blob: 84365ffec10f689af2ccb0477d133ec1089b6e1c [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkPoint.h"
#include "include/core/SkScalar.h"
#include "include/core/SkTypes.h"
#include "include/private/base/SkDebug.h"
#include "include/private/base/SkFixed.h"
#include "include/private/base/SkFloatingPoint.h"
#include "include/private/base/SkMath.h"
#include "include/private/base/SkTPin.h"
#include "src/base/SkEndian.h"
#include "src/base/SkHalf.h"
#include "src/base/SkMathPriv.h"
#include "src/base/SkRandom.h"
#include "tests/Test.h"
#include <array>
#include <cinttypes>
#include <cmath>
#include <cstddef>
#include <cstdint>
static void test_clz(skiatest::Reporter* reporter) {
REPORTER_ASSERT(reporter, 32 == SkCLZ(0));
REPORTER_ASSERT(reporter, 31 == SkCLZ(1));
REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30));
REPORTER_ASSERT(reporter, 1 == SkCLZ((1 << 30) | (1 << 24) | 1));
REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U));
SkRandom rand;
for (int i = 0; i < 1000; ++i) {
uint32_t mask = rand.nextU();
// need to get some zeros for testing, but in some obscure way so the
// compiler won't "see" that, and work-around calling the functions.
mask >>= (mask & 31);
int intri = SkCLZ(mask);
int porta = SkCLZ_portable(mask);
REPORTER_ASSERT(reporter, intri == porta, "mask:%u intri:%d porta:%d", mask, intri, porta);
}
}
static void test_ctz(skiatest::Reporter* reporter) {
REPORTER_ASSERT(reporter, 32 == SkCTZ(0));
REPORTER_ASSERT(reporter, 0 == SkCTZ(1));
REPORTER_ASSERT(reporter, 30 == SkCTZ(1 << 30));
REPORTER_ASSERT(reporter, 2 == SkCTZ((1 << 30) | (1 << 24) | (1 << 2)));
REPORTER_ASSERT(reporter, 0 == SkCTZ(~0U));
SkRandom rand;
for (int i = 0; i < 1000; ++i) {
uint32_t mask = rand.nextU();
// need to get some zeros for testing, but in some obscure way so the
// compiler won't "see" that, and work-around calling the functions.
mask >>= (mask & 31);
int intri = SkCTZ(mask);
int porta = SkCTZ_portable(mask);
REPORTER_ASSERT(reporter, intri == porta, "mask:%u intri:%d porta:%d", mask, intri, porta);
}
}
///////////////////////////////////////////////////////////////////////////////
static float sk_fsel(float pred, float result_ge, float result_lt) {
return pred >= 0 ? result_ge : result_lt;
}
static float fast_floor(float x) {
// float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23);
float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23));
return (float)(x + big) - big;
}
static float std_floor(float x) {
return std::floor(x);
}
static void test_floor_value(skiatest::Reporter* reporter, float value) {
float fast = fast_floor(value);
float std = std_floor(value);
if (std != fast) {
ERRORF(reporter, "fast_floor(%.9g) == %.9g != %.9g == std_floor(%.9g)",
value, fast, std, value);
}
}
static void test_floor(skiatest::Reporter* reporter) {
static const float gVals[] = {
0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f
};
for (size_t i = 0; i < std::size(gVals); ++i) {
test_floor_value(reporter, gVals[i]);
// test_floor_value(reporter, -gVals[i]);
}
}
///////////////////////////////////////////////////////////////////////////////
static float float_blend(int src, int dst, float unit) {
return dst + (src - dst) * unit;
}
static int blend31(int src, int dst, int a31) {
return dst + ((src - dst) * a31 * 2114 >> 16);
// return dst + ((src - dst) * a31 * 33 >> 10);
}
static int blend31_slow(int src, int dst, int a31) {
int prod = src * a31 + (31 - a31) * dst + 16;
prod = (prod + (prod >> 5)) >> 5;
return prod;
}
static int blend31_round(int src, int dst, int a31) {
int prod = (src - dst) * a31 + 16;
prod = (prod + (prod >> 5)) >> 5;
return dst + prod;
}
static int blend31_old(int src, int dst, int a31) {
a31 += a31 >> 4;
return dst + ((src - dst) * a31 >> 5);
}
// suppress unused code warning
static int (*blend_functions[])(int, int, int) = {
blend31,
blend31_slow,
blend31_round,
blend31_old
};
static void test_blend31() {
int failed = 0;
int death = 0;
if ((false)) { // avoid bit rot, suppress warning
failed = (*blend_functions[0])(0,0,0);
}
for (int src = 0; src <= 255; src++) {
for (int dst = 0; dst <= 255; dst++) {
for (int a = 0; a <= 31; a++) {
// int r0 = blend31(src, dst, a);
// int r0 = blend31_round(src, dst, a);
// int r0 = blend31_old(src, dst, a);
int r0 = blend31_slow(src, dst, a);
float f = float_blend(src, dst, a / 31.f);
int r1 = (int)f;
int r2 = SkScalarRoundToInt(f);
if (r0 != r1 && r0 != r2) {
SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
src, dst, a, r0, f);
failed += 1;
}
if (r0 > 255) {
death += 1;
SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n",
src, dst, a, r0, f);
}
}
}
}
SkDebugf("---- failed %d death %d\n", failed, death);
}
static void check_length(skiatest::Reporter* reporter,
const SkPoint& p, SkScalar targetLen) {
float x = p.fX;
float y = p.fY;
float len = std::sqrt(x*x + y*y);
len /= targetLen;
REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f);
}
template <typename T>
static void unittest_isfinite(skiatest::Reporter* reporter) {
const T zero = T(0);
const T plain = T(123);
const T inf = std::numeric_limits<T>::infinity();
const T big = std::numeric_limits<T>::max();
const T nan = inf * zero;
REPORTER_ASSERT(reporter, !SkIsNaN(inf));
REPORTER_ASSERT(reporter, !SkIsNaN(-inf));
REPORTER_ASSERT(reporter, !SkIsFinite(inf));
REPORTER_ASSERT(reporter, !SkIsFinite(-inf));
REPORTER_ASSERT(reporter, SkIsNaN(nan));
REPORTER_ASSERT(reporter, !SkIsNaN(big));
REPORTER_ASSERT(reporter, !SkIsNaN(-big));
REPORTER_ASSERT(reporter, !SkIsNaN(zero));
REPORTER_ASSERT(reporter, !SkIsFinite(nan));
REPORTER_ASSERT(reporter, SkIsFinite(big));
REPORTER_ASSERT(reporter, SkIsFinite(-big));
REPORTER_ASSERT(reporter, SkIsFinite(zero));
// SkIsFinite supports testing multiple values at once.
REPORTER_ASSERT(reporter, !SkIsFinite(inf, plain));
REPORTER_ASSERT(reporter, !SkIsFinite(plain, -inf));
REPORTER_ASSERT(reporter, !SkIsFinite(nan, plain));
REPORTER_ASSERT(reporter, SkIsFinite(plain, big));
REPORTER_ASSERT(reporter, SkIsFinite(-big, plain));
REPORTER_ASSERT(reporter, SkIsFinite(plain, zero));
REPORTER_ASSERT(reporter, !SkIsFinite(inf, plain, plain));
REPORTER_ASSERT(reporter, !SkIsFinite(plain, -inf, plain));
REPORTER_ASSERT(reporter, !SkIsFinite(plain, plain, nan));
REPORTER_ASSERT(reporter, SkIsFinite(big, plain, plain));
REPORTER_ASSERT(reporter, SkIsFinite(plain, -big, plain));
REPORTER_ASSERT(reporter, SkIsFinite(plain, plain, zero));
}
static void unittest_half(skiatest::Reporter* reporter) {
static const float gFloats[] = {
0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
-0.f, -1.f, -0.5f, -0.499999f, -0.5000001f, -1.f/3
};
for (size_t i = 0; i < std::size(gFloats); ++i) {
SkHalf h = SkFloatToHalf(gFloats[i]);
float f = SkHalfToFloat(h);
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, gFloats[i]));
}
// check some special values
union FloatUnion {
uint32_t fU;
float fF;
};
static const FloatUnion largestPositiveHalf = { ((142 << 23) | (1023 << 13)) };
SkHalf h = SkFloatToHalf(largestPositiveHalf.fF);
float f = SkHalfToFloat(h);
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestPositiveHalf.fF));
static const FloatUnion largestNegativeHalf = { (1u << 31) | (142u << 23) | (1023u << 13) };
h = SkFloatToHalf(largestNegativeHalf.fF);
f = SkHalfToFloat(h);
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestNegativeHalf.fF));
static const FloatUnion smallestPositiveHalf = { 102 << 23 };
h = SkFloatToHalf(smallestPositiveHalf.fF);
f = SkHalfToFloat(h);
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, smallestPositiveHalf.fF));
static const FloatUnion overflowHalf = { ((143 << 23) | (1023 << 13)) };
h = SkFloatToHalf(overflowHalf.fF);
f = SkHalfToFloat(h);
REPORTER_ASSERT(reporter, !SkIsFinite(f) );
static const FloatUnion underflowHalf = { 101 << 23 };
h = SkFloatToHalf(underflowHalf.fF);
f = SkHalfToFloat(h);
REPORTER_ASSERT(reporter, f == 0.0f );
static const FloatUnion inf32 = { 255 << 23 };
h = SkFloatToHalf(inf32.fF);
f = SkHalfToFloat(h);
REPORTER_ASSERT(reporter, !SkIsFinite(f) );
static const FloatUnion nan32 = { 255 << 23 | 1 };
h = SkFloatToHalf(nan32.fF);
f = SkHalfToFloat(h);
REPORTER_ASSERT(reporter, SkIsNaN(f) );
}
template <typename RSqrtFn>
static void test_rsqrt(skiatest::Reporter* reporter, RSqrtFn rsqrt) {
const float maxRelativeError = 6.50196699e-4f;
// test close to 0 up to 1
float input = 0.000001f;
for (int i = 0; i < 1000; ++i) {
float exact = 1.0f/std::sqrt(input);
float estimate = rsqrt(input);
float relativeError = std::fabs(exact - estimate)/exact;
REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
input += 0.001f;
}
// test 1 to ~100
input = 1.0f;
for (int i = 0; i < 1000; ++i) {
float exact = 1.0f/std::sqrt(input);
float estimate = rsqrt(input);
float relativeError = std::fabs(exact - estimate)/exact;
REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
input += 0.01f;
}
// test some big numbers
input = 1000000.0f;
for (int i = 0; i < 100; ++i) {
float exact = 1.0f/std::sqrt(input);
float estimate = rsqrt(input);
float relativeError = std::fabs(exact - estimate)/exact;
REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
input += 754326.f;
}
}
static void test_muldiv255(skiatest::Reporter* reporter) {
for (int a = 0; a <= 255; a++) {
for (int b = 0; b <= 255; b++) {
int ab = a * b;
float s = ab / 255.0f;
int round = (int)floorf(s + 0.5f);
int trunc = (int)floorf(s);
int iround = SkMulDiv255Round(a, b);
int itrunc = SkMulDiv255Trunc(a, b);
REPORTER_ASSERT(reporter, iround == round);
REPORTER_ASSERT(reporter, itrunc == trunc);
REPORTER_ASSERT(reporter, itrunc <= iround);
REPORTER_ASSERT(reporter, iround <= a);
REPORTER_ASSERT(reporter, iround <= b);
}
}
}
static void test_muldiv255ceiling(skiatest::Reporter* reporter) {
for (int c = 0; c <= 255; c++) {
for (int a = 0; a <= 255; a++) {
int product = (c * a + 255);
int expected_ceiling = (product + (product >> 8)) >> 8;
int webkit_ceiling = (c * a + 254) / 255;
REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling);
int skia_ceiling = SkMulDiv255Ceiling(c, a);
REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling);
}
}
}
static void test_copysign(skiatest::Reporter* reporter) {
static const int32_t gTriples[] = {
// x, y, expected result
0, 0, 0,
0, 1, 0,
0, -1, 0,
1, 0, 1,
1, 1, 1,
1, -1, -1,
-1, 0, 1,
-1, 1, 1,
-1, -1, -1,
};
for (size_t i = 0; i < std::size(gTriples); i += 3) {
REPORTER_ASSERT(reporter,
SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]);
float x = (float)gTriples[i];
float y = (float)gTriples[i+1];
float expected = (float)gTriples[i+2];
REPORTER_ASSERT(reporter, std::copysign(x, y) == expected);
}
SkRandom rand;
for (int j = 0; j < 1000; j++) {
int ix = rand.nextS();
REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix);
REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix);
REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix);
REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix);
SkScalar sx = rand.nextSScalar1();
REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx);
REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx);
REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx);
REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx);
}
}
static void huge_vector_normalize(skiatest::Reporter* reporter) {
// these values should fail (overflow/underflow) trying to normalize
const SkVector fail[] = {
{ 0, 0 },
{ SK_ScalarInfinity, 0 }, { 0, SK_ScalarInfinity },
{ 0, SK_ScalarNaN }, { SK_ScalarNaN, 0 },
};
for (SkVector v : fail) {
SkVector v2 = v;
if (v2.setLength(1.0f)) {
REPORTER_ASSERT(reporter, !v.setLength(1.0f));
}
}
}
DEF_TEST(PopCount, reporter) {
{
uint32_t testVal = 0;
REPORTER_ASSERT(reporter, SkPopCount(testVal) == 0);
}
for (int i = 0; i < 32; ++i) {
uint32_t testVal = 0x1 << i;
REPORTER_ASSERT(reporter, SkPopCount(testVal) == 1);
testVal ^= 0xFFFFFFFF;
REPORTER_ASSERT(reporter, SkPopCount(testVal) == 31);
}
{
uint32_t testVal = 0xFFFFFFFF;
REPORTER_ASSERT(reporter, SkPopCount(testVal) == 32);
}
SkRandom rand;
for (int i = 0; i < 100; ++i) {
int expectedNumSetBits = 0;
uint32_t testVal = 0;
int numTries = rand.nextULessThan(33);
for (int j = 0; j < numTries; ++j) {
int bit = rand.nextRangeU(0, 31);
if (testVal & (0x1 << bit)) {
continue;
}
++expectedNumSetBits;
testVal |= 0x1 << bit;
}
REPORTER_ASSERT(reporter, SkPopCount(testVal) == expectedNumSetBits);
}
}
DEF_TEST(NthSet, reporter) {
{
uint32_t testVal = 0x1;
uint32_t recreated = 0;
int result = SkNthSet(testVal, 0);
recreated |= (0x1 << result);
REPORTER_ASSERT(reporter, testVal == recreated);
}
{
uint32_t testVal = 0x80000000;
uint32_t recreated = 0;
int result = SkNthSet(testVal, 0);
recreated |= (0x1 << result);
REPORTER_ASSERT(reporter, testVal == recreated);
}
{
uint32_t testVal = 0x55555555;
uint32_t recreated = 0;
for (int i = 0; i < 16; ++i) {
int result = SkNthSet(testVal, i);
REPORTER_ASSERT(reporter, result == 2*i);
recreated |= (0x1 << result);
}
REPORTER_ASSERT(reporter, testVal == recreated);
}
SkRandom rand;
for (int i = 0; i < 100; ++i) {
int expectedNumSetBits = 0;
uint32_t testVal = 0;
int numTries = rand.nextULessThan(33);
for (int j = 0; j < numTries; ++j) {
int bit = rand.nextRangeU(0, 31);
if (testVal & (0x1 << bit)) {
continue;
}
++expectedNumSetBits;
testVal |= 0x1 << bit;
}
REPORTER_ASSERT(reporter, SkPopCount(testVal) == expectedNumSetBits);
uint32_t recreated = 0;
for (int j = 0; j < expectedNumSetBits; ++j) {
int index = SkNthSet(testVal, j);
recreated |= (0x1 << index);
}
REPORTER_ASSERT(reporter, recreated == testVal);
}
}
DEF_TEST(Math, reporter) {
int i;
SkRandom rand;
// these should assert
#if 0
SkToS8(128);
SkToS8(-129);
SkToU8(256);
SkToU8(-5);
SkToS16(32768);
SkToS16(-32769);
SkToU16(65536);
SkToU16(-5);
if (sizeof(size_t) > 4) {
SkToS32(4*1024*1024);
SkToS32(-4*1024*1024);
SkToU32(5*1024*1024);
SkToU32(-5);
}
#endif
test_muldiv255(reporter);
test_muldiv255ceiling(reporter);
test_copysign(reporter);
{
SkScalar x = SK_ScalarNaN;
REPORTER_ASSERT(reporter, SkIsNaN(x));
}
for (i = 0; i < 10000; i++) {
SkPoint p;
// These random values are being treated as 32-bit-patterns, not as
// ints; calling SkIntToScalar() here produces crashes.
p.setLength((SkScalar) rand.nextS(),
(SkScalar) rand.nextS(),
SK_Scalar1);
check_length(reporter, p, SK_Scalar1);
p.setLength((SkScalar) (rand.nextS() >> 13),
(SkScalar) (rand.nextS() >> 13),
SK_Scalar1);
check_length(reporter, p, SK_Scalar1);
}
{
SkFixed result = SkFixedDiv(100, 100);
REPORTER_ASSERT(reporter, result == SK_Fixed1);
result = SkFixedDiv(1, SK_Fixed1);
REPORTER_ASSERT(reporter, result == 1);
result = SkFixedDiv(10 - 1, SK_Fixed1 * 3);
REPORTER_ASSERT(reporter, result == 3);
}
{
REPORTER_ASSERT(reporter, (SkFixedRoundToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5);
REPORTER_ASSERT(reporter, (SkFixedFloorToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5);
REPORTER_ASSERT(reporter, (SkFixedCeilToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5);
}
huge_vector_normalize(reporter);
unittest_isfinite<float>(reporter);
unittest_isfinite<double>(reporter);
unittest_half(reporter);
test_rsqrt(reporter, sk_float_rsqrt);
test_rsqrt(reporter, sk_float_rsqrt_portable);
for (i = 0; i < 10000; i++) {
SkFixed numer = rand.nextS();
SkFixed denom = rand.nextS();
SkFixed result = SkFixedDiv(numer, denom);
int64_t check = SkLeftShift((int64_t)numer, 16) / denom;
(void)SkCLZ(numer);
(void)SkCLZ(denom);
REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32);
if (check > SK_MaxS32) {
check = SK_MaxS32;
} else if (check < -SK_MaxS32) {
check = SK_MinS32;
}
if (result != (int32_t)check) {
ERRORF(reporter, "\nFixed Divide: %8x / %8x -> %8x %8" PRIx64 "\n",
(uint32_t)numer, (uint32_t)denom, (uint32_t)result, (uint64_t)check);
}
REPORTER_ASSERT(reporter, result == (int32_t)check);
}
if ((false)) test_floor(reporter);
// disable for now
if ((false)) test_blend31(); // avoid bit rot, suppress warning
test_clz(reporter);
test_ctz(reporter);
}
template <typename T> struct PairRec {
T fYin;
T fYang;
};
DEF_TEST(TestEndian, reporter) {
static const PairRec<uint16_t> g16[] = {
{ 0x0, 0x0 },
{ 0xFFFF, 0xFFFF },
{ 0x1122, 0x2211 },
};
static const PairRec<uint32_t> g32[] = {
{ 0x0, 0x0 },
{ 0xFFFFFFFF, 0xFFFFFFFF },
{ 0x11223344, 0x44332211 },
};
static const PairRec<uint64_t> g64[] = {
{ 0x0, 0x0 },
{ 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL },
{ 0x1122334455667788ULL, 0x8877665544332211ULL },
};
REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value);
REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value);
REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value);
for (size_t i = 0; i < std::size(g16); ++i) {
REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin));
}
for (size_t i = 0; i < std::size(g32); ++i) {
REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin));
}
for (size_t i = 0; i < std::size(g64); ++i) {
REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin));
}
}
template <typename T>
static void test_divmod(skiatest::Reporter* r) {
const struct {
T numer;
T denom;
} kEdgeCases[] = {
{(T)17, (T)17},
{(T)17, (T)4},
{(T)0, (T)17},
// For unsigned T these negatives are just some large numbers. Doesn't hurt to test them.
{(T)-17, (T)-17},
{(T)-17, (T)4},
{(T)17, (T)-4},
{(T)-17, (T)-4},
};
for (size_t i = 0; i < std::size(kEdgeCases); i++) {
const T numer = kEdgeCases[i].numer;
const T denom = kEdgeCases[i].denom;
T div, mod;
SkTDivMod(numer, denom, &div, &mod);
REPORTER_ASSERT(r, numer/denom == div);
REPORTER_ASSERT(r, numer%denom == mod);
}
SkRandom rand;
for (size_t i = 0; i < 10000; i++) {
const T numer = (T)rand.nextS();
T denom = 0;
while (0 == denom) {
denom = (T)rand.nextS();
}
T div, mod;
SkTDivMod(numer, denom, &div, &mod);
REPORTER_ASSERT(r, numer/denom == div);
REPORTER_ASSERT(r, numer%denom == mod);
}
}
DEF_TEST(divmod_u8, r) {
test_divmod<uint8_t>(r);
}
DEF_TEST(divmod_u16, r) {
test_divmod<uint16_t>(r);
}
DEF_TEST(divmod_u32, r) {
test_divmod<uint32_t>(r);
}
DEF_TEST(divmod_u64, r) {
test_divmod<uint64_t>(r);
}
DEF_TEST(divmod_s8, r) {
test_divmod<int8_t>(r);
}
DEF_TEST(divmod_s16, r) {
test_divmod<int16_t>(r);
}
DEF_TEST(divmod_s32, r) {
test_divmod<int32_t>(r);
}
DEF_TEST(divmod_s64, r) {
test_divmod<int64_t>(r);
}
static void test_nextsizepow2(skiatest::Reporter* r, size_t test, size_t expectedAns) {
size_t ans = GrNextSizePow2(test);
REPORTER_ASSERT(r, ans == expectedAns);
//SkDebugf("0x%zx -> 0x%zx (0x%zx)\n", test, ans, expectedAns);
}
DEF_TEST(GrNextSizePow2, reporter) {
constexpr int kNumSizeTBits = 8 * sizeof(size_t);
size_t test = 0, expectedAns = 1;
test_nextsizepow2(reporter, test, expectedAns);
test = 1; expectedAns = 1;
for (int i = 1; i < kNumSizeTBits; ++i) {
test_nextsizepow2(reporter, test, expectedAns);
test++;
expectedAns <<= 1;
test_nextsizepow2(reporter, test, expectedAns);
test = expectedAns;
}
// For the remaining three tests there is no higher power (of 2)
test = 0x1;
test <<= kNumSizeTBits-1;
test_nextsizepow2(reporter, test, test);
test++;
test_nextsizepow2(reporter, test, test);
test_nextsizepow2(reporter, SIZE_MAX, SIZE_MAX);
}
DEF_TEST(FloatSaturate32, reporter) {
const struct {
float fFloat;
int fExpectedInt;
} recs[] = {
{ 0, 0 },
{ 100.5f, 100 },
{ (float)SK_MaxS32, SK_MaxS32FitsInFloat },
{ (float)SK_MinS32, SK_MinS32FitsInFloat },
{ SK_MaxS32 * 100.0f, SK_MaxS32FitsInFloat },
{ SK_MinS32 * 100.0f, SK_MinS32FitsInFloat },
{ SK_ScalarInfinity, SK_MaxS32FitsInFloat },
{ SK_ScalarNegativeInfinity, SK_MinS32FitsInFloat },
{ SK_ScalarNaN, SK_MaxS32FitsInFloat },
};
for (auto r : recs) {
int i = sk_float_saturate2int(r.fFloat);
REPORTER_ASSERT(reporter, r.fExpectedInt == i);
// Ensure that SkTPin bounds even non-finite values (including NaN)
SkScalar p = SkTPin<SkScalar>(r.fFloat, 0, 100);
REPORTER_ASSERT(reporter, p >= 0 && p <= 100);
}
}
DEF_TEST(FloatSaturate64, reporter) {
const struct {
float fFloat;
int64_t fExpected64;
} recs[] = {
{ 0, 0 },
{ 100.5f, 100 },
{ (float)SK_MaxS64, SK_MaxS64FitsInFloat },
{ (float)SK_MinS64, SK_MinS64FitsInFloat },
{ SK_MaxS64 * 100.0f, SK_MaxS64FitsInFloat },
{ SK_MinS64 * 100.0f, SK_MinS64FitsInFloat },
{ SK_ScalarInfinity, SK_MaxS64FitsInFloat },
{ SK_ScalarNegativeInfinity, SK_MinS64FitsInFloat },
{ SK_ScalarNaN, SK_MaxS64FitsInFloat },
};
for (auto r : recs) {
int64_t i = sk_float_saturate2int64(r.fFloat);
REPORTER_ASSERT(reporter, r.fExpected64 == i);
}
}
DEF_TEST(SkNextPow2, reporter) {
// start off with some easy-to verify cases and some edge cases.
const struct {
int fInput;
int fExpected;
} cases[] = {
{ 1, 1 },
{ 2, 2 },
{ 3, 4 },
{ 4, 4 },
{ 5, 8 },
{ 1073741822, 1073741824},
{ 1073741823, 1073741824},
{ 1073741824, 1073741824}, // Anything larger than this will overflow
};
for (auto c : cases) {
int actual = SkNextPow2(c.fInput);
REPORTER_ASSERT(reporter, c.fExpected == actual,
"SkNextPow2(%d) == %d not %d", c.fInput, actual, c.fExpected);
REPORTER_ASSERT(reporter, actual == SkNextPow2_portable(c.fInput));
REPORTER_ASSERT(reporter, ((uint32_t)actual) == GrNextPow2(c.fInput));
}
// exhaustive search for all the between numbers
for (int i = 6; i < 63356; i++) {
int actual = SkNextPow2(i);
int expected = std::pow(2.f, std::ceil(logf(i)/logf(2)));
REPORTER_ASSERT(reporter, expected == actual,
"SkNextPow2(%d) == %d not %d", i, actual, expected);
REPORTER_ASSERT(reporter, actual == SkNextPow2_portable(i));
REPORTER_ASSERT(reporter, ((uint32_t)actual) == GrNextPow2(i));
}
}
DEF_TEST(DoubleSaturate32, reporter) {
const struct {
double fDouble;
int fExpectedInt;
} recs[] = {
{ 0, 0 },
{ 100.5, 100 },
{ SK_MaxS32, SK_MaxS32 },
{ SK_MinS32, SK_MinS32 },
{ SK_MaxS32 - 1, SK_MaxS32 - 1 },
{ SK_MinS32 + 1, SK_MinS32 + 1 },
{ SK_MaxS32 * 100.0, SK_MaxS32 },
{ SK_MinS32 * 100.0, SK_MinS32 },
{ SK_ScalarInfinity, SK_MaxS32 },
{ SK_ScalarNegativeInfinity, SK_MinS32 },
{ SK_ScalarNaN, SK_MaxS32 },
};
for (auto r : recs) {
int i = sk_double_saturate2int(r.fDouble);
REPORTER_ASSERT(reporter, r.fExpectedInt == i);
}
}
#if defined(__ARM_NEON)
#include <arm_neon.h>
DEF_TEST(NeonU16Div255, r) {
for (int v = 0; v <= 255*255; v++) {
int want = (v + 127)/255;
uint16x8_t V = vdupq_n_u16(v);
int got = vrshrq_n_u16(vrsraq_n_u16(V, V, 8), 8)[0];
if (got != want) {
SkDebugf("%d -> %d, want %d\n", v, got, want);
}
REPORTER_ASSERT(r, got == want);
}
}
#endif