = c->getSaveCount();
c->save();
c->translate(SkIntToScalar(1), SkIntToScalar(2));
c->clipRegion(make_region_from_irect(SkIRect{0, 0, 2, 1}));
c->restore();
REPORTER_ASSERT(r, c->getSaveCount() == saveCount);
REPORTER_ASSERT(r, c->getTotalMatrix().isIdentity());
//REPORTER_ASSERT(reporter, c->getTotalClip() != kTestRegion);
},
[](SkCanvas* c, skiatest::Reporter* r) {
int saveCount = c->getSaveCount();
c->saveLayer(nullptr, nullptr);
c->restore();
REPORTER_ASSERT(r, c->getSaveCount() == saveCount);
},
[](SkCanvas* c, skiatest::Reporter* r) {
int saveCount = c->getSaveCount();
c->saveLayer(&kRect, nullptr);
c->restore();
REPORTER_ASSERT(r, c->getSaveCount() == saveCount);
},
[](SkCanvas* c, skiatest::Reporter* r) {
int saveCount = c->getSaveCount();
SkPaint p;
c->saveLayer(nullptr, &p);
c->restore();
REPORTER_ASSERT(r, c->getSaveCount() == saveCount);
},
[](SkCanvas* c, skiatest::Reporter* r) {
// This test exercises a functionality in SkPicture that leads to the
// recording of restore offset placeholders. This test will trigger an
// assertion at playback time if the placeholders are not properly
// filled when the recording ends.
c->clipRect(kRect);
c->clipRegion(make_region_from_irect(SkIRect{0, 0, 2, 1}));
},
[](SkCanvas* c, skiatest::Reporter* r) {
// exercise fix for http://code.google.com/p/skia/issues/detail?id=560
// ('SkPathStroker::lineTo() fails for line with length SK_ScalarNearlyZero')
SkPaint paint;
paint.setStrokeWidth(SkIntToScalar(1));
paint.setStyle(SkPaint::kStroke_Style);
SkPath path;
path.moveTo(SkPoint{ 0, 0 });
path.lineTo(SkPoint{ 0, SK_ScalarNearlyZero });
path.lineTo(SkPoint{ SkIntToScalar(1), 0 });
path.lineTo(SkPoint{ SkIntToScalar(1), SK_ScalarNearlyZero/2 });
// test nearly zero length path
c->drawPath(path, paint);
},
[](SkCanvas* c, skiatest::Reporter* r) {
SkPictureRecorder recorder;
SkCanvas* testCanvas = recorder.beginRecording(SkIntToScalar(kWidth),
SkIntToScalar(kHeight));
testCanvas->scale(SkIntToScalar(2), SkIntToScalar(1));
testCanvas->clipRect(kRect);
testCanvas->drawRect(kRect, SkPaint());
c->drawPicture(recorder.finishRecordingAsPicture());
},
[](SkCanvas* c, skiatest::Reporter* r) {
int baseSaveCount = c->getSaveCount();
int n = c->save();
REPORTER_ASSERT(r, baseSaveCount == n);
REPORTER_ASSERT(r, baseSaveCount + 1 == c->getSaveCount());
c->save();
c->save();
REPORTER_ASSERT(r, baseSaveCount + 3 == c->getSaveCount());
c->restoreToCount(baseSaveCount + 1);
REPORTER_ASSERT(r, baseSaveCount + 1 == c->getSaveCount());
// should this pin to 1, or be a no-op, or crash?
c->restoreToCount(0);
REPORTER_ASSERT(r, 1 == c->getSaveCount());
},
[](SkCanvas* c, skiatest::Reporter* r) {
// This test step challenges the TestDeferredCanvasStateConsistency
// test cases because the opaque paint can trigger an optimization
// that discards previously recorded commands. The challenge is to maintain
// correct clip and matrix stack state.
c->resetMatrix();
c->rotate(SkIntToScalar(30));
c->save();
c->translate(SkIntToScalar(2), SkIntToScalar(1));
c->save();
c->scale(SkIntToScalar(3), SkIntToScalar(3));
SkPaint paint;
paint.setColor(0xFFFFFFFF);
c->drawPaint(paint);
c->restore();
c->restore();
},
[](SkCanvas* c, skiatest::Reporter* r) {
// This test step challenges the TestDeferredCanvasStateConsistency
// test case because the canvas flush on a deferred canvas will
// reset the recording session. The challenge is to maintain correct
// clip and matrix stack state on the playback canvas.
c->resetMatrix();
c->rotate(SkIntToScalar(30));
c->save();
c->translate(SkIntToScalar(2), SkIntToScalar(1));
c->save();
c->scale(SkIntToScalar(3), SkIntToScalar(3));
c->drawRect(kRect, SkPaint());
c->flush();
c->restore();
c->restore();
},
[](SkCanvas* c, skiatest::Reporter* r) {
SkPoint pts[4];
pts[0].set(0, 0);
pts[1].set(SkIntToScalar(kWidth), 0);
pts[2].set(SkIntToScalar(kWidth), SkIntToScalar(kHeight));
pts[3].set(0, SkIntToScalar(kHeight));
SkPaint paint;
SkBitmap bitmap(make_n32_bitmap(kWidth, kHeight, 0x05060708));
paint.setShader(bitmap.makeShader(SkSamplingOptions()));
c->drawVertices(
SkVertices::MakeCopy(SkVertices::kTriangleFan_VertexMode, 4, pts, pts, nullptr),
SkBlendMode::kModulate, paint);
}
};
DEF_TEST(Canvas_bitmap, reporter) {
for (const CanvasTest& test : kCanvasTests) {
SkBitmap referenceStore = make_n32_bitmap(kWidth, kHeight);
SkCanvas referenceCanvas(referenceStore);
test(&referenceCanvas, reporter);
}
}
#ifdef SK_SUPPORT_PDF
DEF_TEST(Canvas_pdf, reporter) {
for (const CanvasTest& test : kCanvasTests) {
SkNullWStream outStream;
if (auto doc = SkPDF::MakeDocument(&outStream)) {
SkCanvas* canvas = doc->beginPage(SkIntToScalar(kWidth),
SkIntToScalar(kHeight));
REPORTER_ASSERT(reporter, canvas);
test(canvas, reporter);
}
}
}
#endif
DEF_TEST(Canvas_SaveState, reporter) {
SkCanvas canvas(10, 10);
REPORTER_ASSERT(reporter, 1 == canvas.getSaveCount());
int n = canvas.save();
REPORTER_ASSERT(reporter, 1 == n);
REPORTER_ASSERT(reporter, 2 == canvas.getSaveCount());
n = canvas.saveLayer(nullptr, nullptr);
REPORTER_ASSERT(reporter, 2 == n);
REPORTER_ASSERT(reporter, 3 == canvas.getSaveCount());
canvas.restore();
REPORTER_ASSERT(reporter, 2 == canvas.getSaveCount());
canvas.restore();
REPORTER_ASSERT(reporter, 1 == canvas.getSaveCount());
}
DEF_TEST(Canvas_ClipEmptyPath, reporter) {
SkCanvas canvas(10, 10);
canvas.save();
SkPath path;
canvas.clipPath(path);
canvas.restore();
canvas.save();
path.moveTo(5, 5);
canvas.clipPath(path);
canvas.restore();
canvas.save();
path.moveTo(7, 7);
canvas.clipPath(path); // should not assert here
canvas.restore();
}
namespace {
class MockFilterCanvas : public SkPaintFilterCanvas {
public:
MockFilterCanvas(SkCanvas* canvas) : INHERITED(canvas) { }
protected:
bool onFilter(SkPaint&) const override { return true; }
private:
using INHERITED = SkPaintFilterCanvas;
};
} // anonymous namespace
// SkPaintFilterCanvas should inherit the initial target canvas state.
DEF_TEST(PaintFilterCanvas_ConsistentState, reporter) {
SkCanvas canvas(100, 100);
canvas.clipRect(SkRect::MakeXYWH(12.7f, 12.7f, 75, 75));
canvas.scale(0.5f, 0.75f);
MockFilterCanvas filterCanvas(&canvas);
REPORTER_ASSERT(reporter, canvas.getTotalMatrix() == filterCanvas.getTotalMatrix());
REPORTER_ASSERT(reporter, canvas.getLocalClipBounds() == filterCanvas.getLocalClipBounds());
filterCanvas.clipRect(SkRect::MakeXYWH(30.5f, 30.7f, 100, 100));
filterCanvas.scale(0.75f, 0.5f);
REPORTER_ASSERT(reporter, canvas.getTotalMatrix() == filterCanvas.getTotalMatrix());
REPORTER_ASSERT(reporter, filterCanvas.getLocalClipBounds().contains(canvas.getLocalClipBounds()));
}
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace {
// Subclass that takes a bool*, which it updates in its construct (true) and destructor (false)
// to allow the caller to know how long the object is alive.
class LifeLineCanvas : public SkCanvas {
bool* fLifeLine;
public:
LifeLineCanvas(int w, int h, bool* lifeline) : SkCanvas(w, h), fLifeLine(lifeline) {
*fLifeLine = true;
}
~LifeLineCanvas() override {
*fLifeLine = false;
}
};
} // namespace
// Check that NWayCanvas does NOT try to manage the lifetime of its sub-canvases
DEF_TEST(NWayCanvas, r) {
const int w = 10;
const int h = 10;
bool life[2];
{
LifeLineCanvas c0(w, h, &life[0]);
REPORTER_ASSERT(r, life[0]);
}
REPORTER_ASSERT(r, !life[0]);
std::unique_ptr<SkCanvas> c0 = std::unique_ptr<SkCanvas>(new LifeLineCanvas(w, h, &life[0]));
std::unique_ptr<SkCanvas> c1 = std::unique_ptr<SkCanvas>(new LifeLineCanvas(w, h, &life[1]));
REPORTER_ASSERT(r, life[0]);
REPORTER_ASSERT(r, life[1]);
{
SkNWayCanvas nway(w, h);
nway.addCanvas(c0.get());
nway.addCanvas(c1.get());
REPORTER_ASSERT(r, life[0]);
REPORTER_ASSERT(r, life[1]);
}
// Now assert that the death of the nway has NOT also killed the sub-canvases
REPORTER_ASSERT(r, life[0]);
REPORTER_ASSERT(r, life[1]);
}
// Check that CanvasStack DOES manage the lifetime of its sub-canvases
DEF_TEST(CanvasStack, r) {
const int w = 10;
const int h = 10;
bool life[2];
std::unique_ptr<SkCanvas> c0 = std::unique_ptr<SkCanvas>(new LifeLineCanvas(w, h, &life[0]));
std::unique_ptr<SkCanvas> c1 = std::unique_ptr<SkCanvas>(new LifeLineCanvas(w, h, &life[1]));
REPORTER_ASSERT(r, life[0]);
REPORTER_ASSERT(r, life[1]);
{
SkCanvasStack stack(w, h);
stack.pushCanvas(std::move(c0), {0,0});
stack.pushCanvas(std::move(c1), {0,0});
REPORTER_ASSERT(r, life[0]);
REPORTER_ASSERT(r, life[1]);
}
// Now assert that the death of the canvasstack has also killed the sub-canvases
REPORTER_ASSERT(r, !life[0]);
REPORTER_ASSERT(r, !life[1]);
}
static void test_cliptype(SkCanvas* canvas, skiatest::Reporter* r) {
REPORTER_ASSERT(r, !canvas->isClipEmpty());
REPORTER_ASSERT(r, canvas->isClipRect());
canvas->save();
canvas->clipRect({0, 0, 0, 0});
REPORTER_ASSERT(r, canvas->isClipEmpty());
REPORTER_ASSERT(r, !canvas->isClipRect());
canvas->restore();
canvas->save();
canvas->clipRect({2, 2, 6, 6});
REPORTER_ASSERT(r, !canvas->isClipEmpty());
REPORTER_ASSERT(r, canvas->isClipRect());
canvas->restore();
canvas->save();
canvas->clipRect({2, 2, 6, 6}, SkClipOp::kDifference); // punch a hole in the clip
REPORTER_ASSERT(r, !canvas->isClipEmpty());
REPORTER_ASSERT(r, !canvas->isClipRect());
canvas->restore();
REPORTER_ASSERT(r, !canvas->isClipEmpty());
REPORTER_ASSERT(r, canvas->isClipRect());
}
DEF_TEST(CanvasClipType, r) {
// test rasterclip backend
test_cliptype(SkSurface::MakeRasterN32Premul(10, 10)->getCanvas(), r);
#ifdef SK_SUPPORT_PDF
// test clipstack backend
SkDynamicMemoryWStream stream;
if (auto doc = SkPDF::MakeDocument(&stream)) {
test_cliptype(doc->beginPage(100, 100), r);
}
#endif
}
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
DEF_TEST(Canvas_LegacyColorBehavior, r) {
sk_sp<SkColorSpace> cs = SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB,
SkNamedGamut::kAdobeRGB);
// Make a Adobe RGB bitmap.
SkBitmap bitmap;
bitmap.allocPixels(SkImageInfo::MakeN32(1, 1, kOpaque_SkAlphaType, cs));
bitmap.eraseColor(0xFF000000);
// Wrap it in a legacy canvas. Test that the canvas behaves like a legacy canvas.
SkCanvas canvas(bitmap, SkCanvas::ColorBehavior::kLegacy);
REPORTER_ASSERT(r, !canvas.imageInfo().colorSpace());
SkPaint p;
p.setColor(SK_ColorRED);
canvas.drawIRect(SkIRect::MakeWH(1, 1), p);
REPORTER_ASSERT(r, SK_ColorRED == SkSwizzle_BGRA_to_PMColor(*bitmap.getAddr32(0, 0)));
}
#endif
namespace {
class ZeroBoundsImageFilter : public SkImageFilter_Base {
public:
static sk_sp<SkImageFilter> Make() { return sk_sp<SkImageFilter>(new ZeroBoundsImageFilter); }
protected:
sk_sp<SkSpecialImage> onFilterImage(const Context&, SkIPoint*) const override {
return nullptr;
}
SkIRect onFilterNodeBounds(const SkIRect&, const SkMatrix&,
MapDirection, const SkIRect* inputRect) const override {
return SkIRect::MakeEmpty();
}
private:
SK_FLATTENABLE_HOOKS(ZeroBoundsImageFilter)
ZeroBoundsImageFilter() : INHERITED(nullptr, 0, nullptr) {}
using INHERITED = SkImageFilter_Base;
};
sk_sp<SkFlattenable> ZeroBoundsImageFilter::CreateProc(SkReadBuffer& buffer) {
SkDEBUGFAIL("Should never get here");
return nullptr;
}
} // anonymous namespace
DEF_TEST(Canvas_SaveLayerWithNullBoundsAndZeroBoundsImageFilter, r) {
SkCanvas canvas(10, 10);
SkPaint p;
p.setImageFilter(ZeroBoundsImageFilter::Make());
// This should not fail any assert.
canvas.saveLayer(nullptr, &p);
REPORTER_ASSERT(r, canvas.getDeviceClipBounds().isEmpty());
canvas.restore();
}
// Test that we don't crash/assert when building a canvas with degenerate coordintes
// (esp. big ones, that might invoke tiling).
DEF_TEST(Canvas_degenerate_dimension, reporter) {
// Need a paint that will sneak us past the quickReject in SkCanvas, so we can test the
// raster code further downstream.
SkPaint paint;
paint.setImageFilter(SkImageFilters::Shader(SkShaders::Color(SK_ColorBLACK), nullptr));
REPORTER_ASSERT(reporter, !paint.canComputeFastBounds());
const int big = 100 * 1024; // big enough to definitely trigger tiling
const SkISize sizes[] {SkISize{0, big}, {big, 0}, {0, 0}};
for (SkISize size : sizes) {
SkBitmap bm;
bm.setInfo(SkImageInfo::MakeN32Premul(size.width(), size.height()));
SkCanvas canvas(bm);
canvas.drawRect({0, 0, 100, 90*1024}, paint);
}
}
DEF_TEST(Canvas_ClippedOutImageFilter, reporter) {
SkCanvas canvas(100, 100);
SkPaint p;
p.setColor(SK_ColorGREEN);
p.setImageFilter(SkImageFilters::Blur(3.0f, 3.0f, nullptr, nullptr));
SkRect blurredRect = SkRect::MakeXYWH(60, 10, 30, 30);
SkMatrix invM;
invM.setRotate(-45);
invM.mapRect(&blurredRect);
const SkRect clipRect = SkRect::MakeXYWH(0, 50, 50, 50);
canvas.clipRect(clipRect);
canvas.rotate(45);
const SkMatrix preCTM = canvas.getTotalMatrix();
canvas.drawRect(blurredRect, p);
const SkMatrix postCTM = canvas.getTotalMatrix();
REPORTER_ASSERT(reporter, preCTM == postCTM);
}
DEF_TEST(canvas_savelayer_destructor, reporter) {
// What should happen in our destructor if we have unbalanced saveLayers?
SkPMColor pixels[16];
const SkImageInfo info = SkImageInfo::MakeN32Premul(4, 4);
SkPixmap pm(info, pixels, 4 * sizeof(SkPMColor));
// check all of the pixel values in pm
auto check_pixels = [&](SkColor expected) {
const SkPMColor pmc = SkPreMultiplyColor(expected);
for (int y = 0; y < pm.info().height(); ++y) {
for (int x = 0; x < pm.info().width(); ++x) {
if (*pm.addr32(x, y) != pmc) {
ERRORF(reporter, "check_pixels_failed");
return;
}
}
}
};
auto do_test = [&](int saveCount, int restoreCount) {
SkASSERT(restoreCount <= saveCount);
auto surf = SkSurface::MakeRasterDirect(pm);
auto canvas = surf->getCanvas();
canvas->clear(SK_ColorRED);
check_pixels(SK_ColorRED);
for (int i = 0; i < saveCount; ++i) {
canvas->saveLayer(nullptr, nullptr);
}
canvas->clear(SK_ColorBLUE);
// so far, we still expect to see the red, since the blue was drawn in a layer
check_pixels(SK_ColorRED);
for (int i = 0; i < restoreCount; ++i) {
canvas->restore();
}
// by returning, we are implicitly deleting the surface, and its associated canvas
};
do_test(1, 1);
// since we called restore, we expect to see now see blue
check_pixels(SK_ColorBLUE);
// Now repeat that, but delete the canvas before we restore it
do_test(1, 0);
// We don't blit the unbalanced saveLayers, so we expect to see red (not the layer's blue)
check_pixels(SK_ColorRED);
// Finally, test with multiple unbalanced saveLayers. This led to a crash in an earlier
// implementation (crbug.com/1238731)
do_test(2, 0);
check_pixels(SK_ColorRED);
}