blob: d5b9923095a21785b307ef258eb3b1e7eb8ace8f [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/pdf/SkPDFUtils.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkData.h"
#include "include/core/SkStream.h"
#include "include/core/SkString.h"
#include "include/private/base/SkFixed.h"
#include "src/core/SkGeometry.h"
#include "src/core/SkPathPriv.h"
#include "src/image/SkImage_Base.h"
#include "src/pdf/SkPDFResourceDict.h"
#include "src/pdf/SkPDFTypes.h"
#include <cmath>
const char* SkPDFUtils::BlendModeName(SkBlendMode mode) {
// PDF32000.book section 11.3.5 "Blend Mode"
switch (mode) {
case SkBlendMode::kSrcOver: return "Normal";
case SkBlendMode::kXor: return "Normal"; // (unsupported mode)
case SkBlendMode::kPlus: return "Normal"; // (unsupported mode)
case SkBlendMode::kScreen: return "Screen";
case SkBlendMode::kOverlay: return "Overlay";
case SkBlendMode::kDarken: return "Darken";
case SkBlendMode::kLighten: return "Lighten";
case SkBlendMode::kColorDodge: return "ColorDodge";
case SkBlendMode::kColorBurn: return "ColorBurn";
case SkBlendMode::kHardLight: return "HardLight";
case SkBlendMode::kSoftLight: return "SoftLight";
case SkBlendMode::kDifference: return "Difference";
case SkBlendMode::kExclusion: return "Exclusion";
case SkBlendMode::kMultiply: return "Multiply";
case SkBlendMode::kHue: return "Hue";
case SkBlendMode::kSaturation: return "Saturation";
case SkBlendMode::kColor: return "Color";
case SkBlendMode::kLuminosity: return "Luminosity";
// Other blendmodes are handled in SkPDFDevice::setUpContentEntry.
default: return nullptr;
}
}
std::unique_ptr<SkPDFArray> SkPDFUtils::RectToArray(const SkRect& r) {
return SkPDFMakeArray(r.left(), r.top(), r.right(), r.bottom());
}
std::unique_ptr<SkPDFArray> SkPDFUtils::MatrixToArray(const SkMatrix& matrix) {
SkScalar a[6];
if (!matrix.asAffine(a)) {
SkMatrix::SetAffineIdentity(a);
}
return SkPDFMakeArray(a[0], a[1], a[2], a[3], a[4], a[5]);
}
void SkPDFUtils::MoveTo(SkScalar x, SkScalar y, SkWStream* content) {
SkPDFUtils::AppendScalar(x, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(y, content);
content->writeText(" m\n");
}
void SkPDFUtils::AppendLine(SkScalar x, SkScalar y, SkWStream* content) {
SkPDFUtils::AppendScalar(x, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(y, content);
content->writeText(" l\n");
}
static void append_cubic(SkScalar ctl1X, SkScalar ctl1Y,
SkScalar ctl2X, SkScalar ctl2Y,
SkScalar dstX, SkScalar dstY, SkWStream* content) {
SkString cmd("y\n");
SkPDFUtils::AppendScalar(ctl1X, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(ctl1Y, content);
content->writeText(" ");
if (ctl2X != dstX || ctl2Y != dstY) {
cmd.set("c\n");
SkPDFUtils::AppendScalar(ctl2X, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(ctl2Y, content);
content->writeText(" ");
}
SkPDFUtils::AppendScalar(dstX, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(dstY, content);
content->writeText(" ");
content->writeText(cmd.c_str());
}
static void append_quad(const SkPoint quad[], SkWStream* content) {
SkPoint cubic[4];
SkConvertQuadToCubic(quad, cubic);
append_cubic(cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
cubic[3].fX, cubic[3].fY, content);
}
void SkPDFUtils::AppendRectangle(const SkRect& rect, SkWStream* content) {
// Skia has 0,0 at top left, pdf at bottom left. Do the right thing.
SkScalar bottom = std::min(rect.fBottom, rect.fTop);
SkPDFUtils::AppendScalar(rect.fLeft, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(bottom, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(rect.width(), content);
content->writeText(" ");
SkPDFUtils::AppendScalar(rect.height(), content);
content->writeText(" re\n");
}
void SkPDFUtils::EmitPath(const SkPath& path, SkPaint::Style paintStyle,
bool doConsumeDegerates, SkWStream* content,
SkScalar tolerance) {
if (path.isEmpty() && SkPaint::kFill_Style == paintStyle) {
SkPDFUtils::AppendRectangle({0, 0, 0, 0}, content);
return;
}
// Filling a path with no area results in a drawing in PDF renderers but
// Chrome expects to be able to draw some such entities with no visible
// result, so we detect those cases and discard the drawing for them.
// Specifically: moveTo(X), lineTo(Y) and moveTo(X), lineTo(X), lineTo(Y).
SkRect rect;
bool isClosed; // Both closure and direction need to be checked.
SkPathDirection direction;
if (path.isRect(&rect, &isClosed, &direction) &&
isClosed &&
(SkPathDirection::kCW == direction ||
SkPathFillType::kEvenOdd == path.getFillType()))
{
SkPDFUtils::AppendRectangle(rect, content);
return;
}
enum SkipFillState {
kEmpty_SkipFillState,
kSingleLine_SkipFillState,
kNonSingleLine_SkipFillState,
};
SkipFillState fillState = kEmpty_SkipFillState;
//if (paintStyle != SkPaint::kFill_Style) {
// fillState = kNonSingleLine_SkipFillState;
//}
SkPoint lastMovePt = SkPoint::Make(0,0);
SkDynamicMemoryWStream currentSegment;
SkPoint args[4];
SkPath::Iter iter(path, false);
for (SkPath::Verb verb = iter.next(args);
verb != SkPath::kDone_Verb;
verb = iter.next(args)) {
// args gets all the points, even the implicit first point.
switch (verb) {
case SkPath::kMove_Verb:
MoveTo(args[0].fX, args[0].fY, &currentSegment);
lastMovePt = args[0];
fillState = kEmpty_SkipFillState;
break;
case SkPath::kLine_Verb:
if (!doConsumeDegerates || !SkPathPriv::AllPointsEq(args, 2)) {
AppendLine(args[1].fX, args[1].fY, &currentSegment);
if ((fillState == kEmpty_SkipFillState) && (args[0] != lastMovePt)) {
fillState = kSingleLine_SkipFillState;
break;
}
fillState = kNonSingleLine_SkipFillState;
}
break;
case SkPath::kQuad_Verb:
if (!doConsumeDegerates || !SkPathPriv::AllPointsEq(args, 3)) {
append_quad(args, &currentSegment);
fillState = kNonSingleLine_SkipFillState;
}
break;
case SkPath::kConic_Verb:
if (!doConsumeDegerates || !SkPathPriv::AllPointsEq(args, 3)) {
SkAutoConicToQuads converter;
const SkPoint* quads = converter.computeQuads(args, iter.conicWeight(), tolerance);
for (int i = 0; i < converter.countQuads(); ++i) {
append_quad(&quads[i * 2], &currentSegment);
}
fillState = kNonSingleLine_SkipFillState;
}
break;
case SkPath::kCubic_Verb:
if (!doConsumeDegerates || !SkPathPriv::AllPointsEq(args, 4)) {
append_cubic(args[1].fX, args[1].fY, args[2].fX, args[2].fY,
args[3].fX, args[3].fY, &currentSegment);
fillState = kNonSingleLine_SkipFillState;
}
break;
case SkPath::kClose_Verb:
ClosePath(&currentSegment);
currentSegment.writeToStream(content);
currentSegment.reset();
break;
default:
SkASSERT(false);
break;
}
}
if (currentSegment.bytesWritten() > 0) {
currentSegment.writeToStream(content);
}
}
void SkPDFUtils::ClosePath(SkWStream* content) {
content->writeText("h\n");
}
void SkPDFUtils::PaintPath(SkPaint::Style style, SkPathFillType fill, SkWStream* content) {
if (style == SkPaint::kFill_Style) {
content->writeText("f");
} else if (style == SkPaint::kStrokeAndFill_Style) {
content->writeText("B");
} else if (style == SkPaint::kStroke_Style) {
content->writeText("S");
}
if (style != SkPaint::kStroke_Style) {
NOT_IMPLEMENTED(fill == SkPathFillType::kInverseEvenOdd, false);
NOT_IMPLEMENTED(fill == SkPathFillType::kInverseWinding, false);
if (fill == SkPathFillType::kEvenOdd) {
content->writeText("*");
}
}
content->writeText("\n");
}
void SkPDFUtils::StrokePath(SkWStream* content) {
SkPDFUtils::PaintPath(SkPaint::kStroke_Style, SkPathFillType::kWinding, content);
}
void SkPDFUtils::ApplyGraphicState(int objectIndex, SkWStream* content) {
SkPDFWriteResourceName(content, SkPDFResourceType::kExtGState, objectIndex);
content->writeText(" gs\n");
}
void SkPDFUtils::ApplyPattern(int objectIndex, SkWStream* content) {
// Select Pattern color space (CS, cs) and set pattern object as current
// color (SCN, scn)
content->writeText("/Pattern CS/Pattern cs");
SkPDFWriteResourceName(content, SkPDFResourceType::kPattern, objectIndex);
content->writeText(" SCN");
SkPDFWriteResourceName(content, SkPDFResourceType::kPattern, objectIndex);
content->writeText(" scn\n");
}
// return "x/pow(10, places)", given 0<x<pow(10, places)
// result points to places+2 chars.
static size_t print_permil_as_decimal(int x, char* result, unsigned places) {
result[0] = '.';
for (int i = places; i > 0; --i) {
result[i] = '0' + x % 10;
x /= 10;
}
int j;
for (j = places; j > 1; --j) {
if (result[j] != '0') {
break;
}
}
result[j + 1] = '\0';
return j + 1;
}
static constexpr int int_pow(int base, unsigned exp, int acc = 1) {
return exp < 1 ? acc
: int_pow(base * base,
exp / 2,
(exp % 2) ? acc * base : acc);
}
size_t SkPDFUtils::ColorToDecimalF(float value, char result[kFloatColorDecimalCount + 2]) {
static constexpr int kFactor = int_pow(10, kFloatColorDecimalCount);
int x = sk_float_round2int(value * kFactor);
if (x >= kFactor || x <= 0) { // clamp to 0-1
result[0] = x > 0 ? '1' : '0';
result[1] = '\0';
return 1;
}
return print_permil_as_decimal(x, result, kFloatColorDecimalCount);
}
size_t SkPDFUtils::ColorToDecimal(uint8_t value, char result[5]) {
if (value == 255 || value == 0) {
result[0] = value ? '1' : '0';
result[1] = '\0';
return 1;
}
// int x = 0.5 + (1000.0 / 255.0) * value;
int x = SkFixedRoundToInt((SK_Fixed1 * 1000 / 255) * value);
return print_permil_as_decimal(x, result, 3);
}
bool SkPDFUtils::InverseTransformBBox(const SkMatrix& matrix, SkRect* bbox) {
SkMatrix inverse;
if (!matrix.invert(&inverse)) {
return false;
}
inverse.mapRect(bbox);
return true;
}
void SkPDFUtils::PopulateTilingPatternDict(SkPDFDict* pattern,
SkRect& bbox,
std::unique_ptr<SkPDFDict> resources,
const SkMatrix& matrix) {
const int kTiling_PatternType = 1;
const int kColoredTilingPattern_PaintType = 1;
const int kConstantSpacing_TilingType = 1;
pattern->insertName("Type", "Pattern");
pattern->insertInt("PatternType", kTiling_PatternType);
pattern->insertInt("PaintType", kColoredTilingPattern_PaintType);
pattern->insertInt("TilingType", kConstantSpacing_TilingType);
pattern->insertObject("BBox", SkPDFUtils::RectToArray(bbox));
pattern->insertScalar("XStep", bbox.width());
pattern->insertScalar("YStep", bbox.height());
pattern->insertObject("Resources", std::move(resources));
if (!matrix.isIdentity()) {
pattern->insertObject("Matrix", SkPDFUtils::MatrixToArray(matrix));
}
}
bool SkPDFUtils::ToBitmap(const SkImage* img, SkBitmap* dst) {
SkASSERT(img);
SkASSERT(dst);
SkBitmap bitmap;
// TODO: support GPU images
if(as_IB(img)->getROPixels(nullptr, &bitmap)) {
SkASSERT(bitmap.dimensions() == img->dimensions());
SkASSERT(!bitmap.drawsNothing());
*dst = std::move(bitmap);
return true;
}
return false;
}
#ifdef SK_PDF_BASE85_BINARY
void SkPDFUtils::Base85Encode(std::unique_ptr<SkStreamAsset> stream, SkDynamicMemoryWStream* dst) {
SkASSERT(dst);
SkASSERT(stream);
dst->writeText("\n");
int column = 0;
while (true) {
uint8_t src[4] = {0, 0, 0, 0};
size_t count = stream->read(src, 4);
SkASSERT(count < 5);
if (0 == count) {
dst->writeText("~>\n");
return;
}
uint32_t v = ((uint32_t)src[0] << 24) | ((uint32_t)src[1] << 16) |
((uint32_t)src[2] << 8) | src[3];
if (v == 0 && count == 4) {
dst->writeText("z");
column += 1;
} else {
char buffer[5];
for (int n = 4; n > 0; --n) {
buffer[n] = (v % 85) + '!';
v /= 85;
}
buffer[0] = v + '!';
dst->write(buffer, count + 1);
column += count + 1;
}
if (column > 74) {
dst->writeText("\n");
column = 0;
}
}
}
#endif // SK_PDF_BASE85_BINARY
void SkPDFUtils::AppendTransform(const SkMatrix& matrix, SkWStream* content) {
SkScalar values[6];
if (!matrix.asAffine(values)) {
SkMatrix::SetAffineIdentity(values);
}
for (SkScalar v : values) {
SkPDFUtils::AppendScalar(v, content);
content->writeText(" ");
}
content->writeText("cm\n");
}