|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  | #include "Simplify.h" | 
|  |  | 
|  | #undef SkASSERT | 
|  | #define SkASSERT(cond) while (!(cond)) { sk_throw(); } | 
|  |  | 
|  | // Terminology: | 
|  | // A Path contains one of more Contours | 
|  | // A Contour is made up of Segment array | 
|  | // A Segment is described by a Verb and a Point array with 2, 3, or 4 points | 
|  | // A Verb is one of Line, Quad(ratic), or Cubic | 
|  | // A Segment contains a Span array | 
|  | // A Span is describes a portion of a Segment using starting and ending T | 
|  | // T values range from 0 to 1, where 0 is the first Point in the Segment | 
|  | // An Edge is a Segment generated from a Span | 
|  |  | 
|  | // FIXME: remove once debugging is complete | 
|  | #ifdef SK_DEBUG | 
|  | int gDebugMaxWindSum = SK_MaxS32; | 
|  | int gDebugMaxWindValue = SK_MaxS32; | 
|  | #endif | 
|  |  | 
|  | #define PIN_ADD_T 0 | 
|  | #define TRY_ROTATE 1 | 
|  | #define ONE_PASS_COINCIDENCE_CHECK 0 | 
|  | #define APPROXIMATE_CUBICS 1 | 
|  | #define COMPACT_DEBUG_SORT 0 | 
|  |  | 
|  | #define DEBUG_UNUSED 0 // set to expose unused functions | 
|  |  | 
|  | #if FORCE_RELEASE || defined SK_RELEASE | 
|  |  | 
|  | const bool gRunTestsInOneThread = false; | 
|  |  | 
|  | #define DEBUG_ACTIVE_OP 0 | 
|  | #define DEBUG_ACTIVE_SPANS 0 | 
|  | #define DEBUG_ACTIVE_SPANS_SHORT_FORM 0 | 
|  | #define DEBUG_ADD_INTERSECTING_TS 0 | 
|  | #define DEBUG_ADD_T_PAIR 0 | 
|  | #define DEBUG_ANGLE 0 | 
|  | #define DEBUG_AS_C_CODE 1 | 
|  | #define DEBUG_ASSEMBLE 0 | 
|  | #define DEBUG_CONCIDENT 0 | 
|  | #define DEBUG_CROSS 0 | 
|  | #define DEBUG_FLOW 0 | 
|  | #define DEBUG_MARK_DONE 0 | 
|  | #define DEBUG_PATH_CONSTRUCTION 0 | 
|  | #define DEBUG_SHOW_WINDING 0 | 
|  | #define DEBUG_SORT 0 | 
|  | #define DEBUG_SWAP_TOP 0 | 
|  | #define DEBUG_UNSORTABLE 0 | 
|  | #define DEBUG_WIND_BUMP 0 | 
|  | #define DEBUG_WINDING 0 | 
|  | #define DEBUG_WINDING_AT_T 0 | 
|  |  | 
|  | #else | 
|  |  | 
|  | const bool gRunTestsInOneThread = true; | 
|  |  | 
|  | #define DEBUG_ACTIVE_OP 1 | 
|  | #define DEBUG_ACTIVE_SPANS 1 | 
|  | #define DEBUG_ACTIVE_SPANS_SHORT_FORM 0 | 
|  | #define DEBUG_ADD_INTERSECTING_TS 1 | 
|  | #define DEBUG_ADD_T_PAIR 1 | 
|  | #define DEBUG_ANGLE 1 | 
|  | #define DEBUG_AS_C_CODE 1 | 
|  | #define DEBUG_ASSEMBLE 1 | 
|  | #define DEBUG_CONCIDENT 1 | 
|  | #define DEBUG_CROSS 0 | 
|  | #define DEBUG_FLOW 1 | 
|  | #define DEBUG_MARK_DONE 1 | 
|  | #define DEBUG_PATH_CONSTRUCTION 1 | 
|  | #define DEBUG_SHOW_WINDING 0 | 
|  | #define DEBUG_SORT 1 | 
|  | #define DEBUG_SWAP_TOP 1 | 
|  | #define DEBUG_UNSORTABLE 1 | 
|  | #define DEBUG_WIND_BUMP 0 | 
|  | #define DEBUG_WINDING 1 | 
|  | #define DEBUG_WINDING_AT_T 1 | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #define DEBUG_DUMP (DEBUG_ACTIVE_OP | DEBUG_ACTIVE_SPANS | DEBUG_CONCIDENT | DEBUG_SORT | \ | 
|  | DEBUG_PATH_CONSTRUCTION) | 
|  |  | 
|  | #if DEBUG_AS_C_CODE | 
|  | #define CUBIC_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}}" | 
|  | #define QUAD_DEBUG_STR  "{{%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}}" | 
|  | #define LINE_DEBUG_STR  "{{%1.17g,%1.17g}, {%1.17g,%1.17g}}" | 
|  | #define PT_DEBUG_STR "{{%1.17g,%1.17g}}" | 
|  | #else | 
|  | #define CUBIC_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" | 
|  | #define QUAD_DEBUG_STR  "(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" | 
|  | #define LINE_DEBUG_STR  "(%1.9g,%1.9g %1.9g,%1.9g)" | 
|  | #define PT_DEBUG_STR "(%1.9g,%1.9g)" | 
|  | #endif | 
|  | #define T_DEBUG_STR(t, n) #t "[" #n "]=%1.9g" | 
|  | #define TX_DEBUG_STR(t) #t "[%d]=%1.9g" | 
|  | #define CUBIC_DEBUG_DATA(c) c[0].fX, c[0].fY, c[1].fX, c[1].fY, c[2].fX, c[2].fY, c[3].fX, c[3].fY | 
|  | #define QUAD_DEBUG_DATA(q)  q[0].fX, q[0].fY, q[1].fX, q[1].fY, q[2].fX, q[2].fY | 
|  | #define LINE_DEBUG_DATA(l)  l[0].fX, l[0].fY, l[1].fX, l[1].fY | 
|  | #define PT_DEBUG_DATA(i, n) i.fPt[n].x, i.fPt[n].y | 
|  |  | 
|  | #if DEBUG_DUMP | 
|  | static const char* kLVerbStr[] = {"", "line", "quad", "cubic"}; | 
|  | // static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"}; | 
|  | static int gContourID; | 
|  | static int gSegmentID; | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_SORT || DEBUG_SWAP_TOP | 
|  | static int gDebugSortCountDefault = SK_MaxS32; | 
|  | static int gDebugSortCount; | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_ACTIVE_OP | 
|  | static const char* kShapeOpStr[] = {"diff", "sect", "union", "xor"}; | 
|  | #endif | 
|  |  | 
|  | #ifndef DEBUG_TEST | 
|  | #define DEBUG_TEST 0 | 
|  | #endif | 
|  |  | 
|  | #define MAKE_CONST_LINE(line, pts) \ | 
|  | const _Line line = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}} | 
|  | #define MAKE_CONST_QUAD(quad, pts) \ | 
|  | const Quadratic quad = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}, \ | 
|  | {pts[2].fX, pts[2].fY}} | 
|  | #define MAKE_CONST_CUBIC(cubic, pts) \ | 
|  | const Cubic cubic = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}, \ | 
|  | {pts[2].fX, pts[2].fY}, {pts[3].fX, pts[3].fY}} | 
|  |  | 
|  | static int LineIntersect(const SkPoint a[2], const SkPoint b[2], | 
|  | Intersections& intersections) { | 
|  | MAKE_CONST_LINE(aLine, a); | 
|  | MAKE_CONST_LINE(bLine, b); | 
|  | return intersect(aLine, bLine, intersections); | 
|  | } | 
|  |  | 
|  | static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2], | 
|  | Intersections& intersections) { | 
|  | MAKE_CONST_QUAD(aQuad, a); | 
|  | MAKE_CONST_LINE(bLine, b); | 
|  | return intersect(aQuad, bLine, intersections); | 
|  | } | 
|  |  | 
|  | static int CubicLineIntersect(const SkPoint a[4], const SkPoint b[2], | 
|  | Intersections& intersections) { | 
|  | MAKE_CONST_CUBIC(aCubic, a); | 
|  | MAKE_CONST_LINE(bLine, b); | 
|  | return intersect(aCubic, bLine, intersections); | 
|  | } | 
|  |  | 
|  | static int QuadIntersect(const SkPoint a[3], const SkPoint b[3], | 
|  | Intersections& intersections) { | 
|  | MAKE_CONST_QUAD(aQuad, a); | 
|  | MAKE_CONST_QUAD(bQuad, b); | 
|  | #define TRY_QUARTIC_SOLUTION 1 | 
|  | #if TRY_QUARTIC_SOLUTION | 
|  | intersect2(aQuad, bQuad, intersections); | 
|  | #else | 
|  | intersect(aQuad, bQuad, intersections); | 
|  | #endif | 
|  | return intersections.fUsed; | 
|  | } | 
|  |  | 
|  | #if APPROXIMATE_CUBICS | 
|  | static int CubicQuadIntersect(const SkPoint a[4], const SkPoint b[3], | 
|  | Intersections& intersections) { | 
|  | MAKE_CONST_CUBIC(aCubic, a); | 
|  | MAKE_CONST_QUAD(bQuad, b); | 
|  | return intersect(aCubic, bQuad, intersections); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int CubicIntersect(const SkPoint a[4], const SkPoint b[4], Intersections& intersections) { | 
|  | MAKE_CONST_CUBIC(aCubic, a); | 
|  | MAKE_CONST_CUBIC(bCubic, b); | 
|  | #if APPROXIMATE_CUBICS | 
|  | intersect3(aCubic, bCubic, intersections); | 
|  | #else | 
|  | intersect(aCubic, bCubic, intersections); | 
|  | #endif | 
|  | return intersections.fUsed; | 
|  | } | 
|  |  | 
|  | static int CubicIntersect(const SkPoint a[4], Intersections& intersections) { | 
|  | MAKE_CONST_CUBIC(aCubic, a); | 
|  | return intersect(aCubic, intersections); | 
|  | } | 
|  |  | 
|  | static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right, | 
|  | SkScalar y, bool flipped, Intersections& intersections) { | 
|  | MAKE_CONST_LINE(aLine, a); | 
|  | return horizontalIntersect(aLine, left, right, y, flipped, intersections); | 
|  | } | 
|  |  | 
|  | static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right, | 
|  | SkScalar y, bool flipped, Intersections& intersections) { | 
|  | MAKE_CONST_QUAD(aQuad, a); | 
|  | return horizontalIntersect(aQuad, left, right, y, flipped, intersections); | 
|  | } | 
|  |  | 
|  | static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right, | 
|  | SkScalar y, bool flipped, Intersections& intersections) { | 
|  | MAKE_CONST_CUBIC(aCubic, a); | 
|  | return horizontalIntersect(aCubic, left, right, y, flipped, intersections); | 
|  | } | 
|  |  | 
|  | static int (* const HSegmentIntersect[])(const SkPoint [], SkScalar , | 
|  | SkScalar , SkScalar , bool , Intersections& ) = { | 
|  | NULL, | 
|  | HLineIntersect, | 
|  | HQuadIntersect, | 
|  | HCubicIntersect | 
|  | }; | 
|  |  | 
|  | static int VLineIntersect(const SkPoint a[2], SkScalar top, SkScalar bottom, | 
|  | SkScalar x, bool flipped, Intersections& intersections) { | 
|  | MAKE_CONST_LINE(aLine, a); | 
|  | return verticalIntersect(aLine, top, bottom, x, flipped, intersections); | 
|  | } | 
|  |  | 
|  | static int VQuadIntersect(const SkPoint a[3], SkScalar top, SkScalar bottom, | 
|  | SkScalar x, bool flipped, Intersections& intersections) { | 
|  | MAKE_CONST_QUAD(aQuad, a); | 
|  | return verticalIntersect(aQuad, top, bottom, x, flipped, intersections); | 
|  | } | 
|  |  | 
|  | static int VCubicIntersect(const SkPoint a[4], SkScalar top, SkScalar bottom, | 
|  | SkScalar x, bool flipped, Intersections& intersections) { | 
|  | MAKE_CONST_CUBIC(aCubic, a); | 
|  | return verticalIntersect(aCubic, top, bottom, x, flipped, intersections); | 
|  | } | 
|  |  | 
|  | static int (* const VSegmentIntersect[])(const SkPoint [], SkScalar , | 
|  | SkScalar , SkScalar , bool , Intersections& ) = { | 
|  | NULL, | 
|  | VLineIntersect, | 
|  | VQuadIntersect, | 
|  | VCubicIntersect | 
|  | }; | 
|  |  | 
|  | static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) { | 
|  | MAKE_CONST_LINE(line, a); | 
|  | double x, y; | 
|  | xy_at_t(line, t, x, y); | 
|  | out->fX = SkDoubleToScalar(x); | 
|  | out->fY = SkDoubleToScalar(y); | 
|  | } | 
|  |  | 
|  | static void LineXYAtT(const SkPoint a[2], double t, _Point* out) { | 
|  | MAKE_CONST_LINE(line, a); | 
|  | xy_at_t(line, t, out->x, out->y); | 
|  | } | 
|  |  | 
|  | static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) { | 
|  | MAKE_CONST_QUAD(quad, a); | 
|  | double x, y; | 
|  | xy_at_t(quad, t, x, y); | 
|  | out->fX = SkDoubleToScalar(x); | 
|  | out->fY = SkDoubleToScalar(y); | 
|  | } | 
|  |  | 
|  | static void QuadXYAtT(const SkPoint a[3], double t, _Point* out) { | 
|  | MAKE_CONST_QUAD(quad, a); | 
|  | xy_at_t(quad, t, out->x, out->y); | 
|  | } | 
|  |  | 
|  | static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) { | 
|  | MAKE_CONST_CUBIC(cubic, a); | 
|  | double x, y; | 
|  | xy_at_t(cubic, t, x, y); | 
|  | out->fX = SkDoubleToScalar(x); | 
|  | out->fY = SkDoubleToScalar(y); | 
|  | } | 
|  |  | 
|  | static void CubicXYAtT(const SkPoint a[4], double t, _Point* out) { | 
|  | MAKE_CONST_CUBIC(cubic, a); | 
|  | xy_at_t(cubic, t, out->x, out->y); | 
|  | } | 
|  |  | 
|  | static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = { | 
|  | NULL, | 
|  | LineXYAtT, | 
|  | QuadXYAtT, | 
|  | CubicXYAtT | 
|  | }; | 
|  |  | 
|  | static void (* const SegmentXYAtT2[])(const SkPoint [], double , _Point* ) = { | 
|  | NULL, | 
|  | LineXYAtT, | 
|  | QuadXYAtT, | 
|  | CubicXYAtT | 
|  | }; | 
|  |  | 
|  | static SkScalar LineXAtT(const SkPoint a[2], double t) { | 
|  | MAKE_CONST_LINE(aLine, a); | 
|  | double x; | 
|  | xy_at_t(aLine, t, x, *(double*) 0); | 
|  | return SkDoubleToScalar(x); | 
|  | } | 
|  |  | 
|  | static SkScalar QuadXAtT(const SkPoint a[3], double t) { | 
|  | MAKE_CONST_QUAD(quad, a); | 
|  | double x; | 
|  | xy_at_t(quad, t, x, *(double*) 0); | 
|  | return SkDoubleToScalar(x); | 
|  | } | 
|  |  | 
|  | static SkScalar CubicXAtT(const SkPoint a[4], double t) { | 
|  | MAKE_CONST_CUBIC(cubic, a); | 
|  | double x; | 
|  | xy_at_t(cubic, t, x, *(double*) 0); | 
|  | return SkDoubleToScalar(x); | 
|  | } | 
|  |  | 
|  | static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = { | 
|  | NULL, | 
|  | LineXAtT, | 
|  | QuadXAtT, | 
|  | CubicXAtT | 
|  | }; | 
|  |  | 
|  | static SkScalar LineYAtT(const SkPoint a[2], double t) { | 
|  | MAKE_CONST_LINE(aLine, a); | 
|  | double y; | 
|  | xy_at_t(aLine, t, *(double*) 0, y); | 
|  | return SkDoubleToScalar(y); | 
|  | } | 
|  |  | 
|  | static SkScalar QuadYAtT(const SkPoint a[3], double t) { | 
|  | MAKE_CONST_QUAD(quad, a); | 
|  | double y; | 
|  | xy_at_t(quad, t, *(double*) 0, y); | 
|  | return SkDoubleToScalar(y); | 
|  | } | 
|  |  | 
|  | static SkScalar CubicYAtT(const SkPoint a[4], double t) { | 
|  | MAKE_CONST_CUBIC(cubic, a); | 
|  | double y; | 
|  | xy_at_t(cubic, t, *(double*) 0, y); | 
|  | return SkDoubleToScalar(y); | 
|  | } | 
|  |  | 
|  | static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = { | 
|  | NULL, | 
|  | LineYAtT, | 
|  | QuadYAtT, | 
|  | CubicYAtT | 
|  | }; | 
|  |  | 
|  | static SkScalar LineDXAtT(const SkPoint a[2], double ) { | 
|  | return a[1].fX - a[0].fX; | 
|  | } | 
|  |  | 
|  | static SkScalar QuadDXAtT(const SkPoint a[3], double t) { | 
|  | MAKE_CONST_QUAD(quad, a); | 
|  | double x = dx_at_t(quad, t); | 
|  | return SkDoubleToScalar(x); | 
|  | } | 
|  |  | 
|  | static SkScalar CubicDXAtT(const SkPoint a[4], double t) { | 
|  | MAKE_CONST_CUBIC(cubic, a); | 
|  | double x = dx_at_t(cubic, t); | 
|  | return SkDoubleToScalar(x); | 
|  | } | 
|  |  | 
|  | static SkScalar (* const SegmentDXAtT[])(const SkPoint [], double ) = { | 
|  | NULL, | 
|  | LineDXAtT, | 
|  | QuadDXAtT, | 
|  | CubicDXAtT | 
|  | }; | 
|  |  | 
|  | static SkScalar LineDYAtT(const SkPoint a[2], double ) { | 
|  | return a[1].fY - a[0].fY; | 
|  | } | 
|  |  | 
|  | static SkScalar QuadDYAtT(const SkPoint a[3], double t) { | 
|  | MAKE_CONST_QUAD(quad, a); | 
|  | double y = dy_at_t(quad, t); | 
|  | return SkDoubleToScalar(y); | 
|  | } | 
|  |  | 
|  | static SkScalar CubicDYAtT(const SkPoint a[4], double t) { | 
|  | MAKE_CONST_CUBIC(cubic, a); | 
|  | double y = dy_at_t(cubic, t); | 
|  | return SkDoubleToScalar(y); | 
|  | } | 
|  |  | 
|  | static SkScalar (* const SegmentDYAtT[])(const SkPoint [], double ) = { | 
|  | NULL, | 
|  | LineDYAtT, | 
|  | QuadDYAtT, | 
|  | CubicDYAtT | 
|  | }; | 
|  |  | 
|  | static SkVector LineDXDYAtT(const SkPoint a[2], double ) { | 
|  | return a[1] - a[0]; | 
|  | } | 
|  |  | 
|  | static SkVector QuadDXDYAtT(const SkPoint a[3], double t) { | 
|  | MAKE_CONST_QUAD(quad, a); | 
|  | _Vector v = dxdy_at_t(quad, t); | 
|  | return v.asSkVector(); | 
|  | } | 
|  |  | 
|  | static SkVector CubicDXDYAtT(const SkPoint a[4], double t) { | 
|  | MAKE_CONST_CUBIC(cubic, a); | 
|  | _Vector v = dxdy_at_t(cubic, t); | 
|  | return v.asSkVector(); | 
|  | } | 
|  |  | 
|  | static SkVector (* const SegmentDXDYAtT[])(const SkPoint [], double ) = { | 
|  | NULL, | 
|  | LineDXDYAtT, | 
|  | QuadDXDYAtT, | 
|  | CubicDXDYAtT | 
|  | }; | 
|  |  | 
|  | static void LineSubDivide(const SkPoint a[2], double startT, double endT, | 
|  | SkPoint sub[2]) { | 
|  | MAKE_CONST_LINE(aLine, a); | 
|  | _Line dst; | 
|  | sub_divide(aLine, startT, endT, dst); | 
|  | sub[0].fX = SkDoubleToScalar(dst[0].x); | 
|  | sub[0].fY = SkDoubleToScalar(dst[0].y); | 
|  | sub[1].fX = SkDoubleToScalar(dst[1].x); | 
|  | sub[1].fY = SkDoubleToScalar(dst[1].y); | 
|  | } | 
|  |  | 
|  | static void QuadSubDivide(const SkPoint a[3], double startT, double endT, | 
|  | SkPoint sub[3]) { | 
|  | MAKE_CONST_QUAD(aQuad, a); | 
|  | Quadratic dst; | 
|  | sub_divide(aQuad, startT, endT, dst); | 
|  | sub[0].fX = SkDoubleToScalar(dst[0].x); | 
|  | sub[0].fY = SkDoubleToScalar(dst[0].y); | 
|  | sub[1].fX = SkDoubleToScalar(dst[1].x); | 
|  | sub[1].fY = SkDoubleToScalar(dst[1].y); | 
|  | sub[2].fX = SkDoubleToScalar(dst[2].x); | 
|  | sub[2].fY = SkDoubleToScalar(dst[2].y); | 
|  | } | 
|  |  | 
|  | static void CubicSubDivide(const SkPoint a[4], double startT, double endT, | 
|  | SkPoint sub[4]) { | 
|  | MAKE_CONST_CUBIC(aCubic, a); | 
|  | Cubic dst; | 
|  | sub_divide(aCubic, startT, endT, dst); | 
|  | sub[0].fX = SkDoubleToScalar(dst[0].x); | 
|  | sub[0].fY = SkDoubleToScalar(dst[0].y); | 
|  | sub[1].fX = SkDoubleToScalar(dst[1].x); | 
|  | sub[1].fY = SkDoubleToScalar(dst[1].y); | 
|  | sub[2].fX = SkDoubleToScalar(dst[2].x); | 
|  | sub[2].fY = SkDoubleToScalar(dst[2].y); | 
|  | sub[3].fX = SkDoubleToScalar(dst[3].x); | 
|  | sub[3].fY = SkDoubleToScalar(dst[3].y); | 
|  | } | 
|  |  | 
|  | static void (* const SegmentSubDivide[])(const SkPoint [], double , double , | 
|  | SkPoint []) = { | 
|  | NULL, | 
|  | LineSubDivide, | 
|  | QuadSubDivide, | 
|  | CubicSubDivide | 
|  | }; | 
|  |  | 
|  | static void LineSubDivideHD(const SkPoint a[2], double startT, double endT, _Line& dst) { | 
|  | MAKE_CONST_LINE(aLine, a); | 
|  | sub_divide(aLine, startT, endT, dst); | 
|  | } | 
|  |  | 
|  | static void QuadSubDivideHD(const SkPoint a[3], double startT, double endT, Quadratic& dst) { | 
|  | MAKE_CONST_QUAD(aQuad, a); | 
|  | sub_divide(aQuad, startT, endT, dst); | 
|  | } | 
|  |  | 
|  | static void CubicSubDivideHD(const SkPoint a[4], double startT, double endT, Cubic& dst) { | 
|  | MAKE_CONST_CUBIC(aCubic, a); | 
|  | sub_divide(aCubic, startT, endT, dst); | 
|  | } | 
|  |  | 
|  | static SkPoint QuadTop(const SkPoint a[3], double startT, double endT) { | 
|  | MAKE_CONST_QUAD(quad, a); | 
|  | _Point topPt = top(quad, startT, endT); | 
|  | return topPt.asSkPoint(); | 
|  | } | 
|  |  | 
|  | static SkPoint CubicTop(const SkPoint a[3], double startT, double endT) { | 
|  | MAKE_CONST_CUBIC(cubic, a); | 
|  | _Point topPt = top(cubic, startT, endT); | 
|  | return topPt.asSkPoint(); | 
|  | } | 
|  |  | 
|  | static SkPoint (* SegmentTop[])(const SkPoint[], double , double ) = { | 
|  | NULL, | 
|  | NULL, | 
|  | QuadTop, | 
|  | CubicTop | 
|  | }; | 
|  |  | 
|  | #if DEBUG_UNUSED | 
|  | static void QuadSubBounds(const SkPoint a[3], double startT, double endT, | 
|  | SkRect& bounds) { | 
|  | SkPoint dst[3]; | 
|  | QuadSubDivide(a, startT, endT, dst); | 
|  | bounds.fLeft = bounds.fRight = dst[0].fX; | 
|  | bounds.fTop = bounds.fBottom = dst[0].fY; | 
|  | for (int index = 1; index < 3; ++index) { | 
|  | bounds.growToInclude(dst[index].fX, dst[index].fY); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void CubicSubBounds(const SkPoint a[4], double startT, double endT, | 
|  | SkRect& bounds) { | 
|  | SkPoint dst[4]; | 
|  | CubicSubDivide(a, startT, endT, dst); | 
|  | bounds.fLeft = bounds.fRight = dst[0].fX; | 
|  | bounds.fTop = bounds.fBottom = dst[0].fY; | 
|  | for (int index = 1; index < 4; ++index) { | 
|  | bounds.growToInclude(dst[index].fX, dst[index].fY); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static SkPath::Verb QuadReduceOrder(const SkPoint a[3], | 
|  | SkTDArray<SkPoint>& reducePts) { | 
|  | MAKE_CONST_QUAD(aQuad, a); | 
|  | Quadratic dst; | 
|  | int order = reduceOrder(aQuad, dst, kReduceOrder_TreatAsFill); | 
|  | if (order == 2) { // quad became line | 
|  | for (int index = 0; index < order; ++index) { | 
|  | SkPoint* pt = reducePts.append(); | 
|  | pt->fX = SkDoubleToScalar(dst[index].x); | 
|  | pt->fY = SkDoubleToScalar(dst[index].y); | 
|  | } | 
|  | } | 
|  | return (SkPath::Verb) (order - 1); | 
|  | } | 
|  |  | 
|  | static SkPath::Verb CubicReduceOrder(const SkPoint a[4], | 
|  | SkTDArray<SkPoint>& reducePts) { | 
|  | MAKE_CONST_CUBIC(aCubic, a); | 
|  | Cubic dst; | 
|  | int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); | 
|  | if (order == 2 || order == 3) { // cubic became line or quad | 
|  | for (int index = 0; index < order; ++index) { | 
|  | SkPoint* pt = reducePts.append(); | 
|  | pt->fX = SkDoubleToScalar(dst[index].x); | 
|  | pt->fY = SkDoubleToScalar(dst[index].y); | 
|  | } | 
|  | } | 
|  | return (SkPath::Verb) (order - 1); | 
|  | } | 
|  |  | 
|  | static bool QuadIsLinear(const SkPoint a[3]) { | 
|  | MAKE_CONST_QUAD(aQuad, a); | 
|  | return isLinear(aQuad, 0, 2); | 
|  | } | 
|  |  | 
|  | static bool CubicIsLinear(const SkPoint a[4]) { | 
|  | MAKE_CONST_CUBIC(aCubic, a); | 
|  | return isLinear(aCubic, 0, 3); | 
|  | } | 
|  |  | 
|  | static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) { | 
|  | MAKE_CONST_LINE(aLine, a); | 
|  | double x[2]; | 
|  | xy_at_t(aLine, startT, x[0], *(double*) 0); | 
|  | xy_at_t(aLine, endT, x[1], *(double*) 0); | 
|  | return SkMinScalar((float) x[0], (float) x[1]); | 
|  | } | 
|  |  | 
|  | static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) { | 
|  | MAKE_CONST_QUAD(aQuad, a); | 
|  | return (float) leftMostT(aQuad, startT, endT); | 
|  | } | 
|  |  | 
|  | static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) { | 
|  | MAKE_CONST_CUBIC(aCubic, a); | 
|  | return (float) leftMostT(aCubic, startT, endT); | 
|  | } | 
|  |  | 
|  | static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = { | 
|  | NULL, | 
|  | LineLeftMost, | 
|  | QuadLeftMost, | 
|  | CubicLeftMost | 
|  | }; | 
|  |  | 
|  | #if 0 // currently unused | 
|  | static int QuadRayIntersect(const SkPoint a[3], const SkPoint b[2], | 
|  | Intersections& intersections) { | 
|  | MAKE_CONST_QUAD(aQuad, a); | 
|  | MAKE_CONST_LINE(bLine, b); | 
|  | return intersectRay(aQuad, bLine, intersections); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int QuadRayIntersect(const SkPoint a[3], const _Line& bLine, Intersections& intersections) { | 
|  | MAKE_CONST_QUAD(aQuad, a); | 
|  | return intersectRay(aQuad, bLine, intersections); | 
|  | } | 
|  |  | 
|  | static int CubicRayIntersect(const SkPoint a[3], const _Line& bLine, Intersections& intersections) { | 
|  | MAKE_CONST_CUBIC(aCubic, a); | 
|  | return intersectRay(aCubic, bLine, intersections); | 
|  | } | 
|  |  | 
|  | static int (* const SegmentRayIntersect[])(const SkPoint [], const _Line& , Intersections&) = { | 
|  | NULL, | 
|  | NULL, | 
|  | QuadRayIntersect, | 
|  | CubicRayIntersect | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | static bool LineVertical(const SkPoint a[2], double startT, double endT) { | 
|  | MAKE_CONST_LINE(aLine, a); | 
|  | double x[2]; | 
|  | xy_at_t(aLine, startT, x[0], *(double*) 0); | 
|  | xy_at_t(aLine, endT, x[1], *(double*) 0); | 
|  | return AlmostEqualUlps((float) x[0], (float) x[1]); | 
|  | } | 
|  |  | 
|  | static bool QuadVertical(const SkPoint a[3], double startT, double endT) { | 
|  | SkPoint dst[3]; | 
|  | QuadSubDivide(a, startT, endT, dst); | 
|  | return AlmostEqualUlps(dst[0].fX, dst[1].fX) && AlmostEqualUlps(dst[1].fX, dst[2].fX); | 
|  | } | 
|  |  | 
|  | static bool CubicVertical(const SkPoint a[4], double startT, double endT) { | 
|  | SkPoint dst[4]; | 
|  | CubicSubDivide(a, startT, endT, dst); | 
|  | return AlmostEqualUlps(dst[0].fX, dst[1].fX) && AlmostEqualUlps(dst[1].fX, dst[2].fX) | 
|  | && AlmostEqualUlps(dst[2].fX, dst[3].fX); | 
|  | } | 
|  |  | 
|  | static bool (* const SegmentVertical[])(const SkPoint [], double , double) = { | 
|  | NULL, | 
|  | LineVertical, | 
|  | QuadVertical, | 
|  | CubicVertical | 
|  | }; | 
|  |  | 
|  | class Segment; | 
|  |  | 
|  | struct Span { | 
|  | Segment* fOther; | 
|  | mutable SkPoint fPt; // lazily computed as needed | 
|  | double fT; | 
|  | double fOtherT; // value at fOther[fOtherIndex].fT | 
|  | int fOtherIndex;  // can't be used during intersection | 
|  | int fWindSum; // accumulated from contours surrounding this one. | 
|  | int fOppSum; // for binary operators: the opposite winding sum | 
|  | int fWindValue; // 0 == canceled; 1 == normal; >1 == coincident | 
|  | int fOppValue; // normally 0 -- when binary coincident edges combine, opp value goes here | 
|  | bool fDone; // if set, this span to next higher T has been processed | 
|  | bool fUnsortableStart; // set when start is part of an unsortable pair | 
|  | bool fUnsortableEnd; // set when end is part of an unsortable pair | 
|  | bool fTiny; // if set, span may still be considered once for edge following | 
|  | bool fLoop; // set when a cubic loops back to this point | 
|  | }; | 
|  |  | 
|  | // sorting angles | 
|  | // given angles of {dx dy ddx ddy dddx dddy} sort them | 
|  | class Angle { | 
|  | public: | 
|  | // FIXME: this is bogus for quads and cubics | 
|  | // if the quads and cubics' line from end pt to ctrl pt are coincident, | 
|  | // there's no obvious way to determine the curve ordering from the | 
|  | // derivatives alone. In particular, if one quadratic's coincident tangent | 
|  | // is longer than the other curve, the final control point can place the | 
|  | // longer curve on either side of the shorter one. | 
|  | // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf | 
|  | // may provide some help, but nothing has been figured out yet. | 
|  |  | 
|  | /*( | 
|  | for quads and cubics, set up a parameterized line (e.g. LineParameters ) | 
|  | for points [0] to [1]. See if point [2] is on that line, or on one side | 
|  | or the other. If it both quads' end points are on the same side, choose | 
|  | the shorter tangent. If the tangents are equal, choose the better second | 
|  | tangent angle | 
|  |  | 
|  | maybe I could set up LineParameters lazily | 
|  | */ | 
|  | bool operator<(const Angle& rh) const { | 
|  | double y = dy(); | 
|  | double ry = rh.dy(); | 
|  | if ((y < 0) ^ (ry < 0)) { // OPTIMIZATION: better to use y * ry < 0 ? | 
|  | return y < 0; | 
|  | } | 
|  | double x = dx(); | 
|  | double rx = rh.dx(); | 
|  | if (y == 0 && ry == 0 && x * rx < 0) { | 
|  | return x < rx; | 
|  | } | 
|  | double x_ry = x * ry; | 
|  | double rx_y = rx * y; | 
|  | double cmp = x_ry - rx_y; | 
|  | if (!approximately_zero(cmp)) { | 
|  | return cmp < 0; | 
|  | } | 
|  | if (approximately_zero(x_ry) && approximately_zero(rx_y) | 
|  | && !approximately_zero_squared(cmp)) { | 
|  | return cmp < 0; | 
|  | } | 
|  | // at this point, the initial tangent line is coincident | 
|  | // see if edges curl away from each other | 
|  | if (fSide * rh.fSide <= 0 && (!approximately_zero(fSide) | 
|  | || !approximately_zero(rh.fSide))) { | 
|  | // FIXME: running demo will trigger this assertion | 
|  | // (don't know if commenting out will trigger further assertion or not) | 
|  | // commenting it out allows demo to run in release, though | 
|  | //       SkASSERT(fSide != rh.fSide); | 
|  | return fSide < rh.fSide; | 
|  | } | 
|  | // see if either curve can be lengthened and try the tangent compare again | 
|  | if (cmp && (*fSpans)[fEnd].fOther != rh.fSegment // tangents not absolutely identical | 
|  | && (*rh.fSpans)[rh.fEnd].fOther != fSegment) { // and not intersecting | 
|  | Angle longer = *this; | 
|  | Angle rhLonger = rh; | 
|  | if (longer.lengthen() | rhLonger.lengthen()) { | 
|  | return longer < rhLonger; | 
|  | } | 
|  | #if 0 | 
|  | // what if we extend in the other direction? | 
|  | longer = *this; | 
|  | rhLonger = rh; | 
|  | if (longer.reverseLengthen() | rhLonger.reverseLengthen()) { | 
|  | return longer < rhLonger; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | if ((fVerb == SkPath::kLine_Verb && approximately_zero(x) && approximately_zero(y)) | 
|  | || (rh.fVerb == SkPath::kLine_Verb | 
|  | && approximately_zero(rx) && approximately_zero(ry))) { | 
|  | // See general unsortable comment below. This case can happen when | 
|  | // one line has a non-zero change in t but no change in x and y. | 
|  | fUnsortable = true; | 
|  | rh.fUnsortable = true; | 
|  | return this < &rh; // even with no solution, return a stable sort | 
|  | } | 
|  | if ((*rh.fSpans)[SkMin32(rh.fStart, rh.fEnd)].fTiny | 
|  | || (*fSpans)[SkMin32(fStart, fEnd)].fTiny) { | 
|  | fUnsortable = true; | 
|  | rh.fUnsortable = true; | 
|  | return this < &rh; // even with no solution, return a stable sort | 
|  | } | 
|  | SkASSERT(fVerb >= SkPath::kQuad_Verb); | 
|  | SkASSERT(rh.fVerb >= SkPath::kQuad_Verb); | 
|  | // FIXME: until I can think of something better, project a ray from the | 
|  | // end of the shorter tangent to midway between the end points | 
|  | // through both curves and use the resulting angle to sort | 
|  | // FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive | 
|  | double len = fTangent1.normalSquared(); | 
|  | double rlen = rh.fTangent1.normalSquared(); | 
|  | _Line ray; | 
|  | Intersections i, ri; | 
|  | int roots, rroots; | 
|  | bool flip = false; | 
|  | do { | 
|  | bool useThis = (len < rlen) ^ flip; | 
|  | const Cubic& part = useThis ? fCurvePart : rh.fCurvePart; | 
|  | SkPath::Verb partVerb = useThis ? fVerb : rh.fVerb; | 
|  | ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqual(part[1]) ? | 
|  | part[2] : part[1]; | 
|  | ray[1].x = (part[0].x + part[partVerb].x) / 2; | 
|  | ray[1].y = (part[0].y + part[partVerb].y) / 2; | 
|  | SkASSERT(ray[0] != ray[1]); | 
|  | roots = (*SegmentRayIntersect[fVerb])(fPts, ray, i); | 
|  | rroots = (*SegmentRayIntersect[rh.fVerb])(rh.fPts, ray, ri); | 
|  | } while ((roots == 0 || rroots == 0) && (flip ^= true)); | 
|  | if (roots == 0 || rroots == 0) { | 
|  | // FIXME: we don't have a solution in this case. The interim solution | 
|  | // is to mark the edges as unsortable, exclude them from this and | 
|  | // future computations, and allow the returned path to be fragmented | 
|  | fUnsortable = true; | 
|  | rh.fUnsortable = true; | 
|  | return this < &rh; // even with no solution, return a stable sort | 
|  | } | 
|  | _Point loc; | 
|  | double best = SK_ScalarInfinity; | 
|  | double dx, dy, dist; | 
|  | int index; | 
|  | for (index = 0; index < roots; ++index) { | 
|  | (*SegmentXYAtT2[fVerb])(fPts, i.fT[0][index], &loc); | 
|  | dx = loc.x - ray[0].x; | 
|  | dy = loc.y - ray[0].y; | 
|  | dist = dx * dx + dy * dy; | 
|  | if (best > dist) { | 
|  | best = dist; | 
|  | } | 
|  | } | 
|  | for (index = 0; index < rroots; ++index) { | 
|  | (*SegmentXYAtT2[rh.fVerb])(rh.fPts, ri.fT[0][index], &loc); | 
|  | dx = loc.x - ray[0].x; | 
|  | dy = loc.y - ray[0].y; | 
|  | dist = dx * dx + dy * dy; | 
|  | if (best > dist) { | 
|  | return fSide < 0; | 
|  | } | 
|  | } | 
|  | return fSide > 0; | 
|  | } | 
|  |  | 
|  | double dx() const { | 
|  | return fTangent1.dx(); | 
|  | } | 
|  |  | 
|  | double dy() const { | 
|  | return fTangent1.dy(); | 
|  | } | 
|  |  | 
|  | int end() const { | 
|  | return fEnd; | 
|  | } | 
|  |  | 
|  | bool isHorizontal() const { | 
|  | return dy() == 0 && fVerb == SkPath::kLine_Verb; | 
|  | } | 
|  |  | 
|  | bool lengthen() { | 
|  | int newEnd = fEnd; | 
|  | if (fStart < fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) { | 
|  | fEnd = newEnd; | 
|  | setSpans(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool reverseLengthen() { | 
|  | if (fReversed) { | 
|  | return false; | 
|  | } | 
|  | int newEnd = fStart; | 
|  | if (fStart > fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) { | 
|  | fEnd = newEnd; | 
|  | fReversed = true; | 
|  | setSpans(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void set(const SkPoint* orig, SkPath::Verb verb, const Segment* segment, | 
|  | int start, int end, const SkTDArray<Span>& spans) { | 
|  | fSegment = segment; | 
|  | fStart = start; | 
|  | fEnd = end; | 
|  | fPts = orig; | 
|  | fVerb = verb; | 
|  | fSpans = &spans; | 
|  | fReversed = false; | 
|  | fUnsortable = false; | 
|  | setSpans(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void setSpans() { | 
|  | double startT = (*fSpans)[fStart].fT; | 
|  | double endT = (*fSpans)[fEnd].fT; | 
|  | switch (fVerb) { | 
|  | case SkPath::kLine_Verb: | 
|  | _Line l; | 
|  | LineSubDivideHD(fPts, startT, endT, l); | 
|  | // OPTIMIZATION: for pure line compares, we never need fTangent1.c | 
|  | fTangent1.lineEndPoints(l); | 
|  | fSide = 0; | 
|  | break; | 
|  | case SkPath::kQuad_Verb: { | 
|  | Quadratic& quad = (Quadratic&)fCurvePart; | 
|  | QuadSubDivideHD(fPts, startT, endT, quad); | 
|  | fTangent1.quadEndPoints(quad, 0, 1); | 
|  | if (dx() == 0 && dy() == 0) { | 
|  | fTangent1.quadEndPoints(quad); | 
|  | } | 
|  | fSide = -fTangent1.pointDistance(fCurvePart[2]); // not normalized -- compare sign only | 
|  | } break; | 
|  | case SkPath::kCubic_Verb: { | 
|  | int nextC = 2; | 
|  | CubicSubDivideHD(fPts, startT, endT, fCurvePart); | 
|  | fTangent1.cubicEndPoints(fCurvePart, 0, 1); | 
|  | if (dx() == 0 && dy() == 0) { | 
|  | fTangent1.cubicEndPoints(fCurvePart, 0, 2); | 
|  | nextC = 3; | 
|  | if (dx() == 0 && dy() == 0) { | 
|  | fTangent1.cubicEndPoints(fCurvePart, 0, 3); | 
|  | } | 
|  | } | 
|  | fSide = -fTangent1.pointDistance(fCurvePart[nextC]); // compare sign only | 
|  | if (nextC == 2 && approximately_zero(fSide)) { | 
|  | fSide = -fTangent1.pointDistance(fCurvePart[3]); | 
|  | } | 
|  | } break; | 
|  | default: | 
|  | SkASSERT(0); | 
|  | } | 
|  | fUnsortable = dx() == 0 && dy() == 0; | 
|  | if (fUnsortable) { | 
|  | return; | 
|  | } | 
|  | SkASSERT(fStart != fEnd); | 
|  | int step = fStart < fEnd ? 1 : -1; // OPTIMIZE: worth fStart - fEnd >> 31 type macro? | 
|  | for (int index = fStart; index != fEnd; index += step) { | 
|  | #if 1 | 
|  | const Span& thisSpan = (*fSpans)[index]; | 
|  | const Span& nextSpan = (*fSpans)[index + step]; | 
|  | if (thisSpan.fTiny || precisely_equal(thisSpan.fT, nextSpan.fT)) { | 
|  | continue; | 
|  | } | 
|  | fUnsortable = step > 0 ? thisSpan.fUnsortableStart : nextSpan.fUnsortableEnd; | 
|  | #if DEBUG_UNSORTABLE | 
|  | if (fUnsortable) { | 
|  | SkPoint iPt, ePt; | 
|  | (*SegmentXYAtT[fVerb])(fPts, thisSpan.fT, &iPt); | 
|  | (*SegmentXYAtT[fVerb])(fPts, nextSpan.fT, &ePt); | 
|  | SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, | 
|  | index, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); | 
|  | } | 
|  | #endif | 
|  | return; | 
|  | #else | 
|  | if ((*fSpans)[index].fUnsortableStart) { | 
|  | fUnsortable = true; | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #if 1 | 
|  | #if DEBUG_UNSORTABLE | 
|  | SkPoint iPt, ePt; | 
|  | (*SegmentXYAtT[fVerb])(fPts, startT, &iPt); | 
|  | (*SegmentXYAtT[fVerb])(fPts, endT, &ePt); | 
|  | SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, | 
|  | fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); | 
|  | #endif | 
|  | fUnsortable = true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | Segment* segment() const { | 
|  | return const_cast<Segment*>(fSegment); | 
|  | } | 
|  |  | 
|  | int sign() const { | 
|  | return SkSign32(fStart - fEnd); | 
|  | } | 
|  |  | 
|  | const SkTDArray<Span>* spans() const { | 
|  | return fSpans; | 
|  | } | 
|  |  | 
|  | int start() const { | 
|  | return fStart; | 
|  | } | 
|  |  | 
|  | bool unsortable() const { | 
|  | return fUnsortable; | 
|  | } | 
|  |  | 
|  | #if DEBUG_ANGLE | 
|  | const SkPoint* pts() const { | 
|  | return fPts; | 
|  | } | 
|  |  | 
|  | SkPath::Verb verb() const { | 
|  | return fVerb; | 
|  | } | 
|  |  | 
|  | void debugShow(const SkPoint& a) const { | 
|  | SkDebugf("    d=(%1.9g,%1.9g) side=%1.9g\n", dx(), dy(), fSide); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | private: | 
|  | const SkPoint* fPts; | 
|  | Cubic fCurvePart; | 
|  | SkPath::Verb fVerb; | 
|  | double fSide; | 
|  | LineParameters fTangent1; | 
|  | const SkTDArray<Span>* fSpans; | 
|  | const Segment* fSegment; | 
|  | int fStart; | 
|  | int fEnd; | 
|  | bool fReversed; | 
|  | mutable bool fUnsortable; // this alone is editable by the less than operator | 
|  | }; | 
|  |  | 
|  | // Bounds, unlike Rect, does not consider a line to be empty. | 
|  | struct Bounds : public SkRect { | 
|  | static bool Intersects(const Bounds& a, const Bounds& b) { | 
|  | return a.fLeft <= b.fRight && b.fLeft <= a.fRight && | 
|  | a.fTop <= b.fBottom && b.fTop <= a.fBottom; | 
|  | } | 
|  |  | 
|  | void add(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { | 
|  | if (left < fLeft) { | 
|  | fLeft = left; | 
|  | } | 
|  | if (top < fTop) { | 
|  | fTop = top; | 
|  | } | 
|  | if (right > fRight) { | 
|  | fRight = right; | 
|  | } | 
|  | if (bottom > fBottom) { | 
|  | fBottom = bottom; | 
|  | } | 
|  | } | 
|  |  | 
|  | void add(const Bounds& toAdd) { | 
|  | add(toAdd.fLeft, toAdd.fTop, toAdd.fRight, toAdd.fBottom); | 
|  | } | 
|  |  | 
|  | void add(const SkPoint& pt) { | 
|  | if (pt.fX < fLeft) fLeft = pt.fX; | 
|  | if (pt.fY < fTop) fTop = pt.fY; | 
|  | if (pt.fX > fRight) fRight = pt.fX; | 
|  | if (pt.fY > fBottom) fBottom = pt.fY; | 
|  | } | 
|  |  | 
|  | bool isEmpty() { | 
|  | return fLeft > fRight || fTop > fBottom | 
|  | || (fLeft == fRight && fTop == fBottom) | 
|  | || sk_double_isnan(fLeft) || sk_double_isnan(fRight) | 
|  | || sk_double_isnan(fTop) || sk_double_isnan(fBottom); | 
|  | } | 
|  |  | 
|  | void setCubicBounds(const SkPoint a[4]) { | 
|  | _Rect dRect; | 
|  | MAKE_CONST_CUBIC(cubic, a); | 
|  | dRect.setBounds(cubic); | 
|  | set((float) dRect.left, (float) dRect.top, (float) dRect.right, | 
|  | (float) dRect.bottom); | 
|  | } | 
|  |  | 
|  | void setLineBounds(const SkPoint a[2]) { | 
|  | setPoint(a[0]); | 
|  | add(a[1]); | 
|  | } | 
|  |  | 
|  | void setQuadBounds(const SkPoint a[3]) { | 
|  | MAKE_CONST_QUAD(quad, a); | 
|  | _Rect dRect; | 
|  | dRect.setBounds(quad); | 
|  | set((float) dRect.left, (float) dRect.top, (float) dRect.right, | 
|  | (float) dRect.bottom); | 
|  | } | 
|  |  | 
|  | void setPoint(const SkPoint& pt) { | 
|  | fLeft = fRight = pt.fX; | 
|  | fTop = fBottom = pt.fY; | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void (Bounds::*setSegmentBounds[])(const SkPoint[]) = { | 
|  | NULL, | 
|  | &Bounds::setLineBounds, | 
|  | &Bounds::setQuadBounds, | 
|  | &Bounds::setCubicBounds | 
|  | }; | 
|  |  | 
|  | // OPTIMIZATION: does the following also work, and is it any faster? | 
|  | // return outerWinding * innerWinding > 0 | 
|  | //      || ((outerWinding + innerWinding < 0) ^ ((outerWinding - innerWinding) < 0))) | 
|  | static bool useInnerWinding(int outerWinding, int innerWinding) { | 
|  | SkASSERT(outerWinding != SK_MaxS32); | 
|  | SkASSERT(innerWinding != SK_MaxS32); | 
|  | int absOut = abs(outerWinding); | 
|  | int absIn = abs(innerWinding); | 
|  | bool result = absOut == absIn ? outerWinding < 0 : absOut < absIn; | 
|  | #if 0 && DEBUG_WINDING | 
|  | if (outerWinding * innerWinding < 0) { | 
|  | SkDebugf("%s outer=%d inner=%d result=%s\n", __FUNCTION__, | 
|  | outerWinding, innerWinding, result ? "true" : "false"); | 
|  | } | 
|  | #endif | 
|  | return result; | 
|  | } | 
|  |  | 
|  | #define F (false)      // discard the edge | 
|  | #define T (true)       // keep the edge | 
|  |  | 
|  | static const bool gUnaryActiveEdge[2][2] = { | 
|  | //  from=0  from=1 | 
|  | //  to=0,1  to=0,1 | 
|  | {F, T}, {T, F}, | 
|  | }; | 
|  |  | 
|  | static const bool gActiveEdge[kShapeOp_Count][2][2][2][2] = { | 
|  | //                 miFrom=0                              miFrom=1 | 
|  | //         miTo=0            miTo=1              miTo=0             miTo=1 | 
|  | //    suFrom=0    1     suFrom=0     1      suFrom=0    1      suFrom=0    1 | 
|  | //   suTo=0,1 suTo=0,1  suTo=0,1 suTo=0,1  suTo=0,1 suTo=0,1  suTo=0,1 suTo=0,1 | 
|  | {{{{F, F}, {F, F}}, {{T, F}, {T, F}}}, {{{T, T}, {F, F}}, {{F, T}, {T, F}}}}, // mi - su | 
|  | {{{{F, F}, {F, F}}, {{F, T}, {F, T}}}, {{{F, F}, {T, T}}, {{F, T}, {T, F}}}}, // mi & su | 
|  | {{{{F, T}, {T, F}}, {{T, T}, {F, F}}}, {{{T, F}, {T, F}}, {{F, F}, {F, F}}}}, // mi | su | 
|  | {{{{F, T}, {T, F}}, {{T, F}, {F, T}}}, {{{T, F}, {F, T}}, {{F, T}, {T, F}}}}, // mi ^ su | 
|  | }; | 
|  |  | 
|  | #undef F | 
|  | #undef T | 
|  |  | 
|  | // wrap path to keep track of whether the contour is initialized and non-empty | 
|  | class PathWrapper { | 
|  | public: | 
|  | PathWrapper(SkPath& path) | 
|  | : fPathPtr(&path) | 
|  | , fCloses(0) | 
|  | , fMoves(0) | 
|  | { | 
|  | init(); | 
|  | } | 
|  |  | 
|  | void close() { | 
|  | if (!fHasMove) { | 
|  | return; | 
|  | } | 
|  | bool callClose = isClosed(); | 
|  | lineTo(); | 
|  | if (fEmpty) { | 
|  | return; | 
|  | } | 
|  | if (callClose) { | 
|  | #if DEBUG_PATH_CONSTRUCTION | 
|  | SkDebugf("path.close();\n"); | 
|  | #endif | 
|  | fPathPtr->close(); | 
|  | fCloses++; | 
|  | } | 
|  | init(); | 
|  | } | 
|  |  | 
|  | void cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkPoint& pt3) { | 
|  | lineTo(); | 
|  | moveTo(); | 
|  | fDefer[1] = pt3; | 
|  | nudge(); | 
|  | fDefer[0] = fDefer[1]; | 
|  | #if DEBUG_PATH_CONSTRUCTION | 
|  | SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n", | 
|  | pt1.fX, pt1.fY, pt2.fX, pt2.fY, fDefer[1].fX, fDefer[1].fY); | 
|  | #endif | 
|  | fPathPtr->cubicTo(pt1.fX, pt1.fY, pt2.fX, pt2.fY, fDefer[1].fX, fDefer[1].fY); | 
|  | fEmpty = false; | 
|  | } | 
|  |  | 
|  | void deferredLine(const SkPoint& pt) { | 
|  | if (pt == fDefer[1]) { | 
|  | return; | 
|  | } | 
|  | if (changedSlopes(pt)) { | 
|  | lineTo(); | 
|  | fDefer[0] = fDefer[1]; | 
|  | } | 
|  | fDefer[1] = pt; | 
|  | } | 
|  |  | 
|  | void deferredMove(const SkPoint& pt) { | 
|  | fMoved = true; | 
|  | fHasMove = true; | 
|  | fEmpty = true; | 
|  | fDefer[0] = fDefer[1] = pt; | 
|  | } | 
|  |  | 
|  | void deferredMoveLine(const SkPoint& pt) { | 
|  | if (!fHasMove) { | 
|  | deferredMove(pt); | 
|  | } | 
|  | deferredLine(pt); | 
|  | } | 
|  |  | 
|  | bool hasMove() const { | 
|  | return fHasMove; | 
|  | } | 
|  |  | 
|  | void init() { | 
|  | fEmpty = true; | 
|  | fHasMove = false; | 
|  | fMoved = false; | 
|  | } | 
|  |  | 
|  | bool isClosed() const { | 
|  | return !fEmpty && fFirstPt == fDefer[1]; | 
|  | } | 
|  |  | 
|  | void lineTo() { | 
|  | if (fDefer[0] == fDefer[1]) { | 
|  | return; | 
|  | } | 
|  | moveTo(); | 
|  | nudge(); | 
|  | fEmpty = false; | 
|  | #if DEBUG_PATH_CONSTRUCTION | 
|  | SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1].fX, fDefer[1].fY); | 
|  | #endif | 
|  | fPathPtr->lineTo(fDefer[1].fX, fDefer[1].fY); | 
|  | fDefer[0] = fDefer[1]; | 
|  | } | 
|  |  | 
|  | const SkPath* nativePath() const { | 
|  | return fPathPtr; | 
|  | } | 
|  |  | 
|  | void nudge() { | 
|  | if (fEmpty || !AlmostEqualUlps(fDefer[1].fX, fFirstPt.fX) | 
|  | || !AlmostEqualUlps(fDefer[1].fY, fFirstPt.fY)) { | 
|  | return; | 
|  | } | 
|  | fDefer[1] = fFirstPt; | 
|  | } | 
|  |  | 
|  | void quadTo(const SkPoint& pt1, const SkPoint& pt2) { | 
|  | lineTo(); | 
|  | moveTo(); | 
|  | fDefer[1] = pt2; | 
|  | nudge(); | 
|  | fDefer[0] = fDefer[1]; | 
|  | #if DEBUG_PATH_CONSTRUCTION | 
|  | SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n", | 
|  | pt1.fX, pt1.fY, fDefer[1].fX, fDefer[1].fY); | 
|  | #endif | 
|  | fPathPtr->quadTo(pt1.fX, pt1.fY, fDefer[1].fX, fDefer[1].fY); | 
|  | fEmpty = false; | 
|  | } | 
|  |  | 
|  | bool someAssemblyRequired() const { | 
|  | return fCloses < fMoves; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | bool changedSlopes(const SkPoint& pt) const { | 
|  | if (fDefer[0] == fDefer[1]) { | 
|  | return false; | 
|  | } | 
|  | SkScalar deferDx = fDefer[1].fX - fDefer[0].fX; | 
|  | SkScalar deferDy = fDefer[1].fY - fDefer[0].fY; | 
|  | SkScalar lineDx = pt.fX - fDefer[1].fX; | 
|  | SkScalar lineDy = pt.fY - fDefer[1].fY; | 
|  | return deferDx * lineDy != deferDy * lineDx; | 
|  | } | 
|  |  | 
|  | void moveTo() { | 
|  | if (!fMoved) { | 
|  | return; | 
|  | } | 
|  | fFirstPt = fDefer[0]; | 
|  | #if DEBUG_PATH_CONSTRUCTION | 
|  | SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fDefer[0].fX, fDefer[0].fY); | 
|  | #endif | 
|  | fPathPtr->moveTo(fDefer[0].fX, fDefer[0].fY); | 
|  | fMoved = false; | 
|  | fMoves++; | 
|  | } | 
|  |  | 
|  | private: | 
|  | SkPath* fPathPtr; | 
|  | SkPoint fDefer[2]; | 
|  | SkPoint fFirstPt; | 
|  | int fCloses; | 
|  | int fMoves; | 
|  | bool fEmpty; | 
|  | bool fHasMove; | 
|  | bool fMoved; | 
|  | }; | 
|  |  | 
|  | class Segment { | 
|  | public: | 
|  | Segment() { | 
|  | #if DEBUG_DUMP | 
|  | fID = ++gSegmentID; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool operator<(const Segment& rh) const { | 
|  | return fBounds.fTop < rh.fBounds.fTop; | 
|  | } | 
|  |  | 
|  | bool activeAngle(int index, int& done, SkTDArray<Angle>& angles) { | 
|  | if (activeAngleInner(index, done, angles)) { | 
|  | return true; | 
|  | } | 
|  | int lesser = index; | 
|  | while (--lesser >= 0 && equalPoints(index, lesser)) { | 
|  | if (activeAngleOther(lesser, done, angles)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | lesser = index; | 
|  | do { | 
|  | if (activeAngleOther(index, done, angles)) { | 
|  | return true; | 
|  | } | 
|  | } while (++index < fTs.count() && equalPoints(index, lesser)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool activeAngleOther(int index, int& done, SkTDArray<Angle>& angles) { | 
|  | Span* span = &fTs[index]; | 
|  | Segment* other = span->fOther; | 
|  | int oIndex = span->fOtherIndex; | 
|  | return other->activeAngleInner(oIndex, done, angles); | 
|  | } | 
|  |  | 
|  | bool activeAngleInner(int index, int& done, SkTDArray<Angle>& angles) { | 
|  | int next = nextExactSpan(index, 1); | 
|  | if (next > 0) { | 
|  | Span& upSpan = fTs[index]; | 
|  | if (upSpan.fWindValue || upSpan.fOppValue) { | 
|  | addAngle(angles, index, next); | 
|  | if (upSpan.fDone || upSpan.fUnsortableEnd) { | 
|  | done++; | 
|  | } else if (upSpan.fWindSum != SK_MinS32) { | 
|  | return true; | 
|  | } | 
|  | } else if (!upSpan.fDone) { | 
|  | upSpan.fDone = true; | 
|  | fDoneSpans++; | 
|  | } | 
|  | } | 
|  | int prev = nextExactSpan(index, -1); | 
|  | // edge leading into junction | 
|  | if (prev >= 0) { | 
|  | Span& downSpan = fTs[prev]; | 
|  | if (downSpan.fWindValue || downSpan.fOppValue) { | 
|  | addAngle(angles, index, prev); | 
|  | if (downSpan.fDone) { | 
|  | done++; | 
|  | } else if (downSpan.fWindSum != SK_MinS32) { | 
|  | return true; | 
|  | } | 
|  | } else if (!downSpan.fDone) { | 
|  | downSpan.fDone = true; | 
|  | fDoneSpans++; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkPoint activeLeftTop(bool onlySortable, int* firstT) const { | 
|  | SkASSERT(!done()); | 
|  | SkPoint topPt = {SK_ScalarMax, SK_ScalarMax}; | 
|  | int count = fTs.count(); | 
|  | // see if either end is not done since we want smaller Y of the pair | 
|  | bool lastDone = true; | 
|  | bool lastUnsortable = false; | 
|  | double lastT = -1; | 
|  | for (int index = 0; index < count; ++index) { | 
|  | const Span& span = fTs[index]; | 
|  | if (onlySortable && (span.fUnsortableStart || lastUnsortable)) { | 
|  | goto next; | 
|  | } | 
|  | if (span.fDone && lastDone) { | 
|  | goto next; | 
|  | } | 
|  | if (approximately_negative(span.fT - lastT)) { | 
|  | goto next; | 
|  | } | 
|  | { | 
|  | const SkPoint& xy = xyAtT(&span); | 
|  | if (topPt.fY > xy.fY || (topPt.fY == xy.fY && topPt.fX > xy.fX)) { | 
|  | topPt = xy; | 
|  | if (firstT) { | 
|  | *firstT = index; | 
|  | } | 
|  | } | 
|  | if (fVerb != SkPath::kLine_Verb && !lastDone) { | 
|  | SkPoint curveTop = (*SegmentTop[fVerb])(fPts, lastT, span.fT); | 
|  | if (topPt.fY > curveTop.fY || (topPt.fY == curveTop.fY | 
|  | && topPt.fX > curveTop.fX)) { | 
|  | topPt = curveTop; | 
|  | if (firstT) { | 
|  | *firstT = index; | 
|  | } | 
|  | } | 
|  | } | 
|  | lastT = span.fT; | 
|  | } | 
|  | next: | 
|  | lastDone = span.fDone; | 
|  | lastUnsortable = span.fUnsortableEnd; | 
|  | } | 
|  | return topPt; | 
|  | } | 
|  |  | 
|  | bool activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, ShapeOp op) { | 
|  | int sumMiWinding = updateWinding(endIndex, index); | 
|  | int sumSuWinding = updateOppWinding(endIndex, index); | 
|  | if (fOperand) { | 
|  | SkTSwap<int>(sumMiWinding, sumSuWinding); | 
|  | } | 
|  | int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; | 
|  | return activeOp(xorMiMask, xorSuMask, index, endIndex, op, sumMiWinding, sumSuWinding, | 
|  | maxWinding, sumWinding, oppMaxWinding, oppSumWinding); | 
|  | } | 
|  |  | 
|  | bool activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, ShapeOp op, | 
|  | int& sumMiWinding, int& sumSuWinding, | 
|  | int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) { | 
|  | setUpWindings(index, endIndex, sumMiWinding, sumSuWinding, | 
|  | maxWinding, sumWinding, oppMaxWinding, oppSumWinding); | 
|  | bool miFrom; | 
|  | bool miTo; | 
|  | bool suFrom; | 
|  | bool suTo; | 
|  | if (operand()) { | 
|  | miFrom = (oppMaxWinding & xorMiMask) != 0; | 
|  | miTo = (oppSumWinding & xorMiMask) != 0; | 
|  | suFrom = (maxWinding & xorSuMask) != 0; | 
|  | suTo = (sumWinding & xorSuMask) != 0; | 
|  | } else { | 
|  | miFrom = (maxWinding & xorMiMask) != 0; | 
|  | miTo = (sumWinding & xorMiMask) != 0; | 
|  | suFrom = (oppMaxWinding & xorSuMask) != 0; | 
|  | suTo = (oppSumWinding & xorSuMask) != 0; | 
|  | } | 
|  | bool result = gActiveEdge[op][miFrom][miTo][suFrom][suTo]; | 
|  | #if DEBUG_ACTIVE_OP | 
|  | SkDebugf("%s op=%s miFrom=%d miTo=%d suFrom=%d suTo=%d result=%d\n", __FUNCTION__, | 
|  | kShapeOpStr[op], miFrom, miTo, suFrom, suTo, result); | 
|  | #endif | 
|  | SkASSERT(result != -1); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | bool activeWinding(int index, int endIndex) { | 
|  | int sumWinding = updateWinding(endIndex, index); | 
|  | int maxWinding; | 
|  | return activeWinding(index, endIndex, maxWinding, sumWinding); | 
|  | } | 
|  |  | 
|  | bool activeWinding(int index, int endIndex, int& maxWinding, int& sumWinding) { | 
|  | setUpWinding(index, endIndex, maxWinding, sumWinding); | 
|  | bool from = maxWinding != 0; | 
|  | bool to = sumWinding  != 0; | 
|  | bool result = gUnaryActiveEdge[from][to]; | 
|  | SkASSERT(result != -1); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void addAngle(SkTDArray<Angle>& angles, int start, int end) const { | 
|  | SkASSERT(start != end); | 
|  | Angle* angle = angles.append(); | 
|  | #if DEBUG_ANGLE | 
|  | if (angles.count() > 1 && !fTs[start].fTiny) { | 
|  | SkPoint angle0Pt, newPt; | 
|  | (*SegmentXYAtT[angles[0].verb()])(angles[0].pts(), | 
|  | (*angles[0].spans())[angles[0].start()].fT, &angle0Pt); | 
|  | (*SegmentXYAtT[fVerb])(fPts, fTs[start].fT, &newPt); | 
|  | SkASSERT(AlmostEqualUlps(angle0Pt.fX, newPt.fX)); | 
|  | SkASSERT(AlmostEqualUlps(angle0Pt.fY, newPt.fY)); | 
|  | } | 
|  | #endif | 
|  | angle->set(fPts, fVerb, this, start, end, fTs); | 
|  | } | 
|  |  | 
|  | void addCancelOutsides(double tStart, double oStart, Segment& other, | 
|  | double oEnd) { | 
|  | int tIndex = -1; | 
|  | int tCount = fTs.count(); | 
|  | int oIndex = -1; | 
|  | int oCount = other.fTs.count(); | 
|  | do { | 
|  | ++tIndex; | 
|  | } while (!approximately_negative(tStart - fTs[tIndex].fT) && tIndex < tCount); | 
|  | int tIndexStart = tIndex; | 
|  | do { | 
|  | ++oIndex; | 
|  | } while (!approximately_negative(oStart - other.fTs[oIndex].fT) && oIndex < oCount); | 
|  | int oIndexStart = oIndex; | 
|  | double nextT; | 
|  | do { | 
|  | nextT = fTs[++tIndex].fT; | 
|  | } while (nextT < 1 && approximately_negative(nextT - tStart)); | 
|  | double oNextT; | 
|  | do { | 
|  | oNextT = other.fTs[++oIndex].fT; | 
|  | } while (oNextT < 1 && approximately_negative(oNextT - oStart)); | 
|  | // at this point, spans before and after are at: | 
|  | //  fTs[tIndexStart - 1], fTs[tIndexStart], fTs[tIndex] | 
|  | // if tIndexStart == 0, no prior span | 
|  | // if nextT == 1, no following span | 
|  |  | 
|  | // advance the span with zero winding | 
|  | // if the following span exists (not past the end, non-zero winding) | 
|  | // connect the two edges | 
|  | if (!fTs[tIndexStart].fWindValue) { | 
|  | if (tIndexStart > 0 && fTs[tIndexStart - 1].fWindValue) { | 
|  | #if DEBUG_CONCIDENT | 
|  | SkDebugf("%s 1 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", | 
|  | __FUNCTION__, fID, other.fID, tIndexStart - 1, | 
|  | fTs[tIndexStart].fT, xyAtT(tIndexStart).fX, | 
|  | xyAtT(tIndexStart).fY); | 
|  | #endif | 
|  | addTPair(fTs[tIndexStart].fT, other, other.fTs[oIndex].fT, false, | 
|  | fTs[tIndexStart].fPt); | 
|  | } | 
|  | if (nextT < 1 && fTs[tIndex].fWindValue) { | 
|  | #if DEBUG_CONCIDENT | 
|  | SkDebugf("%s 2 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", | 
|  | __FUNCTION__, fID, other.fID, tIndex, | 
|  | fTs[tIndex].fT, xyAtT(tIndex).fX, | 
|  | xyAtT(tIndex).fY); | 
|  | #endif | 
|  | addTPair(fTs[tIndex].fT, other, other.fTs[oIndexStart].fT, false, fTs[tIndex].fPt); | 
|  | } | 
|  | } else { | 
|  | SkASSERT(!other.fTs[oIndexStart].fWindValue); | 
|  | if (oIndexStart > 0 && other.fTs[oIndexStart - 1].fWindValue) { | 
|  | #if DEBUG_CONCIDENT | 
|  | SkDebugf("%s 3 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", | 
|  | __FUNCTION__, fID, other.fID, oIndexStart - 1, | 
|  | other.fTs[oIndexStart].fT, other.xyAtT(oIndexStart).fX, | 
|  | other.xyAtT(oIndexStart).fY); | 
|  | other.debugAddTPair(other.fTs[oIndexStart].fT, *this, fTs[tIndex].fT); | 
|  | #endif | 
|  | } | 
|  | if (oNextT < 1 && other.fTs[oIndex].fWindValue) { | 
|  | #if DEBUG_CONCIDENT | 
|  | SkDebugf("%s 4 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", | 
|  | __FUNCTION__, fID, other.fID, oIndex, | 
|  | other.fTs[oIndex].fT, other.xyAtT(oIndex).fX, | 
|  | other.xyAtT(oIndex).fY); | 
|  | other.debugAddTPair(other.fTs[oIndex].fT, *this, fTs[tIndexStart].fT); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void addCoinOutsides(const SkTDArray<double>& outsideTs, Segment& other, | 
|  | double oEnd) { | 
|  | // walk this to outsideTs[0] | 
|  | // walk other to outsideTs[1] | 
|  | // if either is > 0, add a pointer to the other, copying adjacent winding | 
|  | int tIndex = -1; | 
|  | int oIndex = -1; | 
|  | double tStart = outsideTs[0]; | 
|  | double oStart = outsideTs[1]; | 
|  | do { | 
|  | ++tIndex; | 
|  | } while (!approximately_negative(tStart - fTs[tIndex].fT)); | 
|  | SkPoint ptStart = fTs[tIndex].fPt; | 
|  | do { | 
|  | ++oIndex; | 
|  | } while (!approximately_negative(oStart - other.fTs[oIndex].fT)); | 
|  | if (tIndex > 0 || oIndex > 0 || fOperand != other.fOperand) { | 
|  | addTPair(tStart, other, oStart, false, ptStart); | 
|  | } | 
|  | tStart = fTs[tIndex].fT; | 
|  | oStart = other.fTs[oIndex].fT; | 
|  | do { | 
|  | double nextT; | 
|  | do { | 
|  | nextT = fTs[++tIndex].fT; | 
|  | } while (approximately_negative(nextT - tStart)); | 
|  | tStart = nextT; | 
|  | ptStart = fTs[tIndex].fPt; | 
|  | do { | 
|  | nextT = other.fTs[++oIndex].fT; | 
|  | } while (approximately_negative(nextT - oStart)); | 
|  | oStart = nextT; | 
|  | if (tStart == 1 && oStart == 1 && fOperand == other.fOperand) { | 
|  | break; | 
|  | } | 
|  | addTPair(tStart, other, oStart, false, ptStart); | 
|  | } while (tStart < 1 && oStart < 1 && !approximately_negative(oEnd - oStart)); | 
|  | } | 
|  |  | 
|  | void addCubic(const SkPoint pts[4], bool operand, bool evenOdd) { | 
|  | init(pts, SkPath::kCubic_Verb, operand, evenOdd); | 
|  | fBounds.setCubicBounds(pts); | 
|  | } | 
|  |  | 
|  | /* SkPoint */ void addCurveTo(int start, int end, PathWrapper& path, bool active) const { | 
|  | SkPoint edge[4]; | 
|  | const SkPoint* ePtr; | 
|  | int lastT = fTs.count() - 1; | 
|  | if (lastT < 0 || (start == 0 && end == lastT) || (start == lastT && end == 0)) { | 
|  | ePtr = fPts; | 
|  | } else { | 
|  | // OPTIMIZE? if not active, skip remainder and return xy_at_t(end) | 
|  | subDivide(start, end, edge); | 
|  | ePtr = edge; | 
|  | } | 
|  | if (active) { | 
|  | bool reverse = ePtr == fPts && start != 0; | 
|  | if (reverse) { | 
|  | path.deferredMoveLine(ePtr[fVerb]); | 
|  | switch (fVerb) { | 
|  | case SkPath::kLine_Verb: | 
|  | path.deferredLine(ePtr[0]); | 
|  | break; | 
|  | case SkPath::kQuad_Verb: | 
|  | path.quadTo(ePtr[1], ePtr[0]); | 
|  | break; | 
|  | case SkPath::kCubic_Verb: | 
|  | path.cubicTo(ePtr[2], ePtr[1], ePtr[0]); | 
|  | break; | 
|  | default: | 
|  | SkASSERT(0); | 
|  | } | 
|  | //         return ePtr[0]; | 
|  | } else { | 
|  | path.deferredMoveLine(ePtr[0]); | 
|  | switch (fVerb) { | 
|  | case SkPath::kLine_Verb: | 
|  | path.deferredLine(ePtr[1]); | 
|  | break; | 
|  | case SkPath::kQuad_Verb: | 
|  | path.quadTo(ePtr[1], ePtr[2]); | 
|  | break; | 
|  | case SkPath::kCubic_Verb: | 
|  | path.cubicTo(ePtr[1], ePtr[2], ePtr[3]); | 
|  | break; | 
|  | default: | 
|  | SkASSERT(0); | 
|  | } | 
|  | } | 
|  | } | 
|  | //  return ePtr[fVerb]; | 
|  | } | 
|  |  | 
|  | void addLine(const SkPoint pts[2], bool operand, bool evenOdd) { | 
|  | init(pts, SkPath::kLine_Verb, operand, evenOdd); | 
|  | fBounds.set(pts, 2); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | const SkPoint& addMoveTo(int tIndex, PathWrapper& path, bool active) const { | 
|  | const SkPoint& pt = xyAtT(tIndex); | 
|  | if (active) { | 
|  | path.deferredMove(pt); | 
|  | } | 
|  | return pt; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // add 2 to edge or out of range values to get T extremes | 
|  | void addOtherT(int index, double otherT, int otherIndex) { | 
|  | Span& span = fTs[index]; | 
|  | #if PIN_ADD_T | 
|  | if (precisely_less_than_zero(otherT)) { | 
|  | otherT = 0; | 
|  | } else if (precisely_greater_than_one(otherT)) { | 
|  | otherT = 1; | 
|  | } | 
|  | #endif | 
|  | span.fOtherT = otherT; | 
|  | span.fOtherIndex = otherIndex; | 
|  | } | 
|  |  | 
|  | void addQuad(const SkPoint pts[3], bool operand, bool evenOdd) { | 
|  | init(pts, SkPath::kQuad_Verb, operand, evenOdd); | 
|  | fBounds.setQuadBounds(pts); | 
|  | } | 
|  |  | 
|  | // Defer all coincident edge processing until | 
|  | // after normal intersections have been computed | 
|  |  | 
|  | // no need to be tricky; insert in normal T order | 
|  | // resolve overlapping ts when considering coincidence later | 
|  |  | 
|  | // add non-coincident intersection. Resulting edges are sorted in T. | 
|  | int addT(Segment* other, const SkPoint& pt, double& newT) { | 
|  | // FIXME: in the pathological case where there is a ton of intercepts, | 
|  | //  binary search? | 
|  | int insertedAt = -1; | 
|  | size_t tCount = fTs.count(); | 
|  | #if PIN_ADD_T | 
|  | // FIXME: only do this pinning here (e.g. this is done also in quad/line intersect) | 
|  | if (precisely_less_than_zero(newT)) { | 
|  | newT = 0; | 
|  | } else if (precisely_greater_than_one(newT)) { | 
|  | newT = 1; | 
|  | } | 
|  | #endif | 
|  | for (size_t index = 0; index < tCount; ++index) { | 
|  | // OPTIMIZATION: if there are three or more identical Ts, then | 
|  | // the fourth and following could be further insertion-sorted so | 
|  | // that all the edges are clockwise or counterclockwise. | 
|  | // This could later limit segment tests to the two adjacent | 
|  | // neighbors, although it doesn't help with determining which | 
|  | // circular direction to go in. | 
|  | if (newT < fTs[index].fT) { | 
|  | insertedAt = index; | 
|  | break; | 
|  | } | 
|  | } | 
|  | Span* span; | 
|  | if (insertedAt >= 0) { | 
|  | span = fTs.insert(insertedAt); | 
|  | } else { | 
|  | insertedAt = tCount; | 
|  | span = fTs.append(); | 
|  | } | 
|  | span->fT = newT; | 
|  | span->fOther = other; | 
|  | span->fPt = pt; | 
|  | span->fWindSum = SK_MinS32; | 
|  | span->fOppSum = SK_MinS32; | 
|  | span->fWindValue = 1; | 
|  | span->fOppValue = 0; | 
|  | span->fTiny = false; | 
|  | span->fLoop = false; | 
|  | if ((span->fDone = newT == 1)) { | 
|  | ++fDoneSpans; | 
|  | } | 
|  | span->fUnsortableStart = false; | 
|  | span->fUnsortableEnd = false; | 
|  | int less = -1; | 
|  | while (&span[less + 1] - fTs.begin() > 0 && xyAtT(&span[less]) == xyAtT(span)) { | 
|  | #if 1 | 
|  | if (span[less].fDone) { | 
|  | break; | 
|  | } | 
|  | double tInterval = newT - span[less].fT; | 
|  | if (precisely_negative(tInterval)) { | 
|  | break; | 
|  | } | 
|  | if (fVerb == SkPath::kCubic_Verb) { | 
|  | double tMid = newT - tInterval / 2; | 
|  | _Point midPt; | 
|  | CubicXYAtT(fPts, tMid, &midPt); | 
|  | if (!midPt.approximatelyEqual(xyAtT(span))) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | span[less].fTiny = true; | 
|  | span[less].fDone = true; | 
|  | if (approximately_negative(newT - span[less].fT)) { | 
|  | if (approximately_greater_than_one(newT)) { | 
|  | span[less].fUnsortableStart = true; | 
|  | span[less - 1].fUnsortableEnd = true; | 
|  | } | 
|  | if (approximately_less_than_zero(span[less].fT)) { | 
|  | span[less + 1].fUnsortableStart = true; | 
|  | span[less].fUnsortableEnd = true; | 
|  | } | 
|  | } | 
|  | ++fDoneSpans; | 
|  | #else | 
|  | double tInterval = newT - span[less].fT; | 
|  | if (precisely_negative(tInterval)) { | 
|  | break; | 
|  | } | 
|  | if (fVerb == SkPath::kCubic_Verb) { | 
|  | double tMid = newT - tInterval / 2; | 
|  | _Point midPt; | 
|  | CubicXYAtT(fPts, tMid, &midPt); | 
|  | if (!midPt.approximatelyEqual(xyAtT(span))) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | SkASSERT(span[less].fDone == span->fDone); | 
|  | if (span[less].fT == 0) { | 
|  | span->fT = newT = 0; | 
|  | } else { | 
|  | setSpanT(less, newT); | 
|  | } | 
|  | #endif | 
|  | --less; | 
|  | } | 
|  | int more = 1; | 
|  | while (fTs.end() - &span[more - 1] > 1 && xyAtT(&span[more]) == xyAtT(span)) { | 
|  | #if 1 | 
|  | if (span[more - 1].fDone) { | 
|  | break; | 
|  | } | 
|  | double tEndInterval = span[more].fT - newT; | 
|  | if (precisely_negative(tEndInterval)) { | 
|  | break; | 
|  | } | 
|  | if (fVerb == SkPath::kCubic_Verb) { | 
|  | double tMid = newT - tEndInterval / 2; | 
|  | _Point midEndPt; | 
|  | CubicXYAtT(fPts, tMid, &midEndPt); | 
|  | if (!midEndPt.approximatelyEqual(xyAtT(span))) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | span[more - 1].fTiny = true; | 
|  | span[more - 1].fDone = true; | 
|  | if (approximately_negative(span[more].fT - newT)) { | 
|  | if (approximately_greater_than_one(span[more].fT)) { | 
|  | span[more + 1].fUnsortableStart = true; | 
|  | span[more].fUnsortableEnd = true; | 
|  | } | 
|  | if (approximately_less_than_zero(newT)) { | 
|  | span[more].fUnsortableStart = true; | 
|  | span[more - 1].fUnsortableEnd = true; | 
|  | } | 
|  | } | 
|  | ++fDoneSpans; | 
|  | #else | 
|  | double tEndInterval = span[more].fT - newT; | 
|  | if (precisely_negative(tEndInterval)) { | 
|  | break; | 
|  | } | 
|  | if (fVerb == SkPath::kCubic_Verb) { | 
|  | double tMid = newT - tEndInterval / 2; | 
|  | _Point midEndPt; | 
|  | CubicXYAtT(fPts, tMid, &midEndPt); | 
|  | if (!midEndPt.approximatelyEqual(xyAtT(span))) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | SkASSERT(span[more - 1].fDone == span[more].fDone); | 
|  | if (newT == 0) { | 
|  | setSpanT(more, 0); | 
|  | } else { | 
|  | span->fT = newT = span[more].fT; | 
|  | } | 
|  | #endif | 
|  | ++more; | 
|  | } | 
|  | return insertedAt; | 
|  | } | 
|  |  | 
|  | // set spans from start to end to decrement by one | 
|  | // note this walks other backwards | 
|  | // FIMXE: there's probably an edge case that can be constructed where | 
|  | // two span in one segment are separated by float epsilon on one span but | 
|  | // not the other, if one segment is very small. For this | 
|  | // case the counts asserted below may or may not be enough to separate the | 
|  | // spans. Even if the counts work out, what if the spans aren't correctly | 
|  | // sorted? It feels better in such a case to match the span's other span | 
|  | // pointer since both coincident segments must contain the same spans. | 
|  | void addTCancel(double startT, double endT, Segment& other, | 
|  | double oStartT, double oEndT) { | 
|  | SkASSERT(!approximately_negative(endT - startT)); | 
|  | SkASSERT(!approximately_negative(oEndT - oStartT)); | 
|  | bool binary = fOperand != other.fOperand; | 
|  | int index = 0; | 
|  | while (!approximately_negative(startT - fTs[index].fT)) { | 
|  | ++index; | 
|  | } | 
|  | int oIndex = other.fTs.count(); | 
|  | while (approximately_positive(other.fTs[--oIndex].fT - oEndT)) | 
|  | ; | 
|  | double tRatio = (oEndT - oStartT) / (endT - startT); | 
|  | Span* test = &fTs[index]; | 
|  | Span* oTest = &other.fTs[oIndex]; | 
|  | SkTDArray<double> outsideTs; | 
|  | SkTDArray<double> oOutsideTs; | 
|  | do { | 
|  | bool decrement = test->fWindValue && oTest->fWindValue && !binary; | 
|  | bool track = test->fWindValue || oTest->fWindValue; | 
|  | double testT = test->fT; | 
|  | double oTestT = oTest->fT; | 
|  | Span* span = test; | 
|  | do { | 
|  | if (decrement) { | 
|  | decrementSpan(span); | 
|  | } else if (track && span->fT < 1 && oTestT < 1) { | 
|  | TrackOutside(outsideTs, span->fT, oTestT); | 
|  | } | 
|  | span = &fTs[++index]; | 
|  | } while (approximately_negative(span->fT - testT)); | 
|  | Span* oSpan = oTest; | 
|  | double otherTMatchStart = oEndT - (span->fT - startT) * tRatio; | 
|  | double otherTMatchEnd = oEndT - (test->fT - startT) * tRatio; | 
|  | SkDEBUGCODE(int originalWindValue = oSpan->fWindValue); | 
|  | while (approximately_negative(otherTMatchStart - oSpan->fT) | 
|  | && !approximately_negative(otherTMatchEnd - oSpan->fT)) { | 
|  | #ifdef SK_DEBUG | 
|  | SkASSERT(originalWindValue == oSpan->fWindValue); | 
|  | #endif | 
|  | if (decrement) { | 
|  | other.decrementSpan(oSpan); | 
|  | } else if (track && oSpan->fT < 1 && testT < 1) { | 
|  | TrackOutside(oOutsideTs, oSpan->fT, testT); | 
|  | } | 
|  | if (!oIndex) { | 
|  | break; | 
|  | } | 
|  | oSpan = &other.fTs[--oIndex]; | 
|  | } | 
|  | test = span; | 
|  | oTest = oSpan; | 
|  | } while (!approximately_negative(endT - test->fT)); | 
|  | SkASSERT(!oIndex || approximately_negative(oTest->fT - oStartT)); | 
|  | // FIXME: determine if canceled edges need outside ts added | 
|  | if (!done() && outsideTs.count()) { | 
|  | double tStart = outsideTs[0]; | 
|  | double oStart = outsideTs[1]; | 
|  | addCancelOutsides(tStart, oStart, other, oEndT); | 
|  | int count = outsideTs.count(); | 
|  | if (count > 2) { | 
|  | double tStart = outsideTs[count - 2]; | 
|  | double oStart = outsideTs[count - 1]; | 
|  | addCancelOutsides(tStart, oStart, other, oEndT); | 
|  | } | 
|  | } | 
|  | if (!other.done() && oOutsideTs.count()) { | 
|  | double tStart = oOutsideTs[0]; | 
|  | double oStart = oOutsideTs[1]; | 
|  | other.addCancelOutsides(tStart, oStart, *this, endT); | 
|  | } | 
|  | } | 
|  |  | 
|  | int addSelfT(Segment* other, const SkPoint& pt, double& newT) { | 
|  | int result = addT(other, pt, newT); | 
|  | Span* span = &fTs[result]; | 
|  | span->fLoop = true; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | int addUnsortableT(Segment* other, bool start, const SkPoint& pt, double& newT) { | 
|  | int result = addT(other, pt, newT); | 
|  | Span* span = &fTs[result]; | 
|  | if (start) { | 
|  | if (result > 0) { | 
|  | span[result - 1].fUnsortableEnd = true; | 
|  | } | 
|  | span[result].fUnsortableStart = true; | 
|  | } else { | 
|  | span[result].fUnsortableEnd = true; | 
|  | if (result + 1 < fTs.count()) { | 
|  | span[result + 1].fUnsortableStart = true; | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | int bumpCoincidentThis(const Span* oTest, bool opp, int index, | 
|  | SkTDArray<double>& outsideTs) { | 
|  | int oWindValue = oTest->fWindValue; | 
|  | int oOppValue = oTest->fOppValue; | 
|  | if (opp) { | 
|  | SkTSwap<int>(oWindValue, oOppValue); | 
|  | } | 
|  | Span* const test = &fTs[index]; | 
|  | Span* end = test; | 
|  | const double oStartT = oTest->fT; | 
|  | do { | 
|  | if (bumpSpan(end, oWindValue, oOppValue)) { | 
|  | TrackOutside(outsideTs, end->fT, oStartT); | 
|  | } | 
|  | end = &fTs[++index]; | 
|  | } while (approximately_negative(end->fT - test->fT)); | 
|  | return index; | 
|  | } | 
|  |  | 
|  | // because of the order in which coincidences are resolved, this and other | 
|  | // may not have the same intermediate points. Compute the corresponding | 
|  | // intermediate T values (using this as the master, other as the follower) | 
|  | // and walk other conditionally -- hoping that it catches up in the end | 
|  | int bumpCoincidentOther(const Span* test, double oEndT, int& oIndex, | 
|  | SkTDArray<double>& oOutsideTs) { | 
|  | Span* const oTest = &fTs[oIndex]; | 
|  | Span* oEnd = oTest; | 
|  | const double startT = test->fT; | 
|  | const double oStartT = oTest->fT; | 
|  | while (!approximately_negative(oEndT - oEnd->fT) | 
|  | && approximately_negative(oEnd->fT - oStartT)) { | 
|  | zeroSpan(oEnd); | 
|  | TrackOutside(oOutsideTs, oEnd->fT, startT); | 
|  | oEnd = &fTs[++oIndex]; | 
|  | } | 
|  | return oIndex; | 
|  | } | 
|  |  | 
|  | // FIXME: need to test this case: | 
|  | // contourA has two segments that are coincident | 
|  | // contourB has two segments that are coincident in the same place | 
|  | // each ends up with +2/0 pairs for winding count | 
|  | // since logic below doesn't transfer count (only increments/decrements) can this be | 
|  | // resolved to +4/0 ? | 
|  |  | 
|  | // set spans from start to end to increment the greater by one and decrement | 
|  | // the lesser | 
|  | void addTCoincident(double startT, double endT, Segment& other, double oStartT, double oEndT) { | 
|  | SkASSERT(!approximately_negative(endT - startT)); | 
|  | SkASSERT(!approximately_negative(oEndT - oStartT)); | 
|  | bool opp = fOperand ^ other.fOperand; | 
|  | int index = 0; | 
|  | while (!approximately_negative(startT - fTs[index].fT)) { | 
|  | ++index; | 
|  | } | 
|  | int oIndex = 0; | 
|  | while (!approximately_negative(oStartT - other.fTs[oIndex].fT)) { | 
|  | ++oIndex; | 
|  | } | 
|  | Span* test = &fTs[index]; | 
|  | Span* oTest = &other.fTs[oIndex]; | 
|  | SkTDArray<double> outsideTs; | 
|  | SkTDArray<double> oOutsideTs; | 
|  | do { | 
|  | // if either span has an opposite value and the operands don't match, resolve first | 
|  | //       SkASSERT(!test->fDone || !oTest->fDone); | 
|  | if (test->fDone || oTest->fDone) { | 
|  | index = advanceCoincidentThis(oTest, opp, index); | 
|  | oIndex = other.advanceCoincidentOther(test, oEndT, oIndex); | 
|  | } else { | 
|  | index = bumpCoincidentThis(oTest, opp, index, outsideTs); | 
|  | oIndex = other.bumpCoincidentOther(test, oEndT, oIndex, oOutsideTs); | 
|  | } | 
|  | test = &fTs[index]; | 
|  | oTest = &other.fTs[oIndex]; | 
|  | } while (!approximately_negative(endT - test->fT)); | 
|  | SkASSERT(approximately_negative(oTest->fT - oEndT)); | 
|  | SkASSERT(approximately_negative(oEndT - oTest->fT)); | 
|  | if (!done() && outsideTs.count()) { | 
|  | addCoinOutsides(outsideTs, other, oEndT); | 
|  | } | 
|  | if (!other.done() && oOutsideTs.count()) { | 
|  | other.addCoinOutsides(oOutsideTs, *this, endT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: this doesn't prevent the same span from being added twice | 
|  | // fix in caller, SkASSERT here? | 
|  | void addTPair(double t, Segment& other, double otherT, bool borrowWind, const SkPoint& pt) { | 
|  | int tCount = fTs.count(); | 
|  | for (int tIndex = 0; tIndex < tCount; ++tIndex) { | 
|  | const Span& span = fTs[tIndex]; | 
|  | if (!approximately_negative(span.fT - t)) { | 
|  | break; | 
|  | } | 
|  | if (approximately_negative(span.fT - t) && span.fOther == &other | 
|  | && approximately_equal(span.fOtherT, otherT)) { | 
|  | #if DEBUG_ADD_T_PAIR | 
|  | SkDebugf("%s addTPair duplicate this=%d %1.9g other=%d %1.9g\n", | 
|  | __FUNCTION__, fID, t, other.fID, otherT); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  | } | 
|  | #if DEBUG_ADD_T_PAIR | 
|  | SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n", | 
|  | __FUNCTION__, fID, t, other.fID, otherT); | 
|  | #endif | 
|  | int insertedAt = addT(&other, pt, t); | 
|  | int otherInsertedAt = other.addT(this, pt, otherT); | 
|  | addOtherT(insertedAt, otherT, otherInsertedAt); | 
|  | other.addOtherT(otherInsertedAt, t, insertedAt); | 
|  | matchWindingValue(insertedAt, t, borrowWind); | 
|  | other.matchWindingValue(otherInsertedAt, otherT, borrowWind); | 
|  | } | 
|  |  | 
|  | void addTwoAngles(int start, int end, SkTDArray<Angle>& angles) const { | 
|  | // add edge leading into junction | 
|  | int min = SkMin32(end, start); | 
|  | if (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0) { | 
|  | addAngle(angles, end, start); | 
|  | } | 
|  | // add edge leading away from junction | 
|  | int step = SkSign32(end - start); | 
|  | int tIndex = nextExactSpan(end, step); | 
|  | min = SkMin32(end, tIndex); | 
|  | if (tIndex >= 0 && (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0)) { | 
|  | addAngle(angles, end, tIndex); | 
|  | } | 
|  | } | 
|  |  | 
|  | int advanceCoincidentThis(const Span* oTest, bool opp, int index) { | 
|  | Span* const test = &fTs[index]; | 
|  | Span* end = test; | 
|  | do { | 
|  | end = &fTs[++index]; | 
|  | } while (approximately_negative(end->fT - test->fT)); | 
|  | return index; | 
|  | } | 
|  |  | 
|  | int advanceCoincidentOther(const Span* test, double oEndT, int& oIndex) { | 
|  | Span* const oTest = &fTs[oIndex]; | 
|  | Span* oEnd = oTest; | 
|  | const double oStartT = oTest->fT; | 
|  | while (!approximately_negative(oEndT - oEnd->fT) | 
|  | && approximately_negative(oEnd->fT - oStartT)) { | 
|  | oEnd = &fTs[++oIndex]; | 
|  | } | 
|  | return oIndex; | 
|  | } | 
|  |  | 
|  | bool betweenTs(int lesser, double testT, int greater) { | 
|  | if (lesser > greater) { | 
|  | SkTSwap<int>(lesser, greater); | 
|  | } | 
|  | return approximately_between(fTs[lesser].fT, testT, fTs[greater].fT); | 
|  | } | 
|  |  | 
|  | const Bounds& bounds() const { | 
|  | return fBounds; | 
|  | } | 
|  |  | 
|  | void buildAngles(int index, SkTDArray<Angle>& angles, bool includeOpp) const { | 
|  | double referenceT = fTs[index].fT; | 
|  | int lesser = index; | 
|  | while (--lesser >= 0 && (includeOpp || fTs[lesser].fOther->fOperand == fOperand) | 
|  | && precisely_negative(referenceT - fTs[lesser].fT)) { | 
|  | buildAnglesInner(lesser, angles); | 
|  | } | 
|  | do { | 
|  | buildAnglesInner(index, angles); | 
|  | } while (++index < fTs.count() && (includeOpp || fTs[index].fOther->fOperand == fOperand) | 
|  | && precisely_negative(fTs[index].fT - referenceT)); | 
|  | } | 
|  |  | 
|  | void buildAnglesInner(int index, SkTDArray<Angle>& angles) const { | 
|  | const Span* span = &fTs[index]; | 
|  | Segment* other = span->fOther; | 
|  | // if there is only one live crossing, and no coincidence, continue | 
|  | // in the same direction | 
|  | // if there is coincidence, the only choice may be to reverse direction | 
|  | // find edge on either side of intersection | 
|  | int oIndex = span->fOtherIndex; | 
|  | // if done == -1, prior span has already been processed | 
|  | int step = 1; | 
|  | int next = other->nextExactSpan(oIndex, step); | 
|  | if (next < 0) { | 
|  | step = -step; | 
|  | next = other->nextExactSpan(oIndex, step); | 
|  | } | 
|  | // add candidate into and away from junction | 
|  | other->addTwoAngles(next, oIndex, angles); | 
|  | } | 
|  |  | 
|  | int computeSum(int startIndex, int endIndex, bool binary) { | 
|  | SkTDArray<Angle> angles; | 
|  | addTwoAngles(startIndex, endIndex, angles); | 
|  | buildAngles(endIndex, angles, false); | 
|  | // OPTIMIZATION: check all angles to see if any have computed wind sum | 
|  | // before sorting (early exit if none) | 
|  | SkTDArray<Angle*> sorted; | 
|  | bool sortable = SortAngles(angles, sorted); | 
|  | #if DEBUG_SORT | 
|  | sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0); | 
|  | #endif | 
|  | if (!sortable) { | 
|  | return SK_MinS32; | 
|  | } | 
|  | int angleCount = angles.count(); | 
|  | const Angle* angle; | 
|  | const Segment* base; | 
|  | int winding; | 
|  | int oWinding; | 
|  | int firstIndex = 0; | 
|  | do { | 
|  | angle = sorted[firstIndex]; | 
|  | base = angle->segment(); | 
|  | winding = base->windSum(angle); | 
|  | if (winding != SK_MinS32) { | 
|  | oWinding = base->oppSum(angle); | 
|  | break; | 
|  | } | 
|  | if (++firstIndex == angleCount) { | 
|  | return SK_MinS32; | 
|  | } | 
|  | } while (true); | 
|  | // turn winding into contourWinding | 
|  | int spanWinding = base->spanSign(angle); | 
|  | bool inner = useInnerWinding(winding + spanWinding, winding); | 
|  | #if DEBUG_WINDING | 
|  | SkDebugf("%s spanWinding=%d winding=%d sign=%d inner=%d result=%d\n", __FUNCTION__, | 
|  | spanWinding, winding, angle->sign(), inner, | 
|  | inner ? winding + spanWinding : winding); | 
|  | #endif | 
|  | if (inner) { | 
|  | winding += spanWinding; | 
|  | } | 
|  | #if DEBUG_SORT | 
|  | base->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, oWinding); | 
|  | #endif | 
|  | int nextIndex = firstIndex + 1; | 
|  | int lastIndex = firstIndex != 0 ? firstIndex : angleCount; | 
|  | winding -= base->spanSign(angle); | 
|  | oWinding -= base->oppSign(angle); | 
|  | do { | 
|  | if (nextIndex == angleCount) { | 
|  | nextIndex = 0; | 
|  | } | 
|  | angle = sorted[nextIndex]; | 
|  | Segment* segment = angle->segment(); | 
|  | bool opp = base->fOperand ^ segment->fOperand; | 
|  | int maxWinding, oMaxWinding; | 
|  | int spanSign = segment->spanSign(angle); | 
|  | int oppoSign = segment->oppSign(angle); | 
|  | if (opp) { | 
|  | oMaxWinding = oWinding; | 
|  | oWinding -= spanSign; | 
|  | maxWinding = winding; | 
|  | if (oppoSign) { | 
|  | winding -= oppoSign; | 
|  | } | 
|  | } else { | 
|  | maxWinding = winding; | 
|  | winding -= spanSign; | 
|  | oMaxWinding = oWinding; | 
|  | if (oppoSign) { | 
|  | oWinding -= oppoSign; | 
|  | } | 
|  | } | 
|  | if (segment->windSum(angle) == SK_MinS32) { | 
|  | if (opp) { | 
|  | if (useInnerWinding(oMaxWinding, oWinding)) { | 
|  | oMaxWinding = oWinding; | 
|  | } | 
|  | if (oppoSign && useInnerWinding(maxWinding, winding)) { | 
|  | maxWinding = winding; | 
|  | } | 
|  | (void) segment->markAndChaseWinding(angle, oMaxWinding, maxWinding); | 
|  | } else { | 
|  | if (useInnerWinding(maxWinding, winding)) { | 
|  | maxWinding = winding; | 
|  | } | 
|  | if (oppoSign && useInnerWinding(oMaxWinding, oWinding)) { | 
|  | oMaxWinding = oWinding; | 
|  | } | 
|  | (void) segment->markAndChaseWinding(angle, maxWinding, | 
|  | binary ? oMaxWinding : 0); | 
|  | } | 
|  | } | 
|  | } while (++nextIndex != lastIndex); | 
|  | int minIndex = SkMin32(startIndex, endIndex); | 
|  | return windSum(minIndex); | 
|  | } | 
|  |  | 
|  | int crossedSpanY(const SkPoint& basePt, SkScalar& bestY, double& hitT, bool& hitSomething, | 
|  | double mid, bool opp, bool current) const { | 
|  | SkScalar bottom = fBounds.fBottom; | 
|  | int bestTIndex = -1; | 
|  | if (bottom <= bestY) { | 
|  | return bestTIndex; | 
|  | } | 
|  | SkScalar top = fBounds.fTop; | 
|  | if (top >= basePt.fY) { | 
|  | return bestTIndex; | 
|  | } | 
|  | if (fBounds.fLeft > basePt.fX) { | 
|  | return bestTIndex; | 
|  | } | 
|  | if (fBounds.fRight < basePt.fX) { | 
|  | return bestTIndex; | 
|  | } | 
|  | if (fBounds.fLeft == fBounds.fRight) { | 
|  | // if vertical, and directly above test point, wait for another one | 
|  | return AlmostEqualUlps(basePt.fX, fBounds.fLeft) ? SK_MinS32 : bestTIndex; | 
|  | } | 
|  | // intersect ray starting at basePt with edge | 
|  | Intersections intersections; | 
|  | // OPTIMIZE: use specialty function that intersects ray with curve, | 
|  | // returning t values only for curve (we don't care about t on ray) | 
|  | int pts = (*VSegmentIntersect[fVerb])(fPts, top, bottom, basePt.fX, false, intersections); | 
|  | if (pts == 0 || (current && pts == 1)) { | 
|  | return bestTIndex; | 
|  | } | 
|  | if (current) { | 
|  | SkASSERT(pts > 1); | 
|  | int closestIdx = 0; | 
|  | double closest = fabs(intersections.fT[0][0] - mid); | 
|  | for (int idx = 1; idx < pts; ++idx) { | 
|  | double test = fabs(intersections.fT[0][idx] - mid); | 
|  | if (closest > test) { | 
|  | closestIdx = idx; | 
|  | closest = test; | 
|  | } | 
|  | } | 
|  | if (closestIdx < pts - 1) { | 
|  | intersections.fT[0][closestIdx] = intersections.fT[0][pts - 1]; | 
|  | } | 
|  | --pts; | 
|  | } | 
|  | double bestT = -1; | 
|  | for (int index = 0; index < pts; ++index) { | 
|  | double foundT = intersections.fT[0][index]; | 
|  | if (approximately_less_than_zero(foundT) | 
|  | || approximately_greater_than_one(foundT)) { | 
|  | continue; | 
|  | } | 
|  | SkScalar testY = (*SegmentYAtT[fVerb])(fPts, foundT); | 
|  | if (approximately_negative(testY - bestY) | 
|  | || approximately_negative(basePt.fY - testY)) { | 
|  | continue; | 
|  | } | 
|  | if (pts > 1 && fVerb == SkPath::kLine_Verb) { | 
|  | return SK_MinS32; // if the intersection is edge on, wait for another one | 
|  | } | 
|  | if (fVerb > SkPath::kLine_Verb) { | 
|  | SkScalar dx = (*SegmentDXAtT[fVerb])(fPts, foundT); | 
|  | if (approximately_zero(dx)) { | 
|  | return SK_MinS32; // hit vertical, wait for another one | 
|  | } | 
|  | } | 
|  | bestY = testY; | 
|  | bestT = foundT; | 
|  | } | 
|  | if (bestT < 0) { | 
|  | return bestTIndex; | 
|  | } | 
|  | SkASSERT(bestT >= 0); | 
|  | SkASSERT(bestT <= 1); | 
|  | int start; | 
|  | int end = 0; | 
|  | do { | 
|  | start = end; | 
|  | end = nextSpan(start, 1); | 
|  | } while (fTs[end].fT < bestT); | 
|  | // FIXME: see next candidate for a better pattern to find the next start/end pair | 
|  | while (start + 1 < end && fTs[start].fDone) { | 
|  | ++start; | 
|  | } | 
|  | if (!isCanceled(start)) { | 
|  | hitT = bestT; | 
|  | bestTIndex = start; | 
|  | hitSomething = true; | 
|  | } | 
|  | return bestTIndex; | 
|  | } | 
|  |  | 
|  | void decrementSpan(Span* span) { | 
|  | SkASSERT(span->fWindValue > 0); | 
|  | if (--(span->fWindValue) == 0) { | 
|  | if (!span->fOppValue && !span->fDone) { | 
|  | span->fDone = true; | 
|  | ++fDoneSpans; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool bumpSpan(Span* span, int windDelta, int oppDelta) { | 
|  | SkASSERT(!span->fDone); | 
|  | span->fWindValue += windDelta; | 
|  | SkASSERT(span->fWindValue >= 0); | 
|  | span->fOppValue += oppDelta; | 
|  | SkASSERT(span->fOppValue >= 0); | 
|  | if (fXor) { | 
|  | span->fWindValue &= 1; | 
|  | } | 
|  | if (fOppXor) { | 
|  | span->fOppValue &= 1; | 
|  | } | 
|  | if (!span->fWindValue && !span->fOppValue) { | 
|  | span->fDone = true; | 
|  | ++fDoneSpans; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // OPTIMIZE | 
|  | // when the edges are initially walked, they don't automatically get the prior and next | 
|  | // edges assigned to positions t=0 and t=1. Doing that would remove the need for this check, | 
|  | // and would additionally remove the need for similar checks in condition edges. It would | 
|  | // also allow intersection code to assume end of segment intersections (maybe?) | 
|  | bool complete() const { | 
|  | int count = fTs.count(); | 
|  | return count > 1 && fTs[0].fT == 0 && fTs[--count].fT == 1; | 
|  | } | 
|  |  | 
|  | bool done() const { | 
|  | SkASSERT(fDoneSpans <= fTs.count()); | 
|  | return fDoneSpans == fTs.count(); | 
|  | } | 
|  |  | 
|  | bool done(int min) const { | 
|  | return fTs[min].fDone; | 
|  | } | 
|  |  | 
|  | bool done(const Angle* angle) const { | 
|  | return done(SkMin32(angle->start(), angle->end())); | 
|  | } | 
|  |  | 
|  | SkVector dxdy(int index) const { | 
|  | return (*SegmentDXDYAtT[fVerb])(fPts, fTs[index].fT); | 
|  | } | 
|  |  | 
|  | SkScalar dy(int index) const { | 
|  | return (*SegmentDYAtT[fVerb])(fPts, fTs[index].fT); | 
|  | } | 
|  |  | 
|  | bool equalPoints(int greaterTIndex, int lesserTIndex) { | 
|  | SkASSERT(greaterTIndex >= lesserTIndex); | 
|  | double greaterT = fTs[greaterTIndex].fT; | 
|  | double lesserT = fTs[lesserTIndex].fT; | 
|  | if (greaterT == lesserT) { | 
|  | return true; | 
|  | } | 
|  | if (!approximately_negative(greaterT - lesserT)) { | 
|  | return false; | 
|  | } | 
|  | return xyAtT(greaterTIndex) == xyAtT(lesserTIndex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | The M and S variable name parts stand for the operators. | 
|  | Mi stands for Minuend (see wiki subtraction, analogous to difference) | 
|  | Su stands for Subtrahend | 
|  | The Opp variable name part designates that the value is for the Opposite operator. | 
|  | Opposite values result from combining coincident spans. | 
|  | */ | 
|  |  | 
|  | Segment* findNextOp(SkTDArray<Span*>& chase, int& nextStart, int& nextEnd, | 
|  | bool& unsortable, ShapeOp op, const int xorMiMask, const int xorSuMask) { | 
|  | const int startIndex = nextStart; | 
|  | const int endIndex = nextEnd; | 
|  | SkASSERT(startIndex != endIndex); | 
|  | const int count = fTs.count(); | 
|  | SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); | 
|  | const int step = SkSign32(endIndex - startIndex); | 
|  | const int end = nextExactSpan(startIndex, step); | 
|  | SkASSERT(end >= 0); | 
|  | Span* endSpan = &fTs[end]; | 
|  | Segment* other; | 
|  | if (isSimple(end)) { | 
|  | // mark the smaller of startIndex, endIndex done, and all adjacent | 
|  | // spans with the same T value (but not 'other' spans) | 
|  | #if DEBUG_WINDING | 
|  | SkDebugf("%s simple\n", __FUNCTION__); | 
|  | #endif | 
|  | int min = SkMin32(startIndex, endIndex); | 
|  | if (fTs[min].fDone) { | 
|  | return NULL; | 
|  | } | 
|  | markDoneBinary(min); | 
|  | other = endSpan->fOther; | 
|  | nextStart = endSpan->fOtherIndex; | 
|  | double startT = other->fTs[nextStart].fT; | 
|  | nextEnd = nextStart; | 
|  | do { | 
|  | nextEnd += step; | 
|  | } | 
|  | while (precisely_zero(startT - other->fTs[nextEnd].fT)); | 
|  | SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); | 
|  | return other; | 
|  | } | 
|  | // more than one viable candidate -- measure angles to find best | 
|  | SkTDArray<Angle> angles; | 
|  | SkASSERT(startIndex - endIndex != 0); | 
|  | SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); | 
|  | addTwoAngles(startIndex, end, angles); | 
|  | buildAngles(end, angles, true); | 
|  | SkTDArray<Angle*> sorted; | 
|  | bool sortable = SortAngles(angles, sorted); | 
|  | int angleCount = angles.count(); | 
|  | int firstIndex = findStartingEdge(sorted, startIndex, end); | 
|  | SkASSERT(firstIndex >= 0); | 
|  | #if DEBUG_SORT | 
|  | debugShowSort(__FUNCTION__, sorted, firstIndex); | 
|  | #endif | 
|  | if (!sortable) { | 
|  | unsortable = true; | 
|  | return NULL; | 
|  | } | 
|  | SkASSERT(sorted[firstIndex]->segment() == this); | 
|  | #if DEBUG_WINDING | 
|  | SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, | 
|  | sorted[firstIndex]->sign()); | 
|  | #endif | 
|  | int sumMiWinding = updateWinding(endIndex, startIndex); | 
|  | int sumSuWinding = updateOppWinding(endIndex, startIndex); | 
|  | if (operand()) { | 
|  | SkTSwap<int>(sumMiWinding, sumSuWinding); | 
|  | } | 
|  | int nextIndex = firstIndex + 1; | 
|  | int lastIndex = firstIndex != 0 ? firstIndex : angleCount; | 
|  | const Angle* foundAngle = NULL; | 
|  | bool foundDone = false; | 
|  | // iterate through the angle, and compute everyone's winding | 
|  | Segment* nextSegment; | 
|  | int activeCount = 0; | 
|  | do { | 
|  | SkASSERT(nextIndex != firstIndex); | 
|  | if (nextIndex == angleCount) { | 
|  | nextIndex = 0; | 
|  | } | 
|  | const Angle* nextAngle = sorted[nextIndex]; | 
|  | nextSegment = nextAngle->segment(); | 
|  | int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; | 
|  | bool activeAngle = nextSegment->activeOp(xorMiMask, xorSuMask, nextAngle->start(), | 
|  | nextAngle->end(), op, sumMiWinding, sumSuWinding, | 
|  | maxWinding, sumWinding, oppMaxWinding, oppSumWinding); | 
|  | if (activeAngle) { | 
|  | ++activeCount; | 
|  | if (!foundAngle || (foundDone && activeCount & 1)) { | 
|  | if (nextSegment->tiny(nextAngle)) { | 
|  | unsortable = true; | 
|  | return NULL; | 
|  | } | 
|  | foundAngle = nextAngle; | 
|  | foundDone = nextSegment->done(nextAngle) && !nextSegment->tiny(nextAngle); | 
|  | } | 
|  | } | 
|  | if (nextSegment->done()) { | 
|  | continue; | 
|  | } | 
|  | if (nextSegment->windSum(nextAngle) != SK_MinS32) { | 
|  | continue; | 
|  | } | 
|  | Span* last = nextSegment->markAngle(maxWinding, sumWinding, oppMaxWinding, | 
|  | oppSumWinding, activeAngle, nextAngle); | 
|  | if (last) { | 
|  | *chase.append() = last; | 
|  | #if DEBUG_WINDING | 
|  | SkDebugf("%s chase.append id=%d\n", __FUNCTION__, | 
|  | last->fOther->fTs[last->fOtherIndex].fOther->debugID()); | 
|  | #endif | 
|  | } | 
|  | } while (++nextIndex != lastIndex); | 
|  | markDoneBinary(SkMin32(startIndex, endIndex)); | 
|  | if (!foundAngle) { | 
|  | return NULL; | 
|  | } | 
|  | nextStart = foundAngle->start(); | 
|  | nextEnd = foundAngle->end(); | 
|  | nextSegment = foundAngle->segment(); | 
|  |  | 
|  | #if DEBUG_WINDING | 
|  | SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", | 
|  | __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd); | 
|  | #endif | 
|  | return nextSegment; | 
|  | } | 
|  |  | 
|  | Segment* findNextWinding(SkTDArray<Span*>& chase, int& nextStart, int& nextEnd, | 
|  | bool& unsortable) { | 
|  | const int startIndex = nextStart; | 
|  | const int endIndex = nextEnd; | 
|  | SkASSERT(startIndex != endIndex); | 
|  | const int count = fTs.count(); | 
|  | SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); | 
|  | const int step = SkSign32(endIndex - startIndex); | 
|  | const int end = nextExactSpan(startIndex, step); | 
|  | SkASSERT(end >= 0); | 
|  | Span* endSpan = &fTs[end]; | 
|  | Segment* other; | 
|  | if (isSimple(end)) { | 
|  | // mark the smaller of startIndex, endIndex done, and all adjacent | 
|  | // spans with the same T value (but not 'other' spans) | 
|  | #if DEBUG_WINDING | 
|  | SkDebugf("%s simple\n", __FUNCTION__); | 
|  | #endif | 
|  | int min = SkMin32(startIndex, endIndex); | 
|  | if (fTs[min].fDone) { | 
|  | return NULL; | 
|  | } | 
|  | markDoneUnary(min); | 
|  | other = endSpan->fOther; | 
|  | nextStart = endSpan->fOtherIndex; | 
|  | double startT = other->fTs[nextStart].fT; | 
|  | nextEnd = nextStart; | 
|  | do { | 
|  | nextEnd += step; | 
|  | } | 
|  | while (precisely_zero(startT - other->fTs[nextEnd].fT)); | 
|  | SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); | 
|  | return other; | 
|  | } | 
|  | // more than one viable candidate -- measure angles to find best | 
|  | SkTDArray<Angle> angles; | 
|  | SkASSERT(startIndex - endIndex != 0); | 
|  | SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); | 
|  | addTwoAngles(startIndex, end, angles); | 
|  | buildAngles(end, angles, true); | 
|  | SkTDArray<Angle*> sorted; | 
|  | bool sortable = SortAngles(angles, sorted); | 
|  | int angleCount = angles.count(); | 
|  | int firstIndex = findStartingEdge(sorted, startIndex, end); | 
|  | SkASSERT(firstIndex >= 0); | 
|  | #if DEBUG_SORT | 
|  | debugShowSort(__FUNCTION__, sorted, firstIndex); | 
|  | #endif | 
|  | if (!sortable) { | 
|  | unsortable = true; | 
|  | return NULL; | 
|  | } | 
|  | SkASSERT(sorted[firstIndex]->segment() == this); | 
|  | #if DEBUG_WINDING | 
|  | SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, | 
|  | sorted[firstIndex]->sign()); | 
|  | #endif | 
|  | int sumWinding = updateWinding(endIndex, startIndex); | 
|  | int nextIndex = firstIndex + 1; | 
|  | int lastIndex = firstIndex != 0 ? firstIndex : angleCount; | 
|  | const Angle* foundAngle = NULL; | 
|  | bool foundDone = false; | 
|  | // iterate through the angle, and compute everyone's winding | 
|  | Segment* nextSegment; | 
|  | int activeCount = 0; | 
|  | do { | 
|  | SkASSERT(nextIndex != firstIndex); | 
|  | if (nextIndex == angleCount) { | 
|  | nextIndex = 0; | 
|  | } | 
|  | const Angle* nextAngle = sorted[nextIndex]; | 
|  | nextSegment = nextAngle->segment(); | 
|  | int maxWinding; | 
|  | bool activeAngle = nextSegment->activeWinding(nextAngle->start(), nextAngle->end(), | 
|  | maxWinding, sumWinding); | 
|  | if (activeAngle) { | 
|  | ++activeCount; | 
|  | if (!foundAngle || (foundDone && activeCount & 1)) { | 
|  | if (nextSegment->tiny(nextAngle)) { | 
|  | unsortable = true; | 
|  | return NULL; | 
|  | } | 
|  | foundAngle = nextAngle; | 
|  | foundDone = nextSegment->done(nextAngle); | 
|  | } | 
|  | } | 
|  | if (nextSegment->done()) { | 
|  | continue; | 
|  | } | 
|  | if (nextSegment->windSum(nextAngle) != SK_MinS32) { | 
|  | continue; | 
|  | } | 
|  | Span* last = nextSegment->markAngle(maxWinding, sumWinding, activeAngle, nextAngle); | 
|  | if (last) { | 
|  | *chase.append() = last; | 
|  | #if DEBUG_WINDING | 
|  | SkDebugf("%s chase.append id=%d\n", __FUNCTION__, | 
|  | last->fOther->fTs[last->fOtherIndex].fOther->debugID()); | 
|  | #endif | 
|  | } | 
|  | } while (++nextIndex != lastIndex); | 
|  | markDoneUnary(SkMin32(startIndex, endIndex)); | 
|  | if (!foundAngle) { | 
|  | return NULL; | 
|  | } | 
|  | nextStart = foundAngle->start(); | 
|  | nextEnd = foundAngle->end(); | 
|  | nextSegment = foundAngle->segment(); | 
|  | #if DEBUG_WINDING | 
|  | SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", | 
|  | __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd); | 
|  | #endif | 
|  | return nextSegment; | 
|  | } | 
|  |  | 
|  | Segment* findNextXor(int& nextStart, int& nextEnd, bool& unsortable) { | 
|  | const int startIndex = nextStart; | 
|  | const int endIndex = nextEnd; | 
|  | SkASSERT(startIndex != endIndex); | 
|  | int count = fTs.count(); | 
|  | SkASSERT(startIndex < endIndex ? startIndex < count - 1 | 
|  | : startIndex > 0); | 
|  | int step = SkSign32(endIndex - startIndex); | 
|  | int end = nextExactSpan(startIndex, step); | 
|  | SkASSERT(end >= 0); | 
|  | Span* endSpan = &fTs[end]; | 
|  | Segment* other; | 
|  | if (isSimple(end)) { | 
|  | #if DEBUG_WINDING | 
|  | SkDebugf("%s simple\n", __FUNCTION__); | 
|  | #endif | 
|  | int min = SkMin32(startIndex, endIndex); | 
|  | if (fTs[min].fDone) { | 
|  | return NULL; | 
|  | } | 
|  | markDone(min, 1); | 
|  | other = endSpan->fOther; | 
|  | nextStart = endSpan->fOtherIndex; | 
|  | double startT = other->fTs[nextStart].fT; | 
|  | #if 01 // FIXME: I don't know why the logic here is difference from the winding case | 
|  | SkDEBUGCODE(bool firstLoop = true;) | 
|  | if ((approximately_less_than_zero(startT) && step < 0) | 
|  | || (approximately_greater_than_one(startT) && step > 0)) { | 
|  | step = -step; | 
|  | SkDEBUGCODE(firstLoop = false;) | 
|  | } | 
|  | do { | 
|  | #endif | 
|  | nextEnd = nextStart; | 
|  | do { | 
|  | nextEnd += step; | 
|  | } | 
|  | while (precisely_zero(startT - other->fTs[nextEnd].fT)); | 
|  | #if 01 | 
|  | if (other->fTs[SkMin32(nextStart, nextEnd)].fWindValue) { | 
|  | break; | 
|  | } | 
|  | #ifdef SK_DEBUG | 
|  | SkASSERT(firstLoop); | 
|  | #endif | 
|  | SkDEBUGCODE(firstLoop = false;) | 
|  | step = -step; | 
|  | } while (true); | 
|  | #endif | 
|  | SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); | 
|  | return other; | 
|  | } | 
|  | SkTDArray<Angle> angles; | 
|  | SkASSERT(startIndex - endIndex != 0); | 
|  | SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); | 
|  | addTwoAngles(startIndex, end, angles); | 
|  | buildAngles(end, angles, false); | 
|  | SkTDArray<Angle*> sorted; | 
|  | bool sortable = SortAngles(angles, sorted); | 
|  | if (!sortable) { | 
|  | unsortable = true; | 
|  | #if DEBUG_SORT | 
|  | debugShowSort(__FUNCTION__, sorted, findStartingEdge(sorted, startIndex, end), 0, 0); | 
|  | #endif | 
|  | return NULL; | 
|  | } | 
|  | int angleCount = angles.count(); | 
|  | int firstIndex = findStartingEdge(sorted, startIndex, end); | 
|  | SkASSERT(firstIndex >= 0); | 
|  | #if DEBUG_SORT | 
|  | debugShowSort(__FUNCTION__, sorted, firstIndex, 0, 0); | 
|  | #endif | 
|  | SkASSERT(sorted[firstIndex]->segment() == this); | 
|  | int nextIndex = firstIndex + 1; | 
|  | int lastIndex = firstIndex != 0 ? firstIndex : angleCount; | 
|  | const Angle* foundAngle = NULL; | 
|  | bool foundDone = false; | 
|  | Segment* nextSegment; | 
|  | int activeCount = 0; | 
|  | do { | 
|  | SkASSERT(nextIndex != firstIndex); | 
|  | if (nextIndex == angleCount) { | 
|  | nextIndex = 0; | 
|  | } | 
|  | const Angle* nextAngle = sorted[nextIndex]; | 
|  | nextSegment = nextAngle->segment(); | 
|  | ++activeCount; | 
|  | if (!foundAngle || (foundDone && activeCount & 1)) { | 
|  | if (nextSegment->tiny(nextAngle)) { | 
|  | unsortable = true; | 
|  | return NULL; | 
|  | } | 
|  | foundAngle = nextAngle; | 
|  | foundDone = nextSegment->done(nextAngle); | 
|  | } | 
|  | if (nextSegment->done()) { | 
|  | continue; | 
|  | } | 
|  | } while (++nextIndex != lastIndex); | 
|  | markDone(SkMin32(startIndex, endIndex), 1); | 
|  | if (!foundAngle) { | 
|  | return NULL; | 
|  | } | 
|  | nextStart = foundAngle->start(); | 
|  | nextEnd = foundAngle->end(); | 
|  | nextSegment = foundAngle->segment(); | 
|  | #if DEBUG_WINDING | 
|  | SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", | 
|  | __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd); | 
|  | #endif | 
|  | return nextSegment; | 
|  | } | 
|  |  | 
|  | int findStartingEdge(SkTDArray<Angle*>& sorted, int start, int end) { | 
|  | int angleCount = sorted.count(); | 
|  | int firstIndex = -1; | 
|  | for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) { | 
|  | const Angle* angle = sorted[angleIndex]; | 
|  | if (angle->segment() == this && angle->start() == end && | 
|  | angle->end() == start) { | 
|  | firstIndex = angleIndex; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return firstIndex; | 
|  | } | 
|  |  | 
|  | // FIXME: this is tricky code; needs its own unit test | 
|  | // note that fOtherIndex isn't computed yet, so it can't be used here | 
|  | void findTooCloseToCall() { | 
|  | int count = fTs.count(); | 
|  | if (count < 3) { // require t=0, x, 1 at minimum | 
|  | return; | 
|  | } | 
|  | int matchIndex = 0; | 
|  | int moCount; | 
|  | Span* match; | 
|  | Segment* mOther; | 
|  | do { | 
|  | match = &fTs[matchIndex]; | 
|  | mOther = match->fOther; | 
|  | // FIXME: allow quads, cubics to be near coincident? | 
|  | if (mOther->fVerb == SkPath::kLine_Verb) { | 
|  | moCount = mOther->fTs.count(); | 
|  | if (moCount >= 3) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (++matchIndex >= count) { | 
|  | return; | 
|  | } | 
|  | } while (true); // require t=0, x, 1 at minimum | 
|  | // OPTIMIZATION: defer matchPt until qualifying toCount is found? | 
|  | const SkPoint* matchPt = &xyAtT(match); | 
|  | // look for a pair of nearby T values that map to the same (x,y) value | 
|  | // if found, see if the pair of other segments share a common point. If | 
|  | // so, the span from here to there is coincident. | 
|  | for (int index = matchIndex + 1; index < count; ++index) { | 
|  | Span* test = &fTs[index]; | 
|  | if (test->fDone) { | 
|  | continue; | 
|  | } | 
|  | Segment* tOther = test->fOther; | 
|  | if (tOther->fVerb != SkPath::kLine_Verb) { | 
|  | continue; // FIXME: allow quads, cubics to be near coincident? | 
|  | } | 
|  | int toCount = tOther->fTs.count(); | 
|  | if (toCount < 3) { // require t=0, x, 1 at minimum | 
|  | continue; | 
|  | } | 
|  | const SkPoint* testPt = &xyAtT(test); | 
|  | if (*matchPt != *testPt) { | 
|  | matchIndex = index; | 
|  | moCount = toCount; | 
|  | match = test; | 
|  | mOther = tOther; | 
|  | matchPt = testPt; | 
|  | continue; | 
|  | } | 
|  | int moStart = -1; | 
|  | int moEnd = -1; | 
|  | double moStartT, moEndT; | 
|  | for (int moIndex = 0; moIndex < moCount; ++moIndex) { | 
|  | Span& moSpan = mOther->fTs[moIndex]; | 
|  | if (moSpan.fDone) { | 
|  | continue; | 
|  | } | 
|  | if (moSpan.fOther == this) { | 
|  | if (moSpan.fOtherT == match->fT) { | 
|  | moStart = moIndex; | 
|  | moStartT = moSpan.fT; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (moSpan.fOther == tOther) { | 
|  | if (tOther->windValueAt(moSpan.fOtherT) == 0) { | 
|  | moStart = -1; | 
|  | break; | 
|  | } | 
|  | SkASSERT(moEnd == -1); | 
|  | moEnd = moIndex; | 
|  | moEndT = moSpan.fT; | 
|  | } | 
|  | } | 
|  | if (moStart < 0 || moEnd < 0) { | 
|  | continue; | 
|  | } | 
|  | // FIXME: if moStartT, moEndT are initialized to NaN, can skip this test | 
|  | if (approximately_equal(moStartT, moEndT)) { | 
|  | continue; | 
|  | } | 
|  | int toStart = -1; | 
|  | int toEnd = -1; | 
|  | double toStartT, toEndT; | 
|  | for (int toIndex = 0; toIndex < toCount; ++toIndex) { | 
|  | Span& toSpan = tOther->fTs[toIndex]; | 
|  | if (toSpan.fDone) { | 
|  | continue; | 
|  | } | 
|  | if (toSpan.fOther == this) { | 
|  | if (toSpan.fOtherT == test->fT) { | 
|  | toStart = toIndex; | 
|  | toStartT = toSpan.fT; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) { | 
|  | if (mOther->windValueAt(toSpan.fOtherT) == 0) { | 
|  | moStart = -1; | 
|  | break; | 
|  | } | 
|  | SkASSERT(toEnd == -1); | 
|  | toEnd = toIndex; | 
|  | toEndT = toSpan.fT; | 
|  | } | 
|  | } | 
|  | // FIXME: if toStartT, toEndT are initialized to NaN, can skip this test | 
|  | if (toStart <= 0 || toEnd <= 0) { | 
|  | continue; | 
|  | } | 
|  | if (approximately_equal(toStartT, toEndT)) { | 
|  | continue; | 
|  | } | 
|  | // test to see if the segment between there and here is linear | 
|  | if (!mOther->isLinear(moStart, moEnd) | 
|  | || !tOther->isLinear(toStart, toEnd)) { | 
|  | continue; | 
|  | } | 
|  | bool flipped = (moStart - moEnd) * (toStart - toEnd) < 1; | 
|  | if (flipped) { | 
|  | mOther->addTCancel(moStartT, moEndT, *tOther, toEndT, toStartT); | 
|  | } else { | 
|  | mOther->addTCoincident(moStartT, moEndT, *tOther, toStartT, toEndT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: either: | 
|  | // a) mark spans with either end unsortable as done, or | 
|  | // b) rewrite findTop / findTopSegment / findTopContour to iterate further | 
|  | //    when encountering an unsortable span | 
|  |  | 
|  | // OPTIMIZATION : for a pair of lines, can we compute points at T (cached) | 
|  | // and use more concise logic like the old edge walker code? | 
|  | // FIXME: this needs to deal with coincident edges | 
|  | Segment* findTop(int& tIndex, int& endIndex, bool& unsortable, bool onlySortable) { | 
|  | // iterate through T intersections and return topmost | 
|  | // topmost tangent from y-min to first pt is closer to horizontal | 
|  | SkASSERT(!done()); | 
|  | int firstT = -1; | 
|  | /* SkPoint topPt = */ activeLeftTop(onlySortable, &firstT); | 
|  | if (firstT < 0) { | 
|  | unsortable = true; | 
|  | firstT = 0; | 
|  | while (fTs[firstT].fDone) { | 
|  | SkASSERT(firstT < fTs.count()); | 
|  | ++firstT; | 
|  | } | 
|  | tIndex = firstT; | 
|  | endIndex = nextExactSpan(firstT, 1); | 
|  | return this; | 
|  | } | 
|  | // sort the edges to find the leftmost | 
|  | int step = 1; | 
|  | int end = nextSpan(firstT, step); | 
|  | if (end == -1) { | 
|  | step = -1; | 
|  | end = nextSpan(firstT, step); | 
|  | SkASSERT(end != -1); | 
|  | } | 
|  | // if the topmost T is not on end, or is three-way or more, find left | 
|  | // look for left-ness from tLeft to firstT (matching y of other) | 
|  | SkTDArray<Angle> angles; | 
|  | SkASSERT(firstT - end != 0); | 
|  | addTwoAngles(end, firstT, angles); | 
|  | buildAngles(firstT, angles, true); | 
|  | SkTDArray<Angle*> sorted; | 
|  | bool sortable = SortAngles(angles, sorted); | 
|  | int first = SK_MaxS32; | 
|  | SkScalar top = SK_ScalarMax; | 
|  | int count = sorted.count(); | 
|  | for (int index = 0; index < count; ++index) { | 
|  | const Angle* angle = sorted[index]; | 
|  | Segment* next = angle->segment(); | 
|  | Bounds bounds; | 
|  | next->subDivideBounds(angle->end(), angle->start(), bounds); | 
|  | if (approximately_greater(top, bounds.fTop)) { | 
|  | top = bounds.fTop; | 
|  | first = index; | 
|  | } | 
|  | } | 
|  | SkASSERT(first < SK_MaxS32); | 
|  | #if DEBUG_SORT // || DEBUG_SWAP_TOP | 
|  | sorted[first]->segment()->debugShowSort(__FUNCTION__, sorted, first, 0, 0); | 
|  | #endif | 
|  | if (onlySortable && !sortable) { | 
|  | unsortable = true; | 
|  | return NULL; | 
|  | } | 
|  | // skip edges that have already been processed | 
|  | firstT = first - 1; | 
|  | Segment* leftSegment; | 
|  | do { | 
|  | if (++firstT == count) { | 
|  | firstT = 0; | 
|  | } | 
|  | const Angle* angle = sorted[firstT]; | 
|  | SkASSERT(!onlySortable || !angle->unsortable()); | 
|  | leftSegment = angle->segment(); | 
|  | tIndex = angle->end(); | 
|  | endIndex = angle->start(); | 
|  | } while (leftSegment->fTs[SkMin32(tIndex, endIndex)].fDone); | 
|  | if (leftSegment->verb() >= SkPath::kQuad_Verb) { | 
|  | if (!leftSegment->clockwise(tIndex, endIndex)) { | 
|  | bool swap = leftSegment->verb() == SkPath::kQuad_Verb | 
|  | || (!leftSegment->monotonic_in_y(tIndex, endIndex) | 
|  | && !leftSegment->serpentine(tIndex, endIndex)); | 
|  | #if DEBUG_SWAP_TOP | 
|  | SkDebugf("%s swap=%d serpentine=%d controls_contained_by_ends=%d\n", __FUNCTION__, | 
|  | swap, | 
|  | leftSegment->serpentine(tIndex, endIndex), | 
|  | leftSegment->controls_contained_by_ends(tIndex, endIndex), | 
|  | leftSegment->monotonic_in_y(tIndex, endIndex)); | 
|  | #endif | 
|  | if (swap) { | 
|  | // FIXME: I doubt it makes sense to (necessarily) swap if the edge was not the first | 
|  | // sorted but merely the first not already processed (i.e., not done) | 
|  | SkTSwap(tIndex, endIndex); | 
|  | } | 
|  | } | 
|  | } | 
|  | SkASSERT(!leftSegment->fTs[SkMin32(tIndex, endIndex)].fTiny); | 
|  | return leftSegment; | 
|  | } | 
|  |  | 
|  | // FIXME: not crazy about this | 
|  | // when the intersections are performed, the other index is into an | 
|  | // incomplete array. As the array grows, the indices become incorrect | 
|  | // while the following fixes the indices up again, it isn't smart about | 
|  | // skipping segments whose indices are already correct | 
|  | // assuming we leave the code that wrote the index in the first place | 
|  | void fixOtherTIndex() { | 
|  | int iCount = fTs.count(); | 
|  | for (int i = 0; i < iCount; ++i) { | 
|  | Span& iSpan = fTs[i]; | 
|  | double oT = iSpan.fOtherT; | 
|  | Segment* other = iSpan.fOther; | 
|  | int oCount = other->fTs.count(); | 
|  | for (int o = 0; o < oCount; ++o) { | 
|  | Span& oSpan = other->fTs[o]; | 
|  | if (oT == oSpan.fT && this == oSpan.fOther && oSpan.fOtherT == iSpan.fT) { | 
|  | iSpan.fOtherIndex = o; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd) { | 
|  | fDoneSpans = 0; | 
|  | fOperand = operand; | 
|  | fXor = evenOdd; | 
|  | fPts = pts; | 
|  | fVerb = verb; | 
|  | } | 
|  |  | 
|  | void initWinding(int start, int end) { | 
|  | int local = spanSign(start, end); | 
|  | int oppLocal = oppSign(start, end); | 
|  | (void) markAndChaseWinding(start, end, local, oppLocal); | 
|  | // OPTIMIZATION: the reverse mark and chase could skip the first marking | 
|  | (void) markAndChaseWinding(end, start, local, oppLocal); | 
|  | } | 
|  |  | 
|  | void initWinding(int start, int end, int winding, int oppWinding) { | 
|  | int local = spanSign(start, end); | 
|  | if (local * winding >= 0) { | 
|  | winding += local; | 
|  | } | 
|  | int oppLocal = oppSign(start, end); | 
|  | if (oppLocal * oppWinding >= 0) { | 
|  | oppWinding += oppLocal; | 
|  | } | 
|  | (void) markAndChaseWinding(start, end, winding, oppWinding); | 
|  | } | 
|  |  | 
|  | /* | 
|  | when we start with a vertical intersect, we try to use the dx to determine if the edge is to | 
|  | the left or the right of vertical. This determines if we need to add the span's | 
|  | sign or not. However, this isn't enough. | 
|  | If the supplied sign (winding) is zero, then we didn't hit another vertical span, so dx is needed. | 
|  | If there was a winding, then it may or may not need adjusting. If the span the winding was borrowed | 
|  | from has the same x direction as this span, the winding should change. If the dx is opposite, then | 
|  | the same winding is shared by both. | 
|  | */ | 
|  | void initWinding(int start, int end, double tHit, int winding, SkScalar hitDx, int oppWind, | 
|  | SkScalar hitOppDx) { | 
|  | SkASSERT(hitDx || !winding); | 
|  | SkScalar dx = (*SegmentDXAtT[fVerb])(fPts, tHit); | 
|  | SkASSERT(dx); | 
|  | int windVal = windValue(SkMin32(start, end)); | 
|  | #if DEBUG_WINDING_AT_T | 
|  | SkDebugf("%s oldWinding=%d hitDx=%c dx=%c windVal=%d", __FUNCTION__, winding, | 
|  | hitDx ? hitDx > 0 ? '+' : '-' : '0', dx > 0 ? '+' : '-', windVal); | 
|  | #endif | 
|  | if (!winding) { | 
|  | winding = dx < 0 ? windVal : -windVal; | 
|  | } else if (winding * dx < 0) { | 
|  | int sideWind = winding + (dx < 0 ? windVal : -windVal); | 
|  | if (abs(winding) < abs(sideWind)) { | 
|  | winding = sideWind; | 
|  | } | 
|  | } | 
|  | #if DEBUG_WINDING_AT_T | 
|  | SkDebugf(" winding=%d\n", winding); | 
|  | #endif | 
|  | int oppLocal = oppSign(start, end); | 
|  | SkASSERT(hitOppDx || !oppWind || !oppLocal); | 
|  | int oppWindVal = oppValue(SkMin32(start, end)); | 
|  | if (!oppWind) { | 
|  | oppWind = dx < 0 ? oppWindVal : -oppWindVal; | 
|  | } else if (hitOppDx * dx >= 0) { | 
|  | int oppSideWind = oppWind + (dx < 0 ? oppWindVal : -oppWindVal); | 
|  | if (abs(oppWind) < abs(oppSideWind)) { | 
|  | oppWind = oppSideWind; | 
|  | } | 
|  | } | 
|  | (void) markAndChaseWinding(start, end, winding, oppWind); | 
|  | } | 
|  |  | 
|  | bool intersected() const { | 
|  | return fTs.count() > 0; | 
|  | } | 
|  |  | 
|  | bool isCanceled(int tIndex) const { | 
|  | return fTs[tIndex].fWindValue == 0 && fTs[tIndex].fOppValue == 0; | 
|  | } | 
|  |  | 
|  | bool isConnected(int startIndex, int endIndex) const { | 
|  | return fTs[startIndex].fWindSum != SK_MinS32 | 
|  | || fTs[endIndex].fWindSum != SK_MinS32; | 
|  | } | 
|  |  | 
|  | bool isHorizontal() const { | 
|  | return fBounds.fTop == fBounds.fBottom; | 
|  | } | 
|  |  | 
|  | bool isLinear(int start, int end) const { | 
|  | if (fVerb == SkPath::kLine_Verb) { | 
|  | return true; | 
|  | } | 
|  | if (fVerb == SkPath::kQuad_Verb) { | 
|  | SkPoint qPart[3]; | 
|  | QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart); | 
|  | return QuadIsLinear(qPart); | 
|  | } else { | 
|  | SkASSERT(fVerb == SkPath::kCubic_Verb); | 
|  | SkPoint cPart[4]; | 
|  | CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart); | 
|  | return CubicIsLinear(cPart); | 
|  | } | 
|  | } | 
|  |  | 
|  | // OPTIMIZE: successive calls could start were the last leaves off | 
|  | // or calls could specialize to walk forwards or backwards | 
|  | bool isMissing(double startT) const { | 
|  | size_t tCount = fTs.count(); | 
|  | for (size_t index = 0; index < tCount; ++index) { | 
|  | if (approximately_zero(startT - fTs[index].fT)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isSimple(int end) const { | 
|  | int count = fTs.count(); | 
|  | if (count == 2) { | 
|  | return true; | 
|  | } | 
|  | double t = fTs[end].fT; | 
|  | if (approximately_less_than_zero(t)) { | 
|  | return !approximately_less_than_zero(fTs[1].fT); | 
|  | } | 
|  | if (approximately_greater_than_one(t)) { | 
|  | return !approximately_greater_than_one(fTs[count - 2].fT); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool isVertical() const { | 
|  | return fBounds.fLeft == fBounds.fRight; | 
|  | } | 
|  |  | 
|  | bool isVertical(int start, int end) const { | 
|  | return (*SegmentVertical[fVerb])(fPts, start, end); | 
|  | } | 
|  |  | 
|  | SkScalar leftMost(int start, int end) const { | 
|  | return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT); | 
|  | } | 
|  |  | 
|  | // this span is excluded by the winding rule -- chase the ends | 
|  | // as long as they are unambiguous to mark connections as done | 
|  | // and give them the same winding value | 
|  | Span* markAndChaseDone(const Angle* angle, int winding) { | 
|  | int index = angle->start(); | 
|  | int endIndex = angle->end(); | 
|  | return markAndChaseDone(index, endIndex, winding); | 
|  | } | 
|  |  | 
|  | Span* markAndChaseDone(int index, int endIndex, int winding) { | 
|  | int step = SkSign32(endIndex - index); | 
|  | int min = SkMin32(index, endIndex); | 
|  | markDone(min, winding); | 
|  | Span* last; | 
|  | Segment* other = this; | 
|  | while ((other = other->nextChase(index, step, min, last))) { | 
|  | other->markDone(min, winding); | 
|  | } | 
|  | return last; | 
|  | } | 
|  |  | 
|  | Span* markAndChaseDoneBinary(const Angle* angle, int winding, int oppWinding) { | 
|  | int index = angle->start(); | 
|  | int endIndex = angle->end(); | 
|  | int step = SkSign32(endIndex - index); | 
|  | int min = SkMin32(index, endIndex); | 
|  | markDoneBinary(min, winding, oppWinding); | 
|  | Span* last; | 
|  | Segment* other = this; | 
|  | while ((other = other->nextChase(index, step, min, last))) { | 
|  | other->markDoneBinary(min, winding, oppWinding); | 
|  | } | 
|  | return last; | 
|  | } | 
|  |  | 
|  | Span* markAndChaseDoneBinary(int index, int endIndex) { | 
|  | int step = SkSign32(endIndex - index); | 
|  | int min = SkMin32(index, endIndex); | 
|  | markDoneBinary(min); | 
|  | Span* last; | 
|  | Segment* other = this; | 
|  | while ((other = other->nextChase(index, step, min, last))) { | 
|  | if (other->done()) { | 
|  | return NULL; | 
|  | } | 
|  | other->markDoneBinary(min); | 
|  | } | 
|  | return last; | 
|  | } | 
|  |  | 
|  | Span* markAndChaseDoneUnary(int index, int endIndex) { | 
|  | int step = SkSign32(endIndex - index); | 
|  | int min = SkMin32(index, endIndex); | 
|  | markDoneUnary(min); | 
|  | Span* last; | 
|  | Segment* other = this; | 
|  | while ((other = other->nextChase(index, step, min, last))) { | 
|  | if (other->done()) { | 
|  | return NULL; | 
|  | } | 
|  | other->markDoneUnary(min); | 
|  | } | 
|  | return last; | 
|  | } | 
|  |  | 
|  | Span* markAndChaseDoneUnary(const Angle* angle, int winding) { | 
|  | int index = angle->start(); | 
|  | int endIndex = angle->end(); | 
|  | return markAndChaseDone(index, endIndex, winding); | 
|  | } | 
|  |  | 
|  | Span* markAndChaseWinding(const Angle* angle, const int winding) { | 
|  | int index = angle->start(); | 
|  | int endIndex = angle->end(); | 
|  | int step = SkSign32(endIndex - index); | 
|  | int min = SkMin32(index, endIndex); | 
|  | markWinding(min, winding); | 
|  | Span* last; | 
|  | Segment* other = this; | 
|  | while ((other = other->nextChase(index, step, min, last))) { | 
|  | if (other->fTs[min].fWindSum != SK_MinS32) { | 
|  | SkASSERT(other->fTs[min].fWindSum == winding); | 
|  | return NULL; | 
|  | } | 
|  | other->markWinding(min, winding); | 
|  | } | 
|  | return last; | 
|  | } | 
|  |  | 
|  | Span* markAndChaseWinding(int index, int endIndex, int winding, int oppWinding) { | 
|  | int min = SkMin32(index, endIndex); | 
|  | int step = SkSign32(endIndex - index); | 
|  | markWinding(min, winding, oppWinding); | 
|  | Span* last; | 
|  | Segment* other = this; | 
|  | while ((other = other->nextChase(index, step, min, last))) { | 
|  | if (other->fTs[min].fWindSum != SK_MinS32) { | 
|  | SkASSERT(other->fTs[min].fWindSum == winding || other->fTs[min].fLoop); | 
|  | return NULL; | 
|  | } | 
|  | other->markWinding(min, winding, oppWinding); | 
|  | } | 
|  | return last; | 
|  | } | 
|  |  | 
|  | Span* markAndChaseWinding(const Angle* angle, int winding, int oppWinding) { | 
|  | int start = angle->start(); | 
|  | int end = angle->end(); | 
|  | return markAndChaseWinding(start, end, winding, oppWinding); | 
|  | } | 
|  |  | 
|  | Span* markAngle(int maxWinding, int sumWinding, bool activeAngle, const Angle* angle) { | 
|  | SkASSERT(angle->segment() == this); | 
|  | if (useInnerWinding(maxWinding, sumWinding)) { | 
|  | maxWinding = sumWinding; | 
|  | } | 
|  | Span* last; | 
|  | if (activeAngle) { | 
|  | last = markAndChaseWinding(angle, maxWinding); | 
|  | } else { | 
|  | last = markAndChaseDoneUnary(angle, maxWinding); | 
|  | } | 
|  | return last; | 
|  | } | 
|  |  | 
|  | Span* markAngle(int maxWinding, int sumWinding, int oppMaxWinding, int oppSumWinding, | 
|  | bool activeAngle, const Angle* angle) { | 
|  | SkASSERT(angle->segment() == this); | 
|  | if (useInnerWinding(maxWinding, sumWinding)) { | 
|  | maxWinding = sumWinding; | 
|  | } | 
|  | if (oppMaxWinding != oppSumWinding && useInnerWinding(oppMaxWinding, oppSumWinding)) { | 
|  | oppMaxWinding = oppSumWinding; | 
|  | } | 
|  | Span* last; | 
|  | if (activeAngle) { | 
|  | last = markAndChaseWinding(angle, maxWinding, oppMaxWinding); | 
|  | } else { | 
|  | last = markAndChaseDoneBinary(angle, maxWinding, oppMaxWinding); | 
|  | } | 
|  | return last; | 
|  | } | 
|  |  | 
|  | // FIXME: this should also mark spans with equal (x,y) | 
|  | // This may be called when the segment is already marked done. While this | 
|  | // wastes time, it shouldn't do any more than spin through the T spans. | 
|  | // OPTIMIZATION: abort on first done found (assuming that this code is | 
|  | // always called to mark segments done). | 
|  | void markDone(int index, int winding) { | 
|  | //  SkASSERT(!done()); | 
|  | SkASSERT(winding); | 
|  | double referenceT = fTs[index].fT; | 
|  | int lesser = index; | 
|  | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { | 
|  | markOneDone(__FUNCTION__, lesser, winding); | 
|  | } | 
|  | do { | 
|  | markOneDone(__FUNCTION__, index, winding); | 
|  | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); | 
|  | } | 
|  |  | 
|  | void markDoneBinary(int index, int winding, int oppWinding) { | 
|  | //  SkASSERT(!done()); | 
|  | SkASSERT(winding || oppWinding); | 
|  | double referenceT = fTs[index].fT; | 
|  | int lesser = index; | 
|  | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { | 
|  | markOneDoneBinary(__FUNCTION__, lesser, winding, oppWinding); | 
|  | } | 
|  | do { | 
|  | markOneDoneBinary(__FUNCTION__, index, winding, oppWinding); | 
|  | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); | 
|  | } | 
|  |  | 
|  | void markDoneBinary(int index) { | 
|  | double referenceT = fTs[index].fT; | 
|  | int lesser = index; | 
|  | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { | 
|  | markOneDoneBinary(__FUNCTION__, lesser); | 
|  | } | 
|  | do { | 
|  | markOneDoneBinary(__FUNCTION__, index); | 
|  | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); | 
|  | } | 
|  |  | 
|  | void markDoneUnary(int index, int winding) { | 
|  | //  SkASSERT(!done()); | 
|  | SkASSERT(winding); | 
|  | double referenceT = fTs[index].fT; | 
|  | int lesser = index; | 
|  | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { | 
|  | markOneDoneUnary(__FUNCTION__, lesser, winding); | 
|  | } | 
|  | do { | 
|  | markOneDoneUnary(__FUNCTION__, index, winding); | 
|  | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); | 
|  | } | 
|  |  | 
|  | void markDoneUnary(int index) { | 
|  | double referenceT = fTs[index].fT; | 
|  | int lesser = index; | 
|  | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { | 
|  | markOneDoneUnary(__FUNCTION__, lesser); | 
|  | } | 
|  | do { | 
|  | markOneDoneUnary(__FUNCTION__, index); | 
|  | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); | 
|  | } | 
|  |  | 
|  | void markOneDone(const char* funName, int tIndex, int winding) { | 
|  | Span* span = markOneWinding(funName, tIndex, winding); | 
|  | if (!span) { | 
|  | return; | 
|  | } | 
|  | span->fDone = true; | 
|  | fDoneSpans++; | 
|  | } | 
|  |  | 
|  | void markOneDoneBinary(const char* funName, int tIndex) { | 
|  | Span* span = verifyOneWinding(funName, tIndex); | 
|  | if (!span) { | 
|  | return; | 
|  | } | 
|  | span->fDone = true; | 
|  | fDoneSpans++; | 
|  | } | 
|  |  | 
|  | void markOneDoneBinary(const char* funName, int tIndex, int winding, int oppWinding) { | 
|  | Span* span = markOneWinding(funName, tIndex, winding, oppWinding); | 
|  | if (!span) { | 
|  | return; | 
|  | } | 
|  | span->fDone = true; | 
|  | fDoneSpans++; | 
|  | } | 
|  |  | 
|  | void markOneDoneUnary(const char* funName, int tIndex) { | 
|  | Span* span = verifyOneWindingU(funName, tIndex); | 
|  | if (!span) { | 
|  | return; | 
|  | } | 
|  | span->fDone = true; | 
|  | fDoneSpans++; | 
|  | } | 
|  |  | 
|  | void markOneDoneUnary(const char* funName, int tIndex, int winding) { | 
|  | Span* span = markOneWinding(funName, tIndex, winding); | 
|  | if (!span) { | 
|  | return; | 
|  | } | 
|  | span->fDone = true; | 
|  | fDoneSpans++; | 
|  | } | 
|  |  | 
|  | Span* markOneWinding(const char* funName, int tIndex, int winding) { | 
|  | Span& span = fTs[tIndex]; | 
|  | if (span.fDone) { | 
|  | return NULL; | 
|  | } | 
|  | #if DEBUG_MARK_DONE | 
|  | debugShowNewWinding(funName, span, winding); | 
|  | #endif | 
|  | SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); | 
|  | #ifdef SK_DEBUG | 
|  | SkASSERT(abs(winding) <= gDebugMaxWindSum); | 
|  | #endif | 
|  | span.fWindSum = winding; | 
|  | return &span; | 
|  | } | 
|  |  | 
|  | Span* markOneWinding(const char* funName, int tIndex, int winding, int oppWinding) { | 
|  | Span& span = fTs[tIndex]; | 
|  | if (span.fDone) { | 
|  | return NULL; | 
|  | } | 
|  | #if DEBUG_MARK_DONE | 
|  | debugShowNewWinding(funName, span, winding, oppWinding); | 
|  | #endif | 
|  | SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); | 
|  | #ifdef SK_DEBUG | 
|  | SkASSERT(abs(winding) <= gDebugMaxWindSum); | 
|  | #endif | 
|  | span.fWindSum = winding; | 
|  | SkASSERT(span.fOppSum == SK_MinS32 || span.fOppSum == oppWinding); | 
|  | #ifdef SK_DEBUG | 
|  | SkASSERT(abs(oppWinding) <= gDebugMaxWindSum); | 
|  | #endif | 
|  | span.fOppSum = oppWinding; | 
|  | return &span; | 
|  | } | 
|  |  | 
|  | bool controls_contained_by_ends(int tStart, int tEnd) const { | 
|  | if (fVerb != SkPath::kCubic_Verb) { | 
|  | return false; | 
|  | } | 
|  | MAKE_CONST_CUBIC(aCubic, fPts); | 
|  | Cubic dst; | 
|  | sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst); | 
|  | return ::controls_contained_by_ends(dst); | 
|  | } | 
|  |  | 
|  | // from http://stackoverflow.com/questions/1165647/how-to-determine-if-a-list-of-polygon-points-are-in-clockwise-order | 
|  | bool clockwise(int tStart, int tEnd) const { | 
|  | SkASSERT(fVerb != SkPath::kLine_Verb); | 
|  | SkPoint edge[4]; | 
|  | subDivide(tStart, tEnd, edge); | 
|  | double sum = (edge[0].fX - edge[fVerb].fX) * (edge[0].fY + edge[fVerb].fY); | 
|  | if (fVerb == SkPath::kCubic_Verb) { | 
|  | SkScalar lesser = SkTMin(edge[0].fY, edge[3].fY); | 
|  | if (edge[1].fY < lesser && edge[2].fY < lesser) { | 
|  | _Line tangent1 = { {edge[0].fX, edge[0].fY}, {edge[1].fX, edge[1].fY} }; | 
|  | _Line tangent2 = { {edge[2].fX, edge[2].fY}, {edge[3].fX, edge[3].fY} }; | 
|  | if (testIntersect(tangent1, tangent2)) { | 
|  | SkPoint topPt = CubicTop(fPts, fTs[tStart].fT, fTs[tEnd].fT); | 
|  | sum += (topPt.fX - edge[0].fX) * (topPt.fY + edge[0].fY); | 
|  | sum += (edge[3].fX - topPt.fX) * (edge[3].fY + topPt.fY); | 
|  | return sum <= 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | for (int idx = 0; idx < fVerb; ++idx){ | 
|  | sum += (edge[idx + 1].fX - edge[idx].fX) * (edge[idx + 1].fY + edge[idx].fY); | 
|  | } | 
|  | return sum <= 0; | 
|  | } | 
|  |  | 
|  | bool monotonic_in_y(int tStart, int tEnd) const { | 
|  | if (fVerb != SkPath::kCubic_Verb) { | 
|  | return false; | 
|  | } | 
|  | MAKE_CONST_CUBIC(aCubic, fPts); | 
|  | Cubic dst; | 
|  | sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst); | 
|  | return ::monotonic_in_y(dst); | 
|  | } | 
|  |  | 
|  | bool serpentine(int tStart, int tEnd) const { | 
|  | if (fVerb != SkPath::kCubic_Verb) { | 
|  | return false; | 
|  | } | 
|  | MAKE_CONST_CUBIC(aCubic, fPts); | 
|  | Cubic dst; | 
|  | sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst); | 
|  | return ::serpentine(dst); | 
|  | } | 
|  |  | 
|  | Span* verifyOneWinding(const char* funName, int tIndex) { | 
|  | Span& span = fTs[tIndex]; | 
|  | if (span.fDone) { | 
|  | return NULL; | 
|  | } | 
|  | #if DEBUG_MARK_DONE | 
|  | debugShowNewWinding(funName, span, span.fWindSum, span.fOppSum); | 
|  | #endif | 
|  | SkASSERT(span.fWindSum != SK_MinS32); | 
|  | SkASSERT(span.fOppSum != SK_MinS32); | 
|  | return &span; | 
|  | } | 
|  |  | 
|  | Span* verifyOneWindingU(const char* funName, int tIndex) { | 
|  | Span& span = fTs[tIndex]; | 
|  | if (span.fDone) { | 
|  | return NULL; | 
|  | } | 
|  | #if DEBUG_MARK_DONE | 
|  | debugShowNewWinding(funName, span, span.fWindSum); | 
|  | #endif | 
|  | SkASSERT(span.fWindSum != SK_MinS32); | 
|  | return &span; | 
|  | } | 
|  |  | 
|  | // note that just because a span has one end that is unsortable, that's | 
|  | // not enough to mark it done. The other end may be sortable, allowing the | 
|  | // span to be added. | 
|  | // FIXME: if abs(start - end) > 1, mark intermediates as unsortable on both ends | 
|  | void markUnsortable(int start, int end) { | 
|  | Span* span = &fTs[start]; | 
|  | if (start < end) { | 
|  | #if DEBUG_UNSORTABLE | 
|  | debugShowNewWinding(__FUNCTION__, *span, 0); | 
|  | #endif | 
|  | span->fUnsortableStart = true; | 
|  | } else { | 
|  | --span; | 
|  | #if DEBUG_UNSORTABLE | 
|  | debugShowNewWinding(__FUNCTION__, *span, 0); | 
|  | #endif | 
|  | span->fUnsortableEnd = true; | 
|  | } | 
|  | if (!span->fUnsortableStart || !span->fUnsortableEnd || span->fDone) { | 
|  | return; | 
|  | } | 
|  | span->fDone = true; | 
|  | fDoneSpans++; | 
|  | } | 
|  |  | 
|  | void markWinding(int index, int winding) { | 
|  | //    SkASSERT(!done()); | 
|  | SkASSERT(winding); | 
|  | double referenceT = fTs[index].fT; | 
|  | int lesser = index; | 
|  | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { | 
|  | markOneWinding(__FUNCTION__, lesser, winding); | 
|  | } | 
|  | do { | 
|  | markOneWinding(__FUNCTION__, index, winding); | 
|  | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); | 
|  | } | 
|  |  | 
|  | void markWinding(int index, int winding, int oppWinding) { | 
|  | //    SkASSERT(!done()); | 
|  | SkASSERT(winding || oppWinding); | 
|  | double referenceT = fTs[index].fT; | 
|  | int lesser = index; | 
|  | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { | 
|  | markOneWinding(__FUNCTION__, lesser, winding, oppWinding); | 
|  | } | 
|  | do { | 
|  | markOneWinding(__FUNCTION__, index, winding, oppWinding); | 
|  | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); | 
|  | } | 
|  |  | 
|  | void matchWindingValue(int tIndex, double t, bool borrowWind) { | 
|  | int nextDoorWind = SK_MaxS32; | 
|  | int nextOppWind = SK_MaxS32; | 
|  | if (tIndex > 0) { | 
|  | const Span& below = fTs[tIndex - 1]; | 
|  | if (approximately_negative(t - below.fT)) { | 
|  | nextDoorWind = below.fWindValue; | 
|  | nextOppWind = below.fOppValue; | 
|  | } | 
|  | } | 
|  | if (nextDoorWind == SK_MaxS32 && tIndex + 1 < fTs.count()) { | 
|  | const Span& above = fTs[tIndex + 1]; | 
|  | if (approximately_negative(above.fT - t)) { | 
|  | nextDoorWind = above.fWindValue; | 
|  | nextOppWind = above.fOppValue; | 
|  | } | 
|  | } | 
|  | if (nextDoorWind == SK_MaxS32 && borrowWind && tIndex > 0 && t < 1) { | 
|  | const Span& below = fTs[tIndex - 1]; | 
|  | nextDoorWind = below.fWindValue; | 
|  | nextOppWind = below.fOppValue; | 
|  | } | 
|  | if (nextDoorWind != SK_MaxS32) { | 
|  | Span& newSpan = fTs[tIndex]; | 
|  | newSpan.fWindValue = nextDoorWind; | 
|  | newSpan.fOppValue = nextOppWind; | 
|  | if (!nextDoorWind && !nextOppWind && !newSpan.fDone) { | 
|  | newSpan.fDone = true; | 
|  | ++fDoneSpans; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool moreHorizontal(int index, int endIndex, bool& unsortable) const { | 
|  | // find bounds | 
|  | Bounds bounds; | 
|  | bounds.setPoint(xyAtT(index)); | 
|  | bounds.add(xyAtT(endIndex)); | 
|  | SkScalar width = bounds.width(); | 
|  | SkScalar height = bounds.height(); | 
|  | if (width > height) { | 
|  | if (approximately_negative(width)) { | 
|  | unsortable = true; // edge is too small to resolve meaningfully | 
|  | } | 
|  | return false; | 
|  | } else { | 
|  | if (approximately_negative(height)) { | 
|  | unsortable = true; // edge is too small to resolve meaningfully | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // return span if when chasing, two or more radiating spans are not done | 
|  | // OPTIMIZATION: ? multiple spans is detected when there is only one valid | 
|  | // candidate and the remaining spans have windValue == 0 (canceled by | 
|  | // coincidence). The coincident edges could either be removed altogether, | 
|  | // or this code could be more complicated in detecting this case. Worth it? | 
|  | bool multipleSpans(int end) const { | 
|  | return end > 0 && end < fTs.count() - 1; | 
|  | } | 
|  |  | 
|  | bool nextCandidate(int& start, int& end) const { | 
|  | while (fTs[end].fDone) { | 
|  | if (fTs[end].fT == 1) { | 
|  | return false; | 
|  | } | 
|  | ++end; | 
|  | } | 
|  | start = end; | 
|  | end = nextExactSpan(start, 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Segment* nextChase(int& index, const int step, int& min, Span*& last) { | 
|  | int end = nextExactSpan(index, step); | 
|  | SkASSERT(end >= 0); | 
|  | if (multipleSpans(end)) { | 
|  | last = &fTs[end]; | 
|  | return NULL; | 
|  | } | 
|  | const Span& endSpan = fTs[end]; | 
|  | Segment* other = endSpan.fOther; | 
|  | index = endSpan.fOtherIndex; | 
|  | SkASSERT(index >= 0); | 
|  | int otherEnd = other->nextExactSpan(index, step); | 
|  | SkASSERT(otherEnd >= 0); | 
|  | min = SkMin32(index, otherEnd); | 
|  | return other; | 
|  | } | 
|  |  | 
|  | // This has callers for two different situations: one establishes the end | 
|  | // of the current span, and one establishes the beginning of the next span | 
|  | // (thus the name). When this is looking for the end of the current span, | 
|  | // coincidence is found when the beginning Ts contain -step and the end | 
|  | // contains step. When it is looking for the beginning of the next, the | 
|  | // first Ts found can be ignored and the last Ts should contain -step. | 
|  | // OPTIMIZATION: probably should split into two functions | 
|  | int nextSpan(int from, int step) const { | 
|  | const Span& fromSpan = fTs[from]; | 
|  | int count = fTs.count(); | 
|  | int to = from; | 
|  | while (step > 0 ? ++to < count : --to >= 0) { | 
|  | const Span& span = fTs[to]; | 
|  | if (approximately_zero(span.fT - fromSpan.fT)) { | 
|  | continue; | 
|  | } | 
|  | return to; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // FIXME | 
|  | // this returns at any difference in T, vs. a preset minimum. It may be | 
|  | // that all callers to nextSpan should use this instead. | 
|  | // OPTIMIZATION splitting this into separate loops for up/down steps | 
|  | // would allow using precisely_negative instead of precisely_zero | 
|  | int nextExactSpan(int from, int step) const { | 
|  | const Span& fromSpan = fTs[from]; | 
|  | int count = fTs.count(); | 
|  | int to = from; | 
|  | while (step > 0 ? ++to < count : --to >= 0) { | 
|  | const Span& span = fTs[to]; | 
|  | if (precisely_zero(span.fT - fromSpan.fT)) { | 
|  | continue; | 
|  | } | 
|  | return to; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool operand() const { | 
|  | return fOperand; | 
|  | } | 
|  |  | 
|  | int oppSign(const Angle* angle) const { | 
|  | SkASSERT(angle->segment() == this); | 
|  | return oppSign(angle->start(), angle->end()); | 
|  | } | 
|  |  | 
|  | int oppSign(int startIndex, int endIndex) const { | 
|  | int result = startIndex < endIndex ? -fTs[startIndex].fOppValue | 
|  | : fTs[endIndex].fOppValue; | 
|  | #if DEBUG_WIND_BUMP | 
|  | SkDebugf("%s oppSign=%d\n", __FUNCTION__, result); | 
|  | #endif | 
|  | return result; | 
|  | } | 
|  |  | 
|  | int oppSum(int tIndex) const { | 
|  | return fTs[tIndex].fOppSum; | 
|  | } | 
|  |  | 
|  | int oppSum(const Angle* angle) const { | 
|  | int lesser = SkMin32(angle->start(), angle->end()); | 
|  | return fTs[lesser].fOppSum; | 
|  | } | 
|  |  | 
|  | int oppValue(int tIndex) const { | 
|  | return fTs[tIndex].fOppValue; | 
|  | } | 
|  |  | 
|  | int oppValue(const Angle* angle) const { | 
|  | int lesser = SkMin32(angle->start(), angle->end()); | 
|  | return fTs[lesser].fOppValue; | 
|  | } | 
|  |  | 
|  | const SkPoint* pts() const { | 
|  | return fPts; | 
|  | } | 
|  |  | 
|  | void reset() { | 
|  | init(NULL, (SkPath::Verb) -1, false, false); | 
|  | fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); | 
|  | fTs.reset(); | 
|  | } | 
|  |  | 
|  | void setOppXor(bool isOppXor) { | 
|  | fOppXor = isOppXor; | 
|  | } | 
|  |  | 
|  | void setSpanT(int index, double t) { | 
|  | Span& span = fTs[index]; | 
|  | span.fT = t; | 
|  | span.fOther->fTs[span.fOtherIndex].fOtherT = t; | 
|  | } | 
|  |  | 
|  | void setUpWinding(int index, int endIndex, int& maxWinding, int& sumWinding) { | 
|  | int deltaSum = spanSign(index, endIndex); | 
|  | maxWinding = sumWinding; | 
|  | sumWinding = sumWinding -= deltaSum; | 
|  | } | 
|  |  | 
|  | void setUpWindings(int index, int endIndex, int& sumMiWinding, int& sumSuWinding, | 
|  | int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) { | 
|  | int deltaSum = spanSign(index, endIndex); | 
|  | int oppDeltaSum = oppSign(index, endIndex); | 
|  | if (operand()) { | 
|  | maxWinding = sumSuWinding; | 
|  | sumWinding = sumSuWinding -= deltaSum; | 
|  | oppMaxWinding = sumMiWinding; | 
|  | oppSumWinding = sumMiWinding -= oppDeltaSum; | 
|  | } else { | 
|  | maxWinding = sumMiWinding; | 
|  | sumWinding = sumMiWinding -= deltaSum; | 
|  | oppMaxWinding = sumSuWinding; | 
|  | oppSumWinding = sumSuWinding -= oppDeltaSum; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This marks all spans unsortable so that this info is available for early | 
|  | // exclusion in find top and others. This could be optimized to only mark | 
|  | // adjacent spans that unsortable. However, this makes it difficult to later | 
|  | // determine starting points for edge detection in find top and the like. | 
|  | static bool SortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) { | 
|  | bool sortable = true; | 
|  | int angleCount = angles.count(); | 
|  | int angleIndex; | 
|  | angleList.setReserve(angleCount); | 
|  | for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { | 
|  | Angle& angle = angles[angleIndex]; | 
|  | *angleList.append() = ∠ | 
|  | sortable &= !angle.unsortable(); | 
|  | } | 
|  | if (sortable) { | 
|  | QSort<Angle>(angleList.begin(), angleList.end() - 1); | 
|  | for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { | 
|  | if (angles[angleIndex].unsortable()) { | 
|  | sortable = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!sortable) { | 
|  | for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { | 
|  | Angle& angle = angles[angleIndex]; | 
|  | angle.segment()->markUnsortable(angle.start(), angle.end()); | 
|  | } | 
|  | } | 
|  | return sortable; | 
|  | } | 
|  |  | 
|  | // OPTIMIZATION: mark as debugging only if used solely by tests | 
|  | const Span& span(int tIndex) const { | 
|  | return fTs[tIndex]; | 
|  | } | 
|  |  | 
|  | int spanSign(const Angle* angle) const { | 
|  | SkASSERT(angle->segment() == this); | 
|  | return spanSign(angle->start(), angle->end()); | 
|  | } | 
|  |  | 
|  | int spanSign(int startIndex, int endIndex) const { | 
|  | int result = startIndex < endIndex ? -fTs[startIndex].fWindValue | 
|  | : fTs[endIndex].fWindValue; | 
|  | #if DEBUG_WIND_BUMP | 
|  | SkDebugf("%s spanSign=%d\n", __FUNCTION__, result); | 
|  | #endif | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void subDivide(int start, int end, SkPoint edge[4]) const { | 
|  | edge[0] = fTs[start].fPt; | 
|  | edge[fVerb] = fTs[end].fPt; | 
|  | if (fVerb == SkPath::kQuad_Verb || fVerb == SkPath::kCubic_Verb) { | 
|  | _Point sub[2] = {{ edge[0].fX, edge[0].fY}, {edge[fVerb].fX, edge[fVerb].fY }}; | 
|  | if (fVerb == SkPath::kQuad_Verb) { | 
|  | MAKE_CONST_QUAD(aQuad, fPts); | 
|  | edge[1] = sub_divide(aQuad, sub[0], sub[1], fTs[start].fT, fTs[end].fT).asSkPoint(); | 
|  | } else { | 
|  | MAKE_CONST_CUBIC(aCubic, fPts); | 
|  | sub_divide(aCubic, sub[0], sub[1], fTs[start].fT, fTs[end].fT, sub); | 
|  | edge[1] = sub[0].asSkPoint(); | 
|  | edge[2] = sub[1].asSkPoint(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void subDivideBounds(int start, int end, Bounds& bounds) const { | 
|  | SkPoint edge[4]; | 
|  | subDivide(start, end, edge); | 
|  | (bounds.*setSegmentBounds[fVerb])(edge); | 
|  | } | 
|  |  | 
|  | // OPTIMIZATION: mark as debugging only if used solely by tests | 
|  | double t(int tIndex) const { | 
|  | return fTs[tIndex].fT; | 
|  | } | 
|  |  | 
|  | double tAtMid(int start, int end, double mid) const { | 
|  | return fTs[start].fT * (1 - mid) + fTs[end].fT * mid; | 
|  | } | 
|  |  | 
|  | bool tiny(const Angle* angle) const { | 
|  | int start = angle->start(); | 
|  | int end = angle->end(); | 
|  | const Span& mSpan = fTs[SkMin32(start, end)]; | 
|  | return mSpan.fTiny; | 
|  | } | 
|  |  | 
|  | static void TrackOutside(SkTDArray<double>& outsideTs, double end, | 
|  | double start) { | 
|  | int outCount = outsideTs.count(); | 
|  | if (outCount == 0 || !approximately_negative(end - outsideTs[outCount - 2])) { | 
|  | *outsideTs.append() = end; | 
|  | *outsideTs.append() = start; | 
|  | } | 
|  | } | 
|  |  | 
|  | void undoneSpan(int& start, int& end) { | 
|  | size_t tCount = fTs.count(); | 
|  | size_t index; | 
|  | for (index = 0; index < tCount; ++index) { | 
|  | if (!fTs[index].fDone) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | SkASSERT(index < tCount - 1); | 
|  | start = index; | 
|  | double startT = fTs[index].fT; | 
|  | while (approximately_negative(fTs[++index].fT - startT)) | 
|  | SkASSERT(index < tCount); | 
|  | SkASSERT(index < tCount); | 
|  | end = index; | 
|  | } | 
|  |  | 
|  | bool unsortable(int index) const { | 
|  | return fTs[index].fUnsortableStart || fTs[index].fUnsortableEnd; | 
|  | } | 
|  |  | 
|  | void updatePts(const SkPoint pts[]) { | 
|  | fPts = pts; | 
|  | } | 
|  |  | 
|  | int updateOppWinding(int index, int endIndex) const { | 
|  | int lesser = SkMin32(index, endIndex); | 
|  | int oppWinding = oppSum(lesser); | 
|  | int oppSpanWinding = oppSign(index, endIndex); | 
|  | if (oppSpanWinding && useInnerWinding(oppWinding - oppSpanWinding, oppWinding) | 
|  | && oppWinding != SK_MaxS32) { | 
|  | oppWinding -= oppSpanWinding; | 
|  | } | 
|  | return oppWinding; | 
|  | } | 
|  |  | 
|  | int updateOppWinding(const Angle* angle) const { | 
|  | int startIndex = angle->start(); | 
|  | int endIndex = angle->end(); | 
|  | return updateOppWinding(endIndex, startIndex); | 
|  | } | 
|  |  | 
|  | int updateOppWindingReverse(const Angle* angle) const { | 
|  | int startIndex = angle->start(); | 
|  | int endIndex = angle->end(); | 
|  | return updateOppWinding(startIndex, endIndex); | 
|  | } | 
|  |  | 
|  | int updateWinding(int index, int endIndex) const { | 
|  | int lesser = SkMin32(index, endIndex); | 
|  | int winding = windSum(lesser); | 
|  | int spanWinding = spanSign(index, endIndex); | 
|  | if (winding && useInnerWinding(winding - spanWinding, winding) && winding != SK_MaxS32) { | 
|  | winding -= spanWinding; | 
|  | } | 
|  | return winding; | 
|  | } | 
|  |  | 
|  | int updateWinding(const Angle* angle) const { | 
|  | int startIndex = angle->start(); | 
|  | int endIndex = angle->end(); | 
|  | return updateWinding(endIndex, startIndex); | 
|  | } | 
|  |  | 
|  | int updateWindingReverse(const Angle* angle) const { | 
|  | int startIndex = angle->start(); | 
|  | int endIndex = angle->end(); | 
|  | return updateWinding(startIndex, endIndex); | 
|  | } | 
|  |  | 
|  | SkPath::Verb verb() const { | 
|  | return fVerb; | 
|  | } | 
|  |  | 
|  | int windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar& dx) const { | 
|  | if (approximately_zero(tHit - t(tIndex))) { // if we hit the end of a span, disregard | 
|  | return SK_MinS32; | 
|  | } | 
|  | int winding = crossOpp ? oppSum(tIndex) : windSum(tIndex); | 
|  | SkASSERT(winding != SK_MinS32); | 
|  | int windVal = crossOpp ? oppValue(tIndex) : windValue(tIndex); | 
|  | #if DEBUG_WINDING_AT_T | 
|  | SkDebugf("%s oldWinding=%d windValue=%d", __FUNCTION__, winding, windVal); | 
|  | #endif | 
|  | // see if a + change in T results in a +/- change in X (compute x'(T)) | 
|  | dx = (*SegmentDXAtT[fVerb])(fPts, tHit); | 
|  | if (fVerb > SkPath::kLine_Verb && approximately_zero(dx)) { | 
|  | dx = fPts[2].fX - fPts[1].fX - dx; | 
|  | } | 
|  | if (dx == 0) { | 
|  | #if DEBUG_WINDING_AT_T | 
|  | SkDebugf(" dx=0 winding=SK_MinS32\n"); | 
|  | #endif | 
|  | return SK_MinS32; | 
|  | } | 
|  | if (winding * dx > 0) { // if same signs, result is negative | 
|  | winding += dx > 0 ? -windVal : windVal; | 
|  | } | 
|  | #if DEBUG_WINDING_AT_T | 
|  | SkDebugf(" dx=%c winding=%d\n", dx > 0 ? '+' : '-', winding); | 
|  | #endif | 
|  | return winding; | 
|  | } | 
|  |  | 
|  | int windSum(int tIndex) const { | 
|  | return fTs[tIndex].fWindSum; | 
|  | } | 
|  |  | 
|  | int windSum(const Angle* angle) const { | 
|  | int start = angle->start(); | 
|  | int end = angle->end(); | 
|  | int index = SkMin32(start, end); | 
|  | return windSum(index); | 
|  | } | 
|  |  | 
|  | int windValue(int tIndex) const { | 
|  | return fTs[tIndex].fWindValue; | 
|  | } | 
|  |  | 
|  | int windValue(const Angle* angle) const { | 
|  | int start = angle->start(); | 
|  | int end = angle->end(); | 
|  | int index = SkMin32(start, end); | 
|  | return windValue(index); | 
|  | } | 
|  |  | 
|  | int windValueAt(double t) const { | 
|  | int count = fTs.count(); | 
|  | for (int index = 0; index < count; ++index) { | 
|  | if (fTs[index].fT == t) { | 
|  | return fTs[index].fWindValue; | 
|  | } | 
|  | } | 
|  | SkASSERT(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SkScalar xAtT(int index) const { | 
|  | return xAtT(&fTs[index]); | 
|  | } | 
|  |  | 
|  | SkScalar xAtT(const Span* span) const { | 
|  | return xyAtT(span).fX; | 
|  | } | 
|  |  | 
|  | const SkPoint& xyAtT(int index) const { | 
|  | return xyAtT(&fTs[index]); | 
|  | } | 
|  |  | 
|  | const SkPoint& xyAtT(const Span* span) const { | 
|  | if (SkScalarIsNaN(span->fPt.fX)) { | 
|  | SkASSERT(0); // make sure this path is never used | 
|  | if (span->fT == 0) { | 
|  | span->fPt = fPts[0]; | 
|  | } else if (span->fT == 1) { | 
|  | span->fPt = fPts[fVerb]; | 
|  | } else { | 
|  | (*SegmentXYAtT[fVerb])(fPts, span->fT, &span->fPt); | 
|  | } | 
|  | } | 
|  | return span->fPt; | 
|  | } | 
|  |  | 
|  | // used only by right angle winding finding | 
|  | void xyAtT(double mid, SkPoint& pt) const { | 
|  | (*SegmentXYAtT[fVerb])(fPts, mid, &pt); | 
|  | } | 
|  |  | 
|  | SkScalar yAtT(int index) const { | 
|  | return yAtT(&fTs[index]); | 
|  | } | 
|  |  | 
|  | SkScalar yAtT(const Span* span) const { | 
|  | return xyAtT(span).fY; | 
|  | } | 
|  |  | 
|  | void zeroCoincidentOpp(Span* oTest, int index) { | 
|  | Span* const test = &fTs[index]; | 
|  | Span* end = test; | 
|  | do { | 
|  | end->fOppValue = 0; | 
|  | end = &fTs[++index]; | 
|  | } while (approximately_negative(end->fT - test->fT)); | 
|  | } | 
|  |  | 
|  | void zeroCoincidentOther(Span* test, const double tRatio, const double oEndT, int oIndex) { | 
|  | Span* const oTest = &fTs[oIndex]; | 
|  | Span* oEnd = oTest; | 
|  | const double startT = test->fT; | 
|  | const double oStartT = oTest->fT; | 
|  | double otherTMatch = (test->fT - startT) * tRatio + oStartT; | 
|  | while (!approximately_negative(oEndT - oEnd->fT) | 
|  | && approximately_negative(oEnd->fT - otherTMatch)) { | 
|  | oEnd->fOppValue = 0; | 
|  | oEnd = &fTs[++oIndex]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void zeroSpan(Span* span) { | 
|  | SkASSERT(span->fWindValue > 0 || span->fOppValue > 0); | 
|  | span->fWindValue = 0; | 
|  | span->fOppValue = 0; | 
|  | SkASSERT(!span->fDone); | 
|  | span->fDone = true; | 
|  | ++fDoneSpans; | 
|  | } | 
|  |  | 
|  | #if DEBUG_DUMP | 
|  | void dump() const { | 
|  | const char className[] = "Segment"; | 
|  | const int tab = 4; | 
|  | for (int i = 0; i < fTs.count(); ++i) { | 
|  | SkPoint out; | 
|  | (*SegmentXYAtT[fVerb])(fPts, t(i), &out); | 
|  | SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d" | 
|  | " otherT=%1.9g windSum=%d\n", | 
|  | tab + sizeof(className), className, fID, | 
|  | kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY, | 
|  | fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWindSum); | 
|  | } | 
|  | SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)", | 
|  | tab + sizeof(className), className, fID, | 
|  | fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_CONCIDENT | 
|  | // SkASSERT if pair has not already been added | 
|  | void debugAddTPair(double t, const Segment& other, double otherT) const { | 
|  | for (int i = 0; i < fTs.count(); ++i) { | 
|  | if (fTs[i].fT == t && fTs[i].fOther == &other && fTs[i].fOtherT == otherT) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | SkASSERT(0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_DUMP | 
|  | int debugID() const { | 
|  | return fID; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_WINDING | 
|  | void debugShowSums() const { | 
|  | SkDebugf("%s id=%d (%1.9g,%1.9g %1.9g,%1.9g)", __FUNCTION__, fID, | 
|  | fPts[0].fX, fPts[0].fY, fPts[fVerb].fX, fPts[fVerb].fY); | 
|  | for (int i = 0; i < fTs.count(); ++i) { | 
|  | const Span& span = fTs[i]; | 
|  | SkDebugf(" [t=%1.3g %1.9g,%1.9g w=", span.fT, xAtT(&span), yAtT(&span)); | 
|  | if (span.fWindSum == SK_MinS32) { | 
|  | SkDebugf("?"); | 
|  | } else { | 
|  | SkDebugf("%d", span.fWindSum); | 
|  | } | 
|  | SkDebugf("]"); | 
|  | } | 
|  | SkDebugf("\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_CONCIDENT | 
|  | void debugShowTs() const { | 
|  | SkDebugf("%s id=%d", __FUNCTION__, fID); | 
|  | int lastWind = -1; | 
|  | int lastOpp = -1; | 
|  | double lastT = -1; | 
|  | int i; | 
|  | for (i = 0; i < fTs.count(); ++i) { | 
|  | bool change = lastT != fTs[i].fT || lastWind != fTs[i].fWindValue | 
|  | || lastOpp != fTs[i].fOppValue; | 
|  | if (change && lastWind >= 0) { | 
|  | SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", | 
|  | lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); | 
|  | } | 
|  | if (change) { | 
|  | SkDebugf(" [o=%d", fTs[i].fOther->fID); | 
|  | lastWind = fTs[i].fWindValue; | 
|  | lastOpp = fTs[i].fOppValue; | 
|  | lastT = fTs[i].fT; | 
|  | } else { | 
|  | SkDebugf(",%d", fTs[i].fOther->fID); | 
|  | } | 
|  | } | 
|  | if (i <= 0) { | 
|  | return; | 
|  | } | 
|  | SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", | 
|  | lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); | 
|  | if (fOperand) { | 
|  | SkDebugf(" operand"); | 
|  | } | 
|  | if (done()) { | 
|  | SkDebugf(" done"); | 
|  | } | 
|  | SkDebugf("\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_ACTIVE_SPANS | 
|  | void debugShowActiveSpans() const { | 
|  | if (done()) { | 
|  | return; | 
|  | } | 
|  | #if DEBUG_ACTIVE_SPANS_SHORT_FORM | 
|  | int lastId = -1; | 
|  | double lastT = -1; | 
|  | #endif | 
|  | for (int i = 0; i < fTs.count(); ++i) { | 
|  | SkASSERT(&fTs[i] == &fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOther-> | 
|  | fTs[fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOtherIndex]); | 
|  | if (fTs[i].fDone) { | 
|  | continue; | 
|  | } | 
|  | #if DEBUG_ACTIVE_SPANS_SHORT_FORM | 
|  | if (lastId == fID && lastT == fTs[i].fT) { | 
|  | continue; | 
|  | } | 
|  | lastId = fID; | 
|  | lastT = fTs[i].fT; | 
|  | #endif | 
|  | SkDebugf("%s id=%d", __FUNCTION__, fID); | 
|  | SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); | 
|  | for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { | 
|  | SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); | 
|  | } | 
|  | const Span* span = &fTs[i]; | 
|  | SkDebugf(") t=%1.9g (%1.9g,%1.9g)", fTs[i].fT, | 
|  | xAtT(span), yAtT(span)); | 
|  | int iEnd = i + 1; | 
|  | while (fTs[iEnd].fT < 1 && approximately_equal(fTs[i].fT, fTs[iEnd].fT)) { | 
|  | ++iEnd; | 
|  | } | 
|  | SkDebugf(" tEnd=%1.9g", fTs[iEnd].fT); | 
|  | const Segment* other = fTs[i].fOther; | 
|  | SkDebugf(" other=%d otherT=%1.9g otherIndex=%d windSum=", | 
|  | other->fID, fTs[i].fOtherT, fTs[i].fOtherIndex); | 
|  | if (fTs[i].fWindSum == SK_MinS32) { | 
|  | SkDebugf("?"); | 
|  | } else { | 
|  | SkDebugf("%d", fTs[i].fWindSum); | 
|  | } | 
|  | SkDebugf(" windValue=%d oppValue=%d\n", fTs[i].fWindValue, fTs[i].fOppValue); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This isn't useful yet -- but leaving it in for now in case i think of something | 
|  | // to use it for | 
|  | void validateActiveSpans() const { | 
|  | if (done()) { | 
|  | return; | 
|  | } | 
|  | int tCount = fTs.count(); | 
|  | for (int index = 0; index < tCount; ++index) { | 
|  | if (fTs[index].fDone) { | 
|  | continue; | 
|  | } | 
|  | // count number of connections which are not done | 
|  | int first = index; | 
|  | double baseT = fTs[index].fT; | 
|  | while (first > 0 && approximately_equal(fTs[first - 1].fT, baseT)) { | 
|  | --first; | 
|  | } | 
|  | int last = index; | 
|  | while (last < tCount - 1 && approximately_equal(fTs[last + 1].fT, baseT)) { | 
|  | ++last; | 
|  | } | 
|  | int connections = 0; | 
|  | connections += first > 0 && !fTs[first - 1].fDone; | 
|  | for (int test = first; test <= last; ++test) { | 
|  | connections += !fTs[test].fDone; | 
|  | const Segment* other = fTs[test].fOther; | 
|  | int oIndex = fTs[test].fOtherIndex; | 
|  | connections += !other->fTs[oIndex].fDone; | 
|  | connections += oIndex > 0 && !other->fTs[oIndex - 1].fDone; | 
|  | } | 
|  | //      SkASSERT(!(connections & 1)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_MARK_DONE || DEBUG_UNSORTABLE | 
|  | void debugShowNewWinding(const char* fun, const Span& span, int winding) { | 
|  | const SkPoint& pt = xyAtT(&span); | 
|  | SkDebugf("%s id=%d", fun, fID); | 
|  | SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); | 
|  | for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { | 
|  | SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); | 
|  | } | 
|  | SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> | 
|  | fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); | 
|  | SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d windSum=", | 
|  | span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, | 
|  | (&span)[1].fT, winding); | 
|  | if (span.fWindSum == SK_MinS32) { | 
|  | SkDebugf("?"); | 
|  | } else { | 
|  | SkDebugf("%d", span.fWindSum); | 
|  | } | 
|  | SkDebugf(" windValue=%d\n", span.fWindValue); | 
|  | } | 
|  |  | 
|  | void debugShowNewWinding(const char* fun, const Span& span, int winding, int oppWinding) { | 
|  | const SkPoint& pt = xyAtT(&span); | 
|  | SkDebugf("%s id=%d", fun, fID); | 
|  | SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); | 
|  | for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { | 
|  | SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); | 
|  | } | 
|  | SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> | 
|  | fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); | 
|  | SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d newOppSum=%d oppSum=", | 
|  | span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, | 
|  | (&span)[1].fT, winding, oppWinding); | 
|  | if (span.fOppSum == SK_MinS32) { | 
|  | SkDebugf("?"); | 
|  | } else { | 
|  | SkDebugf("%d", span.fOppSum); | 
|  | } | 
|  | SkDebugf(" windSum="); | 
|  | if (span.fWindSum == SK_MinS32) { | 
|  | SkDebugf("?"); | 
|  | } else { | 
|  | SkDebugf("%d", span.fWindSum); | 
|  | } | 
|  | SkDebugf(" windValue=%d\n", span.fWindValue); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_SORT || DEBUG_SWAP_TOP | 
|  | void debugShowSort(const char* fun, const SkTDArray<Angle*>& angles, int first, | 
|  | const int contourWinding, const int oppContourWinding) const { | 
|  | if (--gDebugSortCount < 0) { | 
|  | return; | 
|  | } | 
|  | SkASSERT(angles[first]->segment() == this); | 
|  | SkASSERT(angles.count() > 1); | 
|  | int lastSum = contourWinding; | 
|  | int oppLastSum = oppContourWinding; | 
|  | const Angle* firstAngle = angles[first]; | 
|  | int windSum = lastSum - spanSign(firstAngle); | 
|  | int oppoSign = oppSign(firstAngle); | 
|  | int oppWindSum = oppLastSum - oppoSign; | 
|  | #define WIND_AS_STRING(x) char x##Str[12]; if (!valid_wind(x)) strcpy(x##Str, "?"); \ | 
|  | else snprintf(x##Str, sizeof(x##Str), "%d", x) | 
|  | WIND_AS_STRING(contourWinding); | 
|  | WIND_AS_STRING(oppContourWinding); | 
|  | SkDebugf("%s %s contourWinding=%s oppContourWinding=%s sign=%d\n", fun, __FUNCTION__, | 
|  | contourWindingStr, oppContourWindingStr, spanSign(angles[first])); | 
|  | int index = first; | 
|  | bool firstTime = true; | 
|  | do { | 
|  | const Angle& angle = *angles[index]; | 
|  | const Segment& segment = *angle.segment(); | 
|  | int start = angle.start(); | 
|  | int end = angle.end(); | 
|  | const Span& sSpan = segment.fTs[start]; | 
|  | const Span& eSpan = segment.fTs[end]; | 
|  | const Span& mSpan = segment.fTs[SkMin32(start, end)]; | 
|  | bool opp = segment.fOperand ^ fOperand; | 
|  | if (!firstTime) { | 
|  | oppoSign = segment.oppSign(&angle); | 
|  | if (opp) { | 
|  | oppLastSum = oppWindSum; | 
|  | oppWindSum -= segment.spanSign(&angle); | 
|  | if (oppoSign) { | 
|  | lastSum = windSum; | 
|  | windSum -= oppoSign; | 
|  | } | 
|  | } else { | 
|  | lastSum = windSum; | 
|  | windSum -= segment.spanSign(&angle); | 
|  | if (oppoSign) { | 
|  | oppLastSum = oppWindSum; | 
|  | oppWindSum -= oppoSign; | 
|  | } | 
|  | } | 
|  | } | 
|  | SkDebugf("%s [%d] %s", __FUNCTION__, index, | 
|  | angle.unsortable() ? "*** UNSORTABLE *** " : ""); | 
|  | #if COMPACT_DEBUG_SORT | 
|  | SkDebugf("id=%d %s start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)", | 
|  | segment.fID, kLVerbStr[segment.fVerb], | 
|  | start, segment.xAtT(&sSpan), segment.yAtT(&sSpan), end, | 
|  | segment.xAtT(&eSpan), segment.yAtT(&eSpan)); | 
|  | #else | 
|  | switch (segment.fVerb) { | 
|  | case SkPath::kLine_Verb: | 
|  | SkDebugf(LINE_DEBUG_STR, LINE_DEBUG_DATA(segment.fPts)); | 
|  | break; | 
|  | case SkPath::kQuad_Verb: | 
|  | SkDebugf(QUAD_DEBUG_STR, QUAD_DEBUG_DATA(segment.fPts)); | 
|  | break; | 
|  | case SkPath::kCubic_Verb: | 
|  | SkDebugf(CUBIC_DEBUG_STR, CUBIC_DEBUG_DATA(segment.fPts)); | 
|  | break; | 
|  | default: | 
|  | SkASSERT(0); | 
|  | } | 
|  | SkDebugf(" tStart=%1.9g tEnd=%1.9g", sSpan.fT, eSpan.fT); | 
|  | #endif | 
|  | SkDebugf(" sign=%d windValue=%d windSum=", angle.sign(), mSpan.fWindValue); | 
|  | winding_printf(mSpan.fWindSum); | 
|  | int last, wind; | 
|  | if (opp) { | 
|  | last = oppLastSum; | 
|  | wind = oppWindSum; | 
|  | } else { | 
|  | last = lastSum; | 
|  | wind = windSum; | 
|  | } | 
|  | bool useInner = valid_wind(last) && valid_wind(wind) && useInnerWinding(last, wind); | 
|  | WIND_AS_STRING(last); | 
|  | WIND_AS_STRING(wind); | 
|  | WIND_AS_STRING(lastSum); | 
|  | WIND_AS_STRING(oppLastSum); | 
|  | WIND_AS_STRING(windSum); | 
|  | WIND_AS_STRING(oppWindSum); | 
|  | #undef WIND_AS_STRING | 
|  | if (!oppoSign) { | 
|  | SkDebugf(" %s->%s (max=%s)", lastStr, windStr, useInner ? windStr : lastStr); | 
|  | } else { | 
|  | SkDebugf(" %s->%s (%s->%s)", lastStr, windStr, opp ? lastSumStr : oppLastSumStr, | 
|  | opp ? windSumStr : oppWindSumStr); | 
|  | } | 
|  | SkDebugf(" done=%d tiny=%d opp=%d\n", mSpan.fDone, mSpan.fTiny, opp); | 
|  | #if false && DEBUG_ANGLE | 
|  | angle.debugShow(segment.xyAtT(&sSpan)); | 
|  | #endif | 
|  | ++index; | 
|  | if (index == angles.count()) { | 
|  | index = 0; | 
|  | } | 
|  | if (firstTime) { | 
|  | firstTime = false; | 
|  | } | 
|  | } while (index != first); | 
|  | } | 
|  |  | 
|  | void debugShowSort(const char* fun, const SkTDArray<Angle*>& angles, int first) { | 
|  | const Angle* firstAngle = angles[first]; | 
|  | const Segment* segment = firstAngle->segment(); | 
|  | int winding = segment->updateWinding(firstAngle); | 
|  | int oppWinding = segment->updateOppWinding(firstAngle); | 
|  | debugShowSort(fun, angles, first, winding, oppWinding); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_WINDING | 
|  | static char as_digit(int value) { | 
|  | return value < 0 ? '?' : value <= 9 ? '0' + value : '+'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_SHOW_WINDING | 
|  | int debugShowWindingValues(int slotCount, int ofInterest) const { | 
|  | if (!(1 << fID & ofInterest)) { | 
|  | return 0; | 
|  | } | 
|  | int sum = 0; | 
|  | SkTDArray<char> slots; | 
|  | slots.setCount(slotCount * 2); | 
|  | memset(slots.begin(), ' ', slotCount * 2); | 
|  | for (int i = 0; i < fTs.count(); ++i) { | 
|  | //     if (!(1 << fTs[i].fOther->fID & ofInterest)) { | 
|  | //         continue; | 
|  | //     } | 
|  | sum += fTs[i].fWindValue; | 
|  | slots[fTs[i].fOther->fID - 1] = as_digit(fTs[i].fWindValue); | 
|  | sum += fTs[i].fOppValue; | 
|  | slots[slotCount + fTs[i].fOther->fID - 1] = as_digit(fTs[i].fOppValue); | 
|  | } | 
|  | SkDebugf("%s id=%2d %.*s | %.*s\n", __FUNCTION__, fID, slotCount, slots.begin(), slotCount, | 
|  | slots.begin() + slotCount); | 
|  | return sum; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | private: | 
|  | const SkPoint* fPts; | 
|  | Bounds fBounds; | 
|  | SkTDArray<Span> fTs; // two or more (always includes t=0 t=1) | 
|  | // OPTIMIZATION: could pack donespans, verb, operand, xor into 1 int-sized value | 
|  | int fDoneSpans; // quick check that segment is finished | 
|  | // OPTIMIZATION: force the following to be byte-sized | 
|  | SkPath::Verb fVerb; | 
|  | bool fOperand; | 
|  | bool fXor; // set if original contour had even-odd fill | 
|  | bool fOppXor; // set if opposite operand had even-odd fill | 
|  | #if DEBUG_DUMP | 
|  | int fID; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | class Contour; | 
|  |  | 
|  | struct Coincidence { | 
|  | Contour* fContours[2]; | 
|  | int fSegments[2]; | 
|  | double fTs[2][2]; | 
|  | SkPoint fPts[2]; | 
|  | }; | 
|  |  | 
|  | class Contour { | 
|  | public: | 
|  | Contour() { | 
|  | reset(); | 
|  | #if DEBUG_DUMP | 
|  | fID = ++gContourID; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool operator<(const Contour& rh) const { | 
|  | return fBounds.fTop == rh.fBounds.fTop | 
|  | ? fBounds.fLeft < rh.fBounds.fLeft | 
|  | : fBounds.fTop < rh.fBounds.fTop; | 
|  | } | 
|  |  | 
|  | void addCoincident(int index, Contour* other, int otherIndex, | 
|  | const Intersections& ts, bool swap) { | 
|  | Coincidence& coincidence = *fCoincidences.append(); | 
|  | coincidence.fContours[0] = this; // FIXME: no need to store | 
|  | coincidence.fContours[1] = other; | 
|  | coincidence.fSegments[0] = index; | 
|  | coincidence.fSegments[1] = otherIndex; | 
|  | coincidence.fTs[swap][0] = ts.fT[0][0]; | 
|  | coincidence.fTs[swap][1] = ts.fT[0][1]; | 
|  | coincidence.fTs[!swap][0] = ts.fT[1][0]; | 
|  | coincidence.fTs[!swap][1] = ts.fT[1][1]; | 
|  | coincidence.fPts[0] = ts.fPt[0].asSkPoint(); | 
|  | coincidence.fPts[1] = ts.fPt[1].asSkPoint(); | 
|  | } | 
|  |  | 
|  | void addCross(const Contour* crosser) { | 
|  | #ifdef DEBUG_CROSS | 
|  | for (int index = 0; index < fCrosses.count(); ++index) { | 
|  | SkASSERT(fCrosses[index] != crosser); | 
|  | } | 
|  | #endif | 
|  | *fCrosses.append() = crosser; | 
|  | } | 
|  |  | 
|  | void addCubic(const SkPoint pts[4]) { | 
|  | fSegments.push_back().addCubic(pts, fOperand, fXor); | 
|  | fContainsCurves = fContainsCubics = true; | 
|  | } | 
|  |  | 
|  | int addLine(const SkPoint pts[2]) { | 
|  | fSegments.push_back().addLine(pts, fOperand, fXor); | 
|  | return fSegments.count(); | 
|  | } | 
|  |  | 
|  | void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) { | 
|  | fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex); | 
|  | } | 
|  |  | 
|  | int addQuad(const SkPoint pts[3]) { | 
|  | fSegments.push_back().addQuad(pts, fOperand, fXor); | 
|  | fContainsCurves = true; | 
|  | return fSegments.count(); | 
|  | } | 
|  |  | 
|  | int addT(int segIndex, Contour* other, int otherIndex, const SkPoint& pt, double& newT) { | 
|  | setContainsIntercepts(); | 
|  | return fSegments[segIndex].addT(&other->fSegments[otherIndex], pt, newT); | 
|  | } | 
|  |  | 
|  | int addSelfT(int segIndex, Contour* other, int otherIndex, const SkPoint& pt, double& newT) { | 
|  | setContainsIntercepts(); | 
|  | return fSegments[segIndex].addSelfT(&other->fSegments[otherIndex], pt, newT); | 
|  | } | 
|  |  | 
|  | int addUnsortableT(int segIndex, Contour* other, int otherIndex, bool start, | 
|  | const SkPoint& pt, double& newT) { | 
|  | return fSegments[segIndex].addUnsortableT(&other->fSegments[otherIndex], start, pt, newT); | 
|  | } | 
|  |  | 
|  | const Bounds& bounds() const { | 
|  | return fBounds; | 
|  | } | 
|  |  | 
|  | void complete() { | 
|  | setBounds(); | 
|  | fContainsIntercepts = false; | 
|  | } | 
|  |  | 
|  | bool containsCubics() const { | 
|  | return fContainsCubics; | 
|  | } | 
|  |  | 
|  | bool crosses(const Contour* crosser) const { | 
|  | for (int index = 0; index < fCrosses.count(); ++index) { | 
|  | if (fCrosses[index] == crosser) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool done() const { | 
|  | return fDone; | 
|  | } | 
|  |  | 
|  | const SkPoint& end() const { | 
|  | const Segment& segment = fSegments.back(); | 
|  | return segment.pts()[segment.verb()]; | 
|  | } | 
|  |  | 
|  | void findTooCloseToCall() { | 
|  | int segmentCount = fSegments.count(); | 
|  | for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { | 
|  | fSegments[sIndex].findTooCloseToCall(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void fixOtherTIndex() { | 
|  | int segmentCount = fSegments.count(); | 
|  | for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { | 
|  | fSegments[sIndex].fixOtherTIndex(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Segment* nonVerticalSegment(int& start, int& end) { | 
|  | int segmentCount = fSortedSegments.count(); | 
|  | SkASSERT(segmentCount > 0); | 
|  | for (int sortedIndex = fFirstSorted; sortedIndex < segmentCount; ++sortedIndex) { | 
|  | Segment* testSegment = fSortedSegments[sortedIndex]; | 
|  | if (testSegment->done()) { | 
|  | continue; | 
|  | } | 
|  | start = end = 0; | 
|  | while (testSegment->nextCandidate(start, end)) { | 
|  | if (!testSegment->isVertical(start, end)) { | 
|  | return testSegment; | 
|  | } | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bool operand() const { | 
|  | return fOperand; | 
|  | } | 
|  |  | 
|  | void reset() { | 
|  | fSegments.reset(); | 
|  | fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); | 
|  | fContainsCurves = fContainsCubics = fContainsIntercepts = fDone = false; | 
|  | } | 
|  |  | 
|  | void resolveCoincidence(SkTDArray<Contour*>& contourList) { | 
|  | int count = fCoincidences.count(); | 
|  | for (int index = 0; index < count; ++index) { | 
|  | Coincidence& coincidence = fCoincidences[index]; | 
|  | SkASSERT(coincidence.fContours[0] == this); | 
|  | int thisIndex = coincidence.fSegments[0]; | 
|  | Segment& thisOne = fSegments[thisIndex]; | 
|  | Contour* otherContour = coincidence.fContours[1]; | 
|  | int otherIndex = coincidence.fSegments[1]; | 
|  | Segment& other = otherContour->fSegments[otherIndex]; | 
|  | if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) { | 
|  | continue; | 
|  | } | 
|  | #if DEBUG_CONCIDENT | 
|  | thisOne.debugShowTs(); | 
|  | other.debugShowTs(); | 
|  | #endif | 
|  | double startT = coincidence.fTs[0][0]; | 
|  | double endT = coincidence.fTs[0][1]; | 
|  | bool cancelers = false; | 
|  | if (startT > endT) { | 
|  | SkTSwap<double>(startT, endT); | 
|  | cancelers ^= true; // FIXME: just assign true | 
|  | } | 
|  | SkASSERT(!approximately_negative(endT - startT)); | 
|  | double oStartT = coincidence.fTs[1][0]; | 
|  | double oEndT = coincidence.fTs[1][1]; | 
|  | if (oStartT > oEndT) { | 
|  | SkTSwap<double>(oStartT, oEndT); | 
|  | cancelers ^= true; | 
|  | } | 
|  | SkASSERT(!approximately_negative(oEndT - oStartT)); | 
|  | bool opp = fOperand ^ otherContour->fOperand; | 
|  | if (cancelers && !opp) { | 
|  | // make sure startT and endT have t entries | 
|  | if (startT > 0 || oEndT < 1 | 
|  | || thisOne.isMissing(startT) || other.isMissing(oEndT)) { | 
|  | thisOne.addTPair(startT, other, oEndT, true, coincidence.fPts[0]); | 
|  | } | 
|  | if (oStartT > 0 || endT < 1 | 
|  | || thisOne.isMissing(endT) || other.isMissing(oStartT)) { | 
|  | other.addTPair(oStartT, thisOne, endT, true, coincidence.fPts[1]); | 
|  | } | 
|  | if (!thisOne.done() && !other.done()) { | 
|  | thisOne.addTCancel(startT, endT, other, oStartT, oEndT); | 
|  | } | 
|  | } else { | 
|  | if (startT > 0 || oStartT > 0 | 
|  | || thisOne.isMissing(startT) || other.isMissing(oStartT)) { | 
|  | thisOne.addTPair(startT, other, oStartT, true, coincidence.fPts[0]); | 
|  | } | 
|  | if (endT < 1 || oEndT < 1 | 
|  | || thisOne.isMissing(endT) || other.isMissing(oEndT)) { | 
|  | other.addTPair(oEndT, thisOne, endT, true, coincidence.fPts[1]); | 
|  | } | 
|  | if (!thisOne.done() && !other.done()) { | 
|  | thisOne.addTCoincident(startT, endT, other, oStartT, oEndT); | 
|  | } | 
|  | } | 
|  | #if DEBUG_CONCIDENT | 
|  | thisOne.debugShowTs(); | 
|  | other.debugShowTs(); | 
|  | #endif | 
|  | #if DEBUG_SHOW_WINDING | 
|  | debugShowWindingValues(contourList); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | // first pass, add missing T values | 
|  | // second pass, determine winding values of overlaps | 
|  | void addCoincidentPoints() { | 
|  | int count = fCoincidences.count(); | 
|  | for (int index = 0; index < count; ++index) { | 
|  | Coincidence& coincidence = fCoincidences[index]; | 
|  | SkASSERT(coincidence.fContours[0] == this); | 
|  | int thisIndex = coincidence.fSegments[0]; | 
|  | Segment& thisOne = fSegments[thisIndex]; | 
|  | Contour* otherContour = coincidence.fContours[1]; | 
|  | int otherIndex = coincidence.fSegments[1]; | 
|  | Segment& other = otherContour->fSegments[otherIndex]; | 
|  | if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) { | 
|  | // OPTIMIZATION: remove from array | 
|  | continue; | 
|  | } | 
|  | #if DEBUG_CONCIDENT | 
|  | thisOne.debugShowTs(); | 
|  | other.debugShowTs(); | 
|  | #endif | 
|  | double startT = coincidence.fTs[0][0]; | 
|  | double endT = coincidence.fTs[0][1]; | 
|  | bool cancelers; | 
|  | if ((cancelers = startT > endT)) { | 
|  | SkTSwap(startT, endT); | 
|  | SkTSwap(coincidence.fPts[0], coincidence.fPts[1]); | 
|  | } | 
|  | SkASSERT(!approximately_negative(endT - startT)); | 
|  | double oStartT = coincidence.fTs[1][0]; | 
|  | double oEndT = coincidence.fTs[1][1]; | 
|  | if (oStartT > oEndT) { | 
|  | SkTSwap<double>(oStartT, oEndT); | 
|  | cancelers ^= true; | 
|  | } | 
|  | SkASSERT(!approximately_negative(oEndT - oStartT)); | 
|  | bool opp = fOperand ^ otherContour->fOperand; | 
|  | if (cancelers && !opp) { | 
|  | // make sure startT and endT have t entries | 
|  | if (startT > 0 || oEndT < 1 | 
|  | || thisOne.isMissing(startT) || other.isMissing(oEndT)) { | 
|  | thisOne.addTPair(startT, other, oEndT, true, coincidence.fPts[0]); | 
|  | } | 
|  | if (oStartT > 0 || endT < 1 | 
|  | || thisOne.isMissing(endT) || other.isMissing(oStartT)) { | 
|  | other.addTPair(oStartT, thisOne, endT, true, coincidence.fPts[1]); | 
|  | } | 
|  | } else { | 
|  | if (startT > 0 || oStartT > 0 | 
|  | || thisOne.isMissing(startT) || other.isMissing(oStartT)) { | 
|  | thisOne.addTPair(startT, other, oStartT, true, coincidence.fPts[0]); | 
|  | } | 
|  | if (endT < 1 || oEndT < 1 | 
|  | || thisOne.isMissing(endT) || other.isMissing(oEndT)) { | 
|  | other.addTPair(oEndT, thisOne, endT, true, coincidence.fPts[1]); | 
|  | } | 
|  | } | 
|  | #if DEBUG_CONCIDENT | 
|  | thisOne.debugShowTs(); | 
|  | other.debugShowTs(); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | void calcCoincidentWinding() { | 
|  | int count = fCoincidences.count(); | 
|  | for (int index = 0; index < count; ++index) { | 
|  | Coincidence& coincidence = fCoincidences[index]; | 
|  | SkASSERT(coincidence.fContours[0] == this); | 
|  | int thisIndex = coincidence.fSegments[0]; | 
|  | Segment& thisOne = fSegments[thisIndex]; | 
|  | if (thisOne.done()) { | 
|  | continue; | 
|  | } | 
|  | Contour* otherContour = coincidence.fContours[1]; | 
|  | int otherIndex = coincidence.fSegments[1]; | 
|  | Segment& other = otherContour->fSegments[otherIndex]; | 
|  | if (other.done()) { | 
|  | continue; | 
|  | } | 
|  | double startT = coincidence.fTs[0][0]; | 
|  | double endT = coincidence.fTs[0][1]; | 
|  | bool cancelers; | 
|  | if ((cancelers = startT > endT)) { | 
|  | SkTSwap<double>(startT, endT); | 
|  | } | 
|  | SkASSERT(!approximately_negative(endT - startT)); | 
|  | double oStartT = coincidence.fTs[1][0]; | 
|  | double oEndT = coincidence.fTs[1][1]; | 
|  | if (oStartT > oEndT) { | 
|  | SkTSwap<double>(oStartT, oEndT); | 
|  | cancelers ^= true; | 
|  | } | 
|  | SkASSERT(!approximately_negative(oEndT - oStartT)); | 
|  | bool opp = fOperand ^ otherContour->fOperand; | 
|  | if (cancelers && !opp) { | 
|  | // make sure startT and endT have t entries | 
|  | if (!thisOne.done() && !other.done()) { | 
|  | thisOne.addTCancel(startT, endT, other, oStartT, oEndT); | 
|  | } | 
|  | } else { | 
|  | if (!thisOne.done() && !other.done()) { | 
|  | thisOne.addTCoincident(startT, endT, other, oStartT, oEndT); | 
|  | } | 
|  | } | 
|  | #if DEBUG_CONCIDENT | 
|  | thisOne.debugShowTs(); | 
|  | other.debugShowTs(); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | SkTArray<Segment>& segments() { | 
|  | return fSegments; | 
|  | } | 
|  |  | 
|  | void setContainsIntercepts() { | 
|  | fContainsIntercepts = true; | 
|  | } | 
|  |  | 
|  | void setOperand(bool isOp) { | 
|  | fOperand = isOp; | 
|  | } | 
|  |  | 
|  | void setOppXor(bool isOppXor) { | 
|  | fOppXor = isOppXor; | 
|  | int segmentCount = fSegments.count(); | 
|  | for (int test = 0; test < segmentCount; ++test) { | 
|  | fSegments[test].setOppXor(isOppXor); | 
|  | } | 
|  | } | 
|  |  | 
|  | void setXor(bool isXor) { | 
|  | fXor = isXor; | 
|  | } | 
|  |  | 
|  | void sortSegments() { | 
|  | int segmentCount = fSegments.count(); | 
|  | fSortedSegments.setReserve(segmentCount); | 
|  | for (int test = 0; test < segmentCount; ++test) { | 
|  | *fSortedSegments.append() = &fSegments[test]; | 
|  | } | 
|  | QSort<Segment>(fSortedSegments.begin(), fSortedSegments.end() - 1); | 
|  | fFirstSorted = 0; | 
|  | } | 
|  |  | 
|  | const SkPoint& start() const { | 
|  | return fSegments.front().pts()[0]; | 
|  | } | 
|  |  | 
|  | void toPath(PathWrapper& path) const { | 
|  | int segmentCount = fSegments.count(); | 
|  | const SkPoint& pt = fSegments.front().pts()[0]; | 
|  | path.deferredMove(pt); | 
|  | for (int test = 0; test < segmentCount; ++test) { | 
|  | fSegments[test].addCurveTo(0, 1, path, true); | 
|  | } | 
|  | path.close(); | 
|  | } | 
|  |  | 
|  | void toPartialBackward(PathWrapper& path) const { | 
|  | int segmentCount = fSegments.count(); | 
|  | for (int test = segmentCount - 1; test >= 0; --test) { | 
|  | fSegments[test].addCurveTo(1, 0, path, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | void toPartialForward(PathWrapper& path) const { | 
|  | int segmentCount = fSegments.count(); | 
|  | for (int test = 0; test < segmentCount; ++test) { | 
|  | fSegments[test].addCurveTo(0, 1, path, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | void topSortableSegment(const SkPoint& topLeft, SkPoint& bestXY, Segment*& topStart) { | 
|  | int segmentCount = fSortedSegments.count(); | 
|  | SkASSERT(segmentCount > 0); | 
|  | int sortedIndex = fFirstSorted; | 
|  | fDone = true; // may be cleared below | 
|  | for ( ; sortedIndex < segmentCount; ++sortedIndex) { | 
|  | Segment* testSegment = fSortedSegments[sortedIndex]; | 
|  | if (testSegment->done()) { | 
|  | if (sortedIndex == fFirstSorted) { | 
|  | ++fFirstSorted; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | fDone = false; | 
|  | SkPoint testXY = testSegment->activeLeftTop(true, NULL); | 
|  | if (topStart) { | 
|  | if (testXY.fY < topLeft.fY) { | 
|  | continue; | 
|  | } | 
|  | if (testXY.fY == topLeft.fY && testXY.fX < topLeft.fX) { | 
|  | continue; | 
|  | } | 
|  | if (bestXY.fY < testXY.fY) { | 
|  | continue; | 
|  | } | 
|  | if (bestXY.fY == testXY.fY && bestXY.fX < testXY.fX) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | topStart = testSegment; | 
|  | bestXY = testXY; | 
|  | } | 
|  | } | 
|  |  | 
|  | Segment* undoneSegment(int& start, int& end) { | 
|  | int segmentCount = fSegments.count(); | 
|  | for (int test = 0; test < segmentCount; ++test) { | 
|  | Segment* testSegment = &fSegments[test]; | 
|  | if (testSegment->done()) { | 
|  | continue; | 
|  | } | 
|  | testSegment->undoneSpan(start, end); | 
|  | return testSegment; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int updateSegment(int index, const SkPoint* pts) { | 
|  | Segment& segment = fSegments[index]; | 
|  | segment.updatePts(pts); | 
|  | return segment.verb() + 1; | 
|  | } | 
|  |  | 
|  | #if DEBUG_TEST | 
|  | SkTArray<Segment>& debugSegments() { | 
|  | return fSegments; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_DUMP | 
|  | void dump() { | 
|  | int i; | 
|  | const char className[] = "Contour"; | 
|  | const int tab = 4; | 
|  | SkDebugf("%s %p (contour=%d)\n", className, this, fID); | 
|  | for (i = 0; i < fSegments.count(); ++i) { | 
|  | SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className), | 
|  | className, i); | 
|  | fSegments[i].dump(); | 
|  | } | 
|  | SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n", | 
|  | tab + sizeof(className), className, | 
|  | fBounds.fLeft, fBounds.fTop, | 
|  | fBounds.fRight, fBounds.fBottom); | 
|  | SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className), | 
|  | className, fContainsIntercepts); | 
|  | SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className), | 
|  | className, fContainsCurves); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_ACTIVE_SPANS | 
|  | void debugShowActiveSpans() { | 
|  | for (int index = 0; index < fSegments.count(); ++index) { | 
|  | fSegments[index].debugShowActiveSpans(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void validateActiveSpans() { | 
|  | for (int index = 0; index < fSegments.count(); ++index) { | 
|  | fSegments[index].validateActiveSpans(); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_SHOW_WINDING | 
|  | int debugShowWindingValues(int totalSegments, int ofInterest) { | 
|  | int count = fSegments.count(); | 
|  | int sum = 0; | 
|  | for (int index = 0; index < count; ++index) { | 
|  | sum += fSegments[index].debugShowWindingValues(totalSegments, ofInterest); | 
|  | } | 
|  | //      SkDebugf("%s sum=%d\n", __FUNCTION__, sum); | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | static void debugShowWindingValues(SkTDArray<Contour*>& contourList) { | 
|  | //     int ofInterest = 1 << 1 | 1 << 5 | 1 << 9 | 1 << 13; | 
|  | //    int ofInterest = 1 << 4 | 1 << 8 | 1 << 12 | 1 << 16; | 
|  | int ofInterest = 1 << 5 | 1 << 8; | 
|  | int total = 0; | 
|  | int index; | 
|  | for (index = 0; index < contourList.count(); ++index) { | 
|  | total += contourList[index]->segments().count(); | 
|  | } | 
|  | int sum = 0; | 
|  | for (index = 0; index < contourList.count(); ++index) { | 
|  | sum += contourList[index]->debugShowWindingValues(total, ofInterest); | 
|  | } | 
|  | //       SkDebugf("%s total=%d\n", __FUNCTION__, sum); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | void setBounds() { | 
|  | int count = fSegments.count(); | 
|  | if (count == 0) { | 
|  | SkDebugf("%s empty contour\n", __FUNCTION__); | 
|  | SkASSERT(0); | 
|  | // FIXME: delete empty contour? | 
|  | return; | 
|  | } | 
|  | fBounds = fSegments.front().bounds(); | 
|  | for (int index = 1; index < count; ++index) { | 
|  | fBounds.add(fSegments[index].bounds()); | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | SkTArray<Segment> fSegments; | 
|  | SkTDArray<Segment*> fSortedSegments; | 
|  | int fFirstSorted; | 
|  | SkTDArray<Coincidence> fCoincidences; | 
|  | SkTDArray<const Contour*> fCrosses; | 
|  | Bounds fBounds; | 
|  | bool fContainsIntercepts; // FIXME: is this used by anybody? | 
|  | bool fContainsCubics; | 
|  | bool fContainsCurves; | 
|  | bool fDone; | 
|  | bool fOperand; // true for the second argument to a binary operator | 
|  | bool fXor; | 
|  | bool fOppXor; | 
|  | #if DEBUG_DUMP | 
|  | int fID; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | class EdgeBuilder { | 
|  | public: | 
|  |  | 
|  | EdgeBuilder(const PathWrapper& path, SkTArray<Contour>& contours) | 
|  | : fPath(path.nativePath()) | 
|  | , fContours(contours) | 
|  | { | 
|  | init(); | 
|  | } | 
|  |  | 
|  | EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours) | 
|  | : fPath(&path) | 
|  | , fContours(contours) | 
|  | { | 
|  | init(); | 
|  | } | 
|  |  | 
|  | void init() { | 
|  | fCurrentContour = NULL; | 
|  | fOperand = false; | 
|  | fXorMask[0] = fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_Mask : kWinding_Mask; | 
|  | #if DEBUG_DUMP | 
|  | gContourID = 0; | 
|  | gSegmentID = 0; | 
|  | #endif | 
|  | fSecondHalf = preFetch(); | 
|  | } | 
|  |  | 
|  | void addOperand(const SkPath& path) { | 
|  | SkASSERT(fPathVerbs.count() > 0 && fPathVerbs.end()[-1] == SkPath::kDone_Verb); | 
|  | fPathVerbs.pop(); | 
|  | fPath = &path; | 
|  | fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_Mask : kWinding_Mask; | 
|  | preFetch(); | 
|  | } | 
|  |  | 
|  | void finish() { | 
|  | walk(); | 
|  | complete(); | 
|  | if (fCurrentContour && !fCurrentContour->segments().count()) { | 
|  | fContours.pop_back(); | 
|  | } | 
|  | // correct pointers in contours since fReducePts may have moved as it grew | 
|  | int cIndex = 0; | 
|  | int extraCount = fExtra.count(); | 
|  | SkASSERT(extraCount == 0 || fExtra[0] == -1); | 
|  | int eIndex = 0; | 
|  | int rIndex = 0; | 
|  | while (++eIndex < extraCount) { | 
|  | int offset = fExtra[eIndex]; | 
|  | if (offset < 0) { | 
|  | ++cIndex; | 
|  | continue; | 
|  | } | 
|  | fCurrentContour = &fContours[cIndex]; | 
|  | rIndex += fCurrentContour->updateSegment(offset - 1, | 
|  | &fReducePts[rIndex]); | 
|  | } | 
|  | fExtra.reset(); // we're done with this | 
|  | } | 
|  |  | 
|  | ShapeOpMask xorMask() const { | 
|  | return fXorMask[fOperand]; | 
|  | } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | void complete() { | 
|  | if (fCurrentContour && fCurrentContour->segments().count()) { | 
|  | fCurrentContour->complete(); | 
|  | fCurrentContour = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME:remove once we can access path pts directly | 
|  | int preFetch() { | 
|  | SkPath::RawIter iter(*fPath); // FIXME: access path directly when allowed | 
|  | SkPoint pts[4]; | 
|  | SkPath::Verb verb; | 
|  | do { | 
|  | verb = iter.next(pts); | 
|  | *fPathVerbs.append() = verb; | 
|  | if (verb == SkPath::kMove_Verb) { | 
|  | *fPathPts.append() = pts[0]; | 
|  | } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) { | 
|  | fPathPts.append(verb, &pts[1]); | 
|  | } | 
|  | } while (verb != SkPath::kDone_Verb); | 
|  | return fPathVerbs.count() - 1; | 
|  | } | 
|  |  | 
|  | void walk() { | 
|  | SkPath::Verb reducedVerb; | 
|  | uint8_t* verbPtr = fPathVerbs.begin(); | 
|  | uint8_t* endOfFirstHalf = &verbPtr[fSecondHalf]; | 
|  | const SkPoint* pointsPtr = fPathPts.begin(); | 
|  | const SkPoint* finalCurveStart = NULL; | 
|  | const SkPoint* finalCurveEnd = NULL; | 
|  | SkPath::Verb verb; | 
|  | while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) { | 
|  | switch (verb) { | 
|  | case SkPath::kMove_Verb: | 
|  | complete(); | 
|  | if (!fCurrentContour) { | 
|  | fCurrentContour = fContours.push_back_n(1); | 
|  | fCurrentContour->setOperand(fOperand); | 
|  | fCurrentContour->setXor(fXorMask[fOperand] == kEvenOdd_Mask); | 
|  | *fExtra.append() = -1; // start new contour | 
|  | } | 
|  | finalCurveEnd = pointsPtr++; | 
|  | goto nextVerb; | 
|  | case SkPath::kLine_Verb: | 
|  | // skip degenerate points | 
|  | if (pointsPtr[-1].fX != pointsPtr[0].fX | 
|  | || pointsPtr[-1].fY != pointsPtr[0].fY) { | 
|  | fCurrentContour->addLine(&pointsPtr[-1]); | 
|  | } | 
|  | break; | 
|  | case SkPath::kQuad_Verb: | 
|  |  | 
|  | reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts); | 
|  | if (reducedVerb == 0) { | 
|  | break; // skip degenerate points | 
|  | } | 
|  | if (reducedVerb == 1) { | 
|  | *fExtra.append() = | 
|  | fCurrentContour->addLine(fReducePts.end() - 2); | 
|  | break; | 
|  | } | 
|  | fCurrentContour->addQuad(&pointsPtr[-1]); | 
|  | break; | 
|  | case SkPath::kCubic_Verb: | 
|  | reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts); | 
|  | if (reducedVerb == 0) { | 
|  | break; // skip degenerate points | 
|  | } | 
|  | if (reducedVerb == 1) { | 
|  | *fExtra.append() = | 
|  | fCurrentContour->addLine(fReducePts.end() - 2); | 
|  | break; | 
|  | } | 
|  | if (reducedVerb == 2) { | 
|  | *fExtra.append() = | 
|  | fCurrentContour->addQuad(fReducePts.end() - 3); | 
|  | break; | 
|  | } | 
|  | fCurrentContour->addCubic(&pointsPtr[-1]); | 
|  | break; | 
|  | case SkPath::kClose_Verb: | 
|  | SkASSERT(fCurrentContour); | 
|  | if (finalCurveStart && finalCurveEnd | 
|  | && *finalCurveStart != *finalCurveEnd) { | 
|  | *fReducePts.append() = *finalCurveStart; | 
|  | *fReducePts.append() = *finalCurveEnd; | 
|  | *fExtra.append() = | 
|  | fCurrentContour->addLine(fReducePts.end() - 2); | 
|  | } | 
|  | complete(); | 
|  | goto nextVerb; | 
|  | default: | 
|  | SkDEBUGFAIL("bad verb"); | 
|  | return; | 
|  | } | 
|  | finalCurveStart = &pointsPtr[verb - 1]; | 
|  | pointsPtr += verb; | 
|  | SkASSERT(fCurrentContour); | 
|  | nextVerb: | 
|  | if (verbPtr == endOfFirstHalf) { | 
|  | fOperand = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | const SkPath* fPath; | 
|  | SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead | 
|  | SkTDArray<uint8_t> fPathVerbs; // FIXME: remove | 
|  | Contour* fCurrentContour; | 
|  | SkTArray<Contour>& fContours; | 
|  | SkTDArray<SkPoint> fReducePts; // segments created on the fly | 
|  | SkTDArray<int> fExtra; // -1 marks new contour, > 0 offsets into contour | 
|  | ShapeOpMask fXorMask[2]; | 
|  | int fSecondHalf; | 
|  | bool fOperand; | 
|  | }; | 
|  |  | 
|  | class Work { | 
|  | public: | 
|  | enum SegmentType { | 
|  | kHorizontalLine_Segment = -1, | 
|  | kVerticalLine_Segment = 0, | 
|  | kLine_Segment = SkPath::kLine_Verb, | 
|  | kQuad_Segment = SkPath::kQuad_Verb, | 
|  | kCubic_Segment = SkPath::kCubic_Verb, | 
|  | }; | 
|  |  | 
|  | void addCoincident(Work& other, const Intersections& ts, bool swap) { | 
|  | fContour->addCoincident(fIndex, other.fContour, other.fIndex, ts, swap); | 
|  | } | 
|  |  | 
|  | // FIXME: does it make sense to write otherIndex now if we're going to | 
|  | // fix it up later? | 
|  | void addOtherT(int index, double otherT, int otherIndex) { | 
|  | fContour->addOtherT(fIndex, index, otherT, otherIndex); | 
|  | } | 
|  |  | 
|  | // Avoid collapsing t values that are close to the same since | 
|  | // we walk ts to describe consecutive intersections. Since a pair of ts can | 
|  | // be nearly equal, any problems caused by this should be taken care | 
|  | // of later. | 
|  | // On the edge or out of range values are negative; add 2 to get end | 
|  | int addT(const Work& other, const SkPoint& pt, double& newT) { | 
|  | return fContour->addT(fIndex, other.fContour, other.fIndex, pt, newT); | 
|  | } | 
|  |  | 
|  | int addSelfT(const Work& other, const SkPoint& pt, double& newT) { | 
|  | return fContour->addSelfT(fIndex, other.fContour, other.fIndex, pt, newT); | 
|  | } | 
|  |  | 
|  | int addUnsortableT(const Work& other, bool start, const SkPoint& pt, double& newT) { | 
|  | return fContour->addUnsortableT(fIndex, other.fContour, other.fIndex, start, pt, newT); | 
|  | } | 
|  |  | 
|  | bool advance() { | 
|  | return ++fIndex < fLast; | 
|  | } | 
|  |  | 
|  | SkScalar bottom() const { | 
|  | return bounds().fBottom; | 
|  | } | 
|  |  | 
|  | const Bounds& bounds() const { | 
|  | return fContour->segments()[fIndex].bounds(); | 
|  | } | 
|  |  | 
|  | #if !APPROXIMATE_CUBICS | 
|  | const SkPoint* cubic() const { | 
|  | return fCubic; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void init(Contour* contour) { | 
|  | fContour = contour; | 
|  | fIndex = 0; | 
|  | fLast = contour->segments().count(); | 
|  | } | 
|  |  | 
|  | bool isAdjacent(const Work& next) { | 
|  | return fContour == next.fContour && fIndex + 1 == next.fIndex; | 
|  | } | 
|  |  | 
|  | bool isFirstLast(const Work& next) { | 
|  | return fContour == next.fContour && fIndex == 0 | 
|  | && next.fIndex == fLast - 1; | 
|  | } | 
|  |  | 
|  | SkScalar left() const { | 
|  | return bounds().fLeft; | 
|  | } | 
|  |  | 
|  | #if !APPROXIMATE_CUBICS | 
|  | void promoteToCubic() { | 
|  | fCubic[0] = pts()[0]; | 
|  | fCubic[2] = pts()[1]; | 
|  | fCubic[3] = pts()[2]; | 
|  | fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3; | 
|  | fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3; | 
|  | fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3; | 
|  | fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | const SkPoint* pts() const { | 
|  | return fContour->segments()[fIndex].pts(); | 
|  | } | 
|  |  | 
|  | SkScalar right() const { | 
|  | return bounds().fRight; | 
|  | } | 
|  |  | 
|  | ptrdiff_t segmentIndex() const { | 
|  | return fIndex; | 
|  | } | 
|  |  | 
|  | SegmentType segmentType() const { | 
|  | const Segment& segment = fContour->segments()[fIndex]; | 
|  | SegmentType type = (SegmentType) segment.verb(); | 
|  | if (type != kLine_Segment) { | 
|  | return type; | 
|  | } | 
|  | if (segment.isHorizontal()) { | 
|  | return kHorizontalLine_Segment; | 
|  | } | 
|  | if (segment.isVertical()) { | 
|  | return kVerticalLine_Segment; | 
|  | } | 
|  | return kLine_Segment; | 
|  | } | 
|  |  | 
|  | bool startAfter(const Work& after) { | 
|  | fIndex = after.fIndex; | 
|  | return advance(); | 
|  | } | 
|  |  | 
|  | SkScalar top() const { | 
|  | return bounds().fTop; | 
|  | } | 
|  |  | 
|  | SkPath::Verb verb() const { | 
|  | return fContour->segments()[fIndex].verb(); | 
|  | } | 
|  |  | 
|  | SkScalar x() const { | 
|  | return bounds().fLeft; | 
|  | } | 
|  |  | 
|  | bool xFlipped() const { | 
|  | return x() != pts()[0].fX; | 
|  | } | 
|  |  | 
|  | SkScalar y() const { | 
|  | return bounds().fTop; | 
|  | } | 
|  |  | 
|  | bool yFlipped() const { | 
|  | return y() != pts()[0].fY; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | Contour* fContour; | 
|  | #if !APPROXIMATE_CUBICS | 
|  | SkPoint fCubic[4]; | 
|  | #endif | 
|  | int fIndex; | 
|  | int fLast; | 
|  | }; | 
|  |  | 
|  | #if DEBUG_ADD_INTERSECTING_TS | 
|  |  | 
|  | static void debugShowLineIntersection(int pts, const Work& wt, const Work& wn, | 
|  | const Intersections& i) { | 
|  | SkASSERT(i.used() == pts); | 
|  | if (!pts) { | 
|  | SkDebugf("%s no intersect " LINE_DEBUG_STR " " LINE_DEBUG_STR "\n", | 
|  | __FUNCTION__, LINE_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts())); | 
|  | return; | 
|  | } | 
|  | SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " LINE_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, | 
|  | i.fT[0][0], LINE_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | 
|  | if (pts == 2) { | 
|  | SkDebugf(" " T_DEBUG_STR(wtTs, 1) " " PT_DEBUG_STR, i.fT[0][1], PT_DEBUG_DATA(i, 1)); | 
|  | } | 
|  | SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts())); | 
|  | if (pts == 2) { | 
|  | SkDebugf(" " T_DEBUG_STR(wnTs, 1), i.fT[1][1]); | 
|  | } | 
|  | SkDebugf("\n"); | 
|  | } | 
|  |  | 
|  | static void debugShowQuadLineIntersection(int pts, const Work& wt, | 
|  | const Work& wn, const Intersections& i) { | 
|  | SkASSERT(i.used() == pts); | 
|  | if (!pts) { | 
|  | SkDebugf("%s no intersect " QUAD_DEBUG_STR " " LINE_DEBUG_STR "\n", | 
|  | __FUNCTION__, QUAD_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts())); | 
|  | return; | 
|  | } | 
|  | SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " QUAD_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, | 
|  | i.fT[0][0], QUAD_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | 
|  | for (int n = 1; n < pts; ++n) { | 
|  | SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); | 
|  | } | 
|  | SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts())); | 
|  | for (int n = 1; n < pts; ++n) { | 
|  | SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); | 
|  | } | 
|  | SkDebugf("\n"); | 
|  | } | 
|  |  | 
|  | static void debugShowQuadIntersection(int pts, const Work& wt, | 
|  | const Work& wn, const Intersections& i) { | 
|  | SkASSERT(i.used() == pts); | 
|  | if (!pts) { | 
|  | SkDebugf("%s no intersect " QUAD_DEBUG_STR " " QUAD_DEBUG_STR "\n", | 
|  | __FUNCTION__, QUAD_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts())); | 
|  | return; | 
|  | } | 
|  | SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " QUAD_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, | 
|  | i.fT[0][0], QUAD_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | 
|  | for (int n = 1; n < pts; ++n) { | 
|  | SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); | 
|  | } | 
|  | SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i.fT[1][0], QUAD_DEBUG_DATA(wn.pts())); | 
|  | for (int n = 1; n < pts; ++n) { | 
|  | SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); | 
|  | } | 
|  | SkDebugf("\n"); | 
|  | } | 
|  |  | 
|  | static void debugShowCubicLineIntersection(int pts, const Work& wt, | 
|  | const Work& wn, const Intersections& i) { | 
|  | SkASSERT(i.used() == pts); | 
|  | if (!pts) { | 
|  | SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " LINE_DEBUG_STR "\n", | 
|  | __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts())); | 
|  | return; | 
|  | } | 
|  | SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, | 
|  | i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | 
|  | for (int n = 1; n < pts; ++n) { | 
|  | SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); | 
|  | } | 
|  | SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts())); | 
|  | for (int n = 1; n < pts; ++n) { | 
|  | SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); | 
|  | } | 
|  | SkDebugf("\n"); | 
|  | } | 
|  |  | 
|  | static void debugShowCubicQuadIntersection(int pts, const Work& wt, | 
|  | const Work& wn, const Intersections& i) { | 
|  | SkASSERT(i.used() == pts); | 
|  | if (!pts) { | 
|  | SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " QUAD_DEBUG_STR "\n", | 
|  | __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts())); | 
|  | return; | 
|  | } | 
|  | SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, | 
|  | i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | 
|  | for (int n = 1; n < pts; ++n) { | 
|  | SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); | 
|  | } | 
|  | SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i.fT[1][0], QUAD_DEBUG_DATA(wn.pts())); | 
|  | for (int n = 1; n < pts; ++n) { | 
|  | SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); | 
|  | } | 
|  | SkDebugf("\n"); | 
|  | } | 
|  |  | 
|  | static void debugShowCubicIntersection(int pts, const Work& wt, | 
|  | const Work& wn, const Intersections& i) { | 
|  | SkASSERT(i.used() == pts); | 
|  | if (!pts) { | 
|  | SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " CUBIC_DEBUG_STR "\n", | 
|  | __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), CUBIC_DEBUG_DATA(wn.pts())); | 
|  | return; | 
|  | } | 
|  | SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, | 
|  | i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | 
|  | for (int n = 1; n < pts; ++n) { | 
|  | SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); | 
|  | } | 
|  | SkDebugf(" wnTs[0]=%g " CUBIC_DEBUG_STR, i.fT[1][0], CUBIC_DEBUG_DATA(wn.pts())); | 
|  | for (int n = 1; n < pts; ++n) { | 
|  | SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); | 
|  | } | 
|  | SkDebugf("\n"); | 
|  | } | 
|  |  | 
|  | static void debugShowCubicIntersection(int pts, const Work& wt, const Intersections& i) { | 
|  | SkASSERT(i.used() == pts); | 
|  | if (!pts) { | 
|  | SkDebugf("%s no self intersect " CUBIC_DEBUG_STR "\n", __FUNCTION__, | 
|  | CUBIC_DEBUG_DATA(wt.pts())); | 
|  | return; | 
|  | } | 
|  | SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, | 
|  | i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | 
|  | SkDebugf(" " T_DEBUG_STR(wtTs, 1), i.fT[1][0]); | 
|  | SkDebugf("\n"); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static void debugShowLineIntersection(int , const Work& , const Work& , const Intersections& ) { | 
|  | } | 
|  |  | 
|  | static void debugShowQuadLineIntersection(int , const Work& , const Work& , const Intersections& ) { | 
|  | } | 
|  |  | 
|  | static void debugShowQuadIntersection(int , const Work& , const Work& , const Intersections& ) { | 
|  | } | 
|  |  | 
|  | static void debugShowCubicLineIntersection(int , const Work& , const Work& , | 
|  | const Intersections& ) { | 
|  | } | 
|  |  | 
|  | static void debugShowCubicQuadIntersection(int , const Work& , const Work& , | 
|  | const Intersections& ) { | 
|  | } | 
|  |  | 
|  | static void debugShowCubicIntersection(int , const Work& , const Work& , const Intersections& ) { | 
|  | } | 
|  |  | 
|  | static void debugShowCubicIntersection(int , const Work& , const Intersections& ) { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static bool addIntersectTs(Contour* test, Contour* next) { | 
|  |  | 
|  | if (test != next) { | 
|  | if (test->bounds().fBottom < next->bounds().fTop) { | 
|  | return false; | 
|  | } | 
|  | if (!Bounds::Intersects(test->bounds(), next->bounds())) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | Work wt; | 
|  | wt.init(test); | 
|  | bool foundCommonContour = test == next; | 
|  | do { | 
|  | Work wn; | 
|  | wn.init(next); | 
|  | if (test == next && !wn.startAfter(wt)) { | 
|  | continue; | 
|  | } | 
|  | do { | 
|  | if (!Bounds::Intersects(wt.bounds(), wn.bounds())) { | 
|  | continue; | 
|  | } | 
|  | int pts; | 
|  | Intersections ts; | 
|  | bool swap = false; | 
|  | switch (wt.segmentType()) { | 
|  | case Work::kHorizontalLine_Segment: | 
|  | swap = true; | 
|  | switch (wn.segmentType()) { | 
|  | case Work::kHorizontalLine_Segment: | 
|  | case Work::kVerticalLine_Segment: | 
|  | case Work::kLine_Segment: { | 
|  | pts = HLineIntersect(wn.pts(), wt.left(), | 
|  | wt.right(), wt.y(), wt.xFlipped(), ts); | 
|  | debugShowLineIntersection(pts, wt, wn, ts); | 
|  | break; | 
|  | } | 
|  | case Work::kQuad_Segment: { | 
|  | pts = HQuadIntersect(wn.pts(), wt.left(), | 
|  | wt.right(), wt.y(), wt.xFlipped(), ts); | 
|  | break; | 
|  | } | 
|  | case Work::kCubic_Segment: { | 
|  | pts = HCubicIntersect(wn.pts(), wt.left(), | 
|  | wt.right(), wt.y(), wt.xFlipped(), ts); | 
|  | debugShowCubicLineIntersection(pts, wn, wt, ts); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | SkASSERT(0); | 
|  | } | 
|  | break; | 
|  | case Work::kVerticalLine_Segment: | 
|  | swap = true; | 
|  | switch (wn.segmentType()) { | 
|  | case Work::kHorizontalLine_Segment: | 
|  | case Work::kVerticalLine_Segment: | 
|  | case Work::kLine_Segment: { | 
|  | pts = VLineIntersect(wn.pts(), wt.top(), | 
|  | wt.bottom(), wt.x(), wt.yFlipped(), ts); | 
|  | debugShowLineIntersection(pts, wt, wn, ts); | 
|  | break; | 
|  | } | 
|  | case Work::kQuad_Segment: { | 
|  | pts = VQuadIntersect(wn.pts(), wt.top(), | 
|  | wt.bottom(), wt.x(), wt.yFlipped(), ts); | 
|  | break; | 
|  | } | 
|  | case Work::kCubic_Segment: { | 
|  | pts = VCubicIntersect(wn.pts(), wt.top(), | 
|  | wt.bottom(), wt.x(), wt.yFlipped(), ts); | 
|  | debugShowCubicLineIntersection(pts, wn, wt, ts); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | SkASSERT(0); | 
|  | } | 
|  | break; | 
|  | case Work::kLine_Segment: | 
|  | switch (wn.segmentType()) { | 
|  | case Work::kHorizontalLine_Segment: | 
|  | pts = HLineIntersect(wt.pts(), wn.left(), | 
|  | wn.right(), wn.y(), wn.xFlipped(), ts); | 
|  | debugShowLineIntersection(pts, wt, wn, ts); | 
|  | break; | 
|  | case Work::kVerticalLine_Segment: | 
|  | pts = VLineIntersect(wt.pts(), wn.top(), | 
|  | wn.bottom(), wn.x(), wn.yFlipped(), ts); | 
|  | debugShowLineIntersection(pts, wt, wn, ts); | 
|  | break; | 
|  | case Work::kLine_Segment: { | 
|  | pts = LineIntersect(wt.pts(), wn.pts(), ts); | 
|  | debugShowLineIntersection(pts, wt, wn, ts); | 
|  | break; | 
|  | } | 
|  | case Work::kQuad_Segment: { | 
|  | swap = true; | 
|  | pts = QuadLineIntersect(wn.pts(), wt.pts(), ts); | 
|  | debugShowQuadLineIntersection(pts, wn, wt, ts); | 
|  | break; | 
|  | } | 
|  | case Work::kCubic_Segment: { | 
|  | swap = true; | 
|  | pts = CubicLineIntersect(wn.pts(), wt.pts(), ts); | 
|  | debugShowCubicLineIntersection(pts, wn, wt,  ts); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | SkASSERT(0); | 
|  | } | 
|  | break; | 
|  | case Work::kQuad_Segment: | 
|  | switch (wn.segmentType()) { | 
|  | case Work::kHorizontalLine_Segment: | 
|  | pts = HQuadIntersect(wt.pts(), wn.left(), | 
|  | wn.right(), wn.y(), wn.xFlipped(), ts); | 
|  | break; | 
|  | case Work::kVerticalLine_Segment: | 
|  | pts = VQuadIntersect(wt.pts(), wn.top(), | 
|  | wn.bottom(), wn.x(), wn.yFlipped(), ts); | 
|  | break; | 
|  | case Work::kLine_Segment: { | 
|  | pts = QuadLineIntersect(wt.pts(), wn.pts(), ts); | 
|  | debugShowQuadLineIntersection(pts, wt, wn, ts); | 
|  | break; | 
|  | } | 
|  | case Work::kQuad_Segment: { | 
|  | pts = QuadIntersect(wt.pts(), wn.pts(), ts); | 
|  | debugShowQuadIntersection(pts, wt, wn, ts); | 
|  | break; | 
|  | } | 
|  | case Work::kCubic_Segment: { | 
|  | #if APPROXIMATE_CUBICS | 
|  | swap = true; | 
|  | pts = CubicQuadIntersect(wn.pts(), wt.pts(), ts); | 
|  | debugShowCubicQuadIntersection(pts, wn, wt, ts); | 
|  | #else | 
|  | wt.promoteToCubic(); | 
|  | pts = CubicIntersect(wt.cubic(), wn.pts(), ts); | 
|  | debugShowCubicIntersection(pts, wt, wn, ts); | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | default: | 
|  | SkASSERT(0); | 
|  | } | 
|  | break; | 
|  | case Work::kCubic_Segment: | 
|  | switch (wn.segmentType()) { | 
|  | case Work::kHorizontalLine_Segment: | 
|  | pts = HCubicIntersect(wt.pts(), wn.left(), | 
|  | wn.right(), wn.y(), wn.xFlipped(), ts); | 
|  | debugShowCubicLineIntersection(pts, wt, wn, ts); | 
|  | break; | 
|  | case Work::kVerticalLine_Segment: | 
|  | pts = VCubicIntersect(wt.pts(), wn.top(), | 
|  | wn.bottom(), wn.x(), wn.yFlipped(), ts); | 
|  | debugShowCubicLineIntersection(pts, wt, wn, ts); | 
|  | break; | 
|  | case Work::kLine_Segment: { | 
|  | pts = CubicLineIntersect(wt.pts(), wn.pts(), ts); | 
|  | debugShowCubicLineIntersection(pts, wt, wn, ts); | 
|  | break; | 
|  | } | 
|  | case Work::kQuad_Segment: { | 
|  | #if APPROXIMATE_CUBICS | 
|  | pts = CubicQuadIntersect(wt.pts(), wn.pts(), ts); | 
|  | debugShowCubicQuadIntersection(pts, wt, wn, ts); | 
|  | #else | 
|  | wn.promoteToCubic(); | 
|  | pts = CubicIntersect(wt.pts(), wn.cubic(), ts); | 
|  | debugShowCubicIntersection(pts, wt, wn, ts); | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | case Work::kCubic_Segment: { | 
|  | pts = CubicIntersect(wt.pts(), wn.pts(), ts); | 
|  | debugShowCubicIntersection(pts, wt, wn, ts); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | SkASSERT(0); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | SkASSERT(0); | 
|  | } | 
|  | if (!foundCommonContour && pts > 0) { | 
|  | test->addCross(next); | 
|  | next->addCross(test); | 
|  | foundCommonContour = true; | 
|  | } | 
|  | // in addition to recording T values, record matching segment | 
|  | if (ts.unsortable()) { | 
|  | bool start = true; | 
|  | for (int pt = 0; pt < ts.used(); ++pt) { | 
|  | // FIXME: if unsortable, the other points to the original. This logic is | 
|  | // untested downstream. | 
|  | SkPoint point = ts.fPt[pt].asSkPoint(); | 
|  | int testTAt = wt.addUnsortableT(wt, start, point, ts.fT[swap][pt]); | 
|  | wt.addOtherT(testTAt, ts.fT[swap][pt], testTAt); | 
|  | testTAt = wn.addUnsortableT(wn, start ^ ts.fFlip, point, ts.fT[!swap][pt]); | 
|  | wn.addOtherT(testTAt, ts.fT[!swap][pt], testTAt); | 
|  | start ^= true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (pts == 2) { | 
|  | if (wn.segmentType() <= Work::kLine_Segment | 
|  | && wt.segmentType() <= Work::kLine_Segment) { | 
|  | wt.addCoincident(wn, ts, swap); | 
|  | continue; | 
|  | } | 
|  | if (wn.segmentType() >= Work::kQuad_Segment | 
|  | && wt.segmentType() >= Work::kQuad_Segment | 
|  | && ts.fIsCoincident[0]) { | 
|  | SkASSERT(ts.coincidentUsed() == 2); | 
|  | wt.addCoincident(wn, ts, swap); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | } | 
|  | for (int pt = 0; pt < pts; ++pt) { | 
|  | SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1); | 
|  | SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1); | 
|  | SkPoint point = ts.fPt[pt].asSkPoint(); | 
|  | int testTAt = wt.addT(wn, point, ts.fT[swap][pt]); | 
|  | int nextTAt = wn.addT(wt, point, ts.fT[!swap][pt]); | 
|  | wt.addOtherT(testTAt, ts.fT[!swap][pt ^ ts.fFlip], nextTAt); | 
|  | wn.addOtherT(nextTAt, ts.fT[swap][pt ^ ts.fFlip], testTAt); | 
|  | } | 
|  | } while (wn.advance()); | 
|  | } while (wt.advance()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void addSelfIntersectTs(Contour* test) { | 
|  | Work wt; | 
|  | wt.init(test); | 
|  | do { | 
|  | if (wt.segmentType() != Work::kCubic_Segment) { | 
|  | continue; | 
|  | } | 
|  | Intersections ts; | 
|  | int pts = CubicIntersect(wt.pts(), ts); | 
|  | debugShowCubicIntersection(pts, wt, ts); | 
|  | if (!pts) { | 
|  | continue; | 
|  | } | 
|  | SkASSERT(pts == 1); | 
|  | SkASSERT(ts.fT[0][0] >= 0 && ts.fT[0][0] <= 1); | 
|  | SkASSERT(ts.fT[1][0] >= 0 && ts.fT[1][0] <= 1); | 
|  | SkPoint point = ts.fPt[0].asSkPoint(); | 
|  | int testTAt = wt.addSelfT(wt, point, ts.fT[0][0]); | 
|  | int nextTAt = wt.addT(wt, point, ts.fT[1][0]); | 
|  | wt.addOtherT(testTAt, ts.fT[1][0], nextTAt); | 
|  | wt.addOtherT(nextTAt, ts.fT[0][0], testTAt); | 
|  | } while (wt.advance()); | 
|  | } | 
|  |  | 
|  | // resolve any coincident pairs found while intersecting, and | 
|  | // see if coincidence is formed by clipping non-concident segments | 
|  | static void coincidenceCheck(SkTDArray<Contour*>& contourList, int total) { | 
|  | int contourCount = contourList.count(); | 
|  | #if ONE_PASS_COINCIDENCE_CHECK | 
|  | for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | 
|  | Contour* contour = contourList[cIndex]; | 
|  | contour->resolveCoincidence(contourList); | 
|  | } | 
|  | #else | 
|  | for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | 
|  | Contour* contour = contourList[cIndex]; | 
|  | contour->addCoincidentPoints(); | 
|  | } | 
|  | for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | 
|  | Contour* contour = contourList[cIndex]; | 
|  | contour->calcCoincidentWinding(); | 
|  | } | 
|  | #endif | 
|  | for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | 
|  | Contour* contour = contourList[cIndex]; | 
|  | contour->findTooCloseToCall(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int contourRangeCheckY(SkTDArray<Contour*>& contourList,  Segment*& current, int& index, | 
|  | int& endIndex, double& bestHit, SkScalar& bestDx, bool& tryAgain, double& mid, bool opp) { | 
|  | SkPoint basePt; | 
|  | double tAtMid = current->tAtMid(index, endIndex, mid); | 
|  | current->xyAtT(tAtMid, basePt); | 
|  | int contourCount = contourList.count(); | 
|  | SkScalar bestY = SK_ScalarMin; | 
|  | Segment* bestSeg = NULL; | 
|  | int bestTIndex; | 
|  | bool bestOpp; | 
|  | bool hitSomething = false; | 
|  | for (int cTest = 0; cTest < contourCount; ++cTest) { | 
|  | Contour* contour = contourList[cTest]; | 
|  | bool testOpp = contour->operand() ^ current->operand() ^ opp; | 
|  | if (basePt.fY < contour->bounds().fTop) { | 
|  | continue; | 
|  | } | 
|  | if (bestY > contour->bounds().fBottom) { | 
|  | continue; | 
|  | } | 
|  | int segmentCount = contour->segments().count(); | 
|  | for (int test = 0; test < segmentCount; ++test) { | 
|  | Segment* testSeg = &contour->segments()[test]; | 
|  | SkScalar testY = bestY; | 
|  | double testHit; | 
|  | int testTIndex = testSeg->crossedSpanY(basePt, testY, testHit, hitSomething, tAtMid, | 
|  | testOpp, testSeg == current); | 
|  | if (testTIndex < 0) { | 
|  | if (testTIndex == SK_MinS32) { | 
|  | hitSomething = true; | 
|  | bestSeg = NULL; | 
|  | goto abortContours; // vertical encountered, return and try different point | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (testSeg == current && current->betweenTs(index, testHit, endIndex)) { | 
|  | double baseT = current->t(index); | 
|  | double endT = current->t(endIndex); | 
|  | double newMid = (testHit - baseT) / (endT - baseT); | 
|  | #if DEBUG_WINDING | 
|  | SkPoint midXY, newXY; | 
|  | double midT = current->tAtMid(index, endIndex, mid); | 
|  | current->xyAtT(midT, midXY); | 
|  | double newMidT = current->tAtMid(index, endIndex, newMid); | 
|  | current->xyAtT(newMidT, newXY); | 
|  | SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g (%1.9g,%1.9g)" | 
|  | " n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__, | 
|  | current->debugID(), mid, newMid, | 
|  | baseT, current->xAtT(index), current->yAtT(index), | 
|  | baseT + mid * (endT - baseT), midXY.fX, midXY.fY, | 
|  | baseT + newMid * (endT - baseT), newXY.fX, newXY.fY, | 
|  | endT, current->xAtT(endIndex), current->yAtT(endIndex)); | 
|  | #endif | 
|  | mid = newMid * 2; // calling loop with divide by 2 before continuing | 
|  | return SK_MinS32; | 
|  | } | 
|  | bestSeg = testSeg; | 
|  | bestHit = testHit; | 
|  | bestOpp = testOpp; | 
|  | bestTIndex = testTIndex; | 
|  | bestY = testY; | 
|  | } | 
|  | } | 
|  | abortContours: | 
|  | int result; | 
|  | if (!bestSeg) { | 
|  | result = hitSomething ? SK_MinS32 : 0; | 
|  | } else { | 
|  | if (bestSeg->windSum(bestTIndex) == SK_MinS32) { | 
|  | current = bestSeg; | 
|  | index = bestTIndex; | 
|  | endIndex = bestSeg->nextSpan(bestTIndex, 1); | 
|  | SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); | 
|  | tryAgain = true; | 
|  | return 0; | 
|  | } | 
|  | result = bestSeg->windingAtT(bestHit, bestTIndex, bestOpp, bestDx); | 
|  | SkASSERT(bestDx); | 
|  | } | 
|  | double baseT = current->t(index); | 
|  | double endT = current->t(endIndex); | 
|  | bestHit = baseT + mid * (endT - baseT); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static Segment* findUndone(SkTDArray<Contour*>& contourList, int& start, int& end) { | 
|  | int contourCount = contourList.count(); | 
|  | Segment* result; | 
|  | for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | 
|  | Contour* contour = contourList[cIndex]; | 
|  | result = contour->undoneSegment(start, end); | 
|  | if (result) { | 
|  | return result; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #define OLD_FIND_CHASE 1 | 
|  |  | 
|  | static Segment* findChase(SkTDArray<Span*>& chase, int& tIndex, int& endIndex) { | 
|  | while (chase.count()) { | 
|  | Span* span; | 
|  | chase.pop(&span); | 
|  | const Span& backPtr = span->fOther->span(span->fOtherIndex); | 
|  | Segment* segment = backPtr.fOther; | 
|  | tIndex = backPtr.fOtherIndex; | 
|  | SkTDArray<Angle> angles; | 
|  | int done = 0; | 
|  | if (segment->activeAngle(tIndex, done, angles)) { | 
|  | Angle* last = angles.end() - 1; | 
|  | tIndex = last->start(); | 
|  | endIndex = last->end(); | 
|  | #if TRY_ROTATE | 
|  | *chase.insert(0) = span; | 
|  | #else | 
|  | *chase.append() = span; | 
|  | #endif | 
|  | return last->segment(); | 
|  | } | 
|  | if (done == angles.count()) { | 
|  | continue; | 
|  | } | 
|  | SkTDArray<Angle*> sorted; | 
|  | bool sortable = Segment::SortAngles(angles, sorted); | 
|  | int angleCount = sorted.count(); | 
|  | #if DEBUG_SORT | 
|  | sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0); | 
|  | #endif | 
|  | if (!sortable) { | 
|  | continue; | 
|  | } | 
|  | // find first angle, initialize winding to computed fWindSum | 
|  | int firstIndex = -1; | 
|  | const Angle* angle; | 
|  | #if OLD_FIND_CHASE | 
|  | int winding; | 
|  | do { | 
|  | angle = sorted[++firstIndex]; | 
|  | segment = angle->segment(); | 
|  | winding = segment->windSum(angle); | 
|  | } while (winding == SK_MinS32); | 
|  | int spanWinding = segment->spanSign(angle->start(), angle->end()); | 
|  | #if DEBUG_WINDING | 
|  | SkDebugf("%s winding=%d spanWinding=%d\n", | 
|  | __FUNCTION__, winding, spanWinding); | 
|  | #endif | 
|  | // turn span winding into contour winding | 
|  | if (spanWinding * winding < 0) { | 
|  | winding += spanWinding; | 
|  | } | 
|  | #if DEBUG_SORT | 
|  | segment->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, 0); | 
|  | #endif | 
|  | // we care about first sign and whether wind sum indicates this | 
|  | // edge is inside or outside. Maybe need to pass span winding | 
|  | // or first winding or something into this function? | 
|  | // advance to first undone angle, then return it and winding | 
|  | // (to set whether edges are active or not) | 
|  | int nextIndex = firstIndex + 1; | 
|  | int lastIndex = firstIndex != 0 ? firstIndex : angleCount; | 
|  | angle = sorted[firstIndex]; | 
|  | winding -= angle->segment()->spanSign(angle); | 
|  | #else | 
|  | do { | 
|  | angle = sorted[++firstIndex]; | 
|  | segment = angle->segment(); | 
|  | } while (segment->windSum(angle) == SK_MinS32); | 
|  | #if DEBUG_SORT | 
|  | segment->debugShowSort(__FUNCTION__, sorted, firstIndex); | 
|  | #endif | 
|  | int sumWinding = segment->updateWindingReverse(angle); | 
|  | int nextIndex = firstIndex + 1; | 
|  | int lastIndex = firstIndex != 0 ? firstIndex : angleCount; | 
|  | Segment* first = NULL; | 
|  | #endif | 
|  | do { | 
|  | SkASSERT(nextIndex != firstIndex); | 
|  | if (nextIndex == angleCount) { | 
|  | nextIndex = 0; | 
|  | } | 
|  | angle = sorted[nextIndex]; | 
|  | segment = angle->segment(); | 
|  | #if OLD_FIND_CHASE | 
|  | int maxWinding = winding; | 
|  | winding -= segment->spanSign(angle); | 
|  | #if DEBUG_SORT | 
|  | SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__, | 
|  | segment->debugID(), maxWinding, winding, angle->sign()); | 
|  | #endif | 
|  | tIndex = angle->start(); | 
|  | endIndex = angle->end(); | 
|  | int lesser = SkMin32(tIndex, endIndex); | 
|  | const Span& nextSpan = segment->span(lesser); | 
|  | if (!nextSpan.fDone) { | 
|  | #if 1 | 
|  | // FIXME: this be wrong? assign startWinding if edge is in | 
|  | // same direction. If the direction is opposite, winding to | 
|  | // assign is flipped sign or +/- 1? | 
|  | if (useInnerWinding(maxWinding, winding)) { | 
|  | maxWinding = winding; | 
|  | } | 
|  | segment->markAndChaseWinding(angle, maxWinding, 0); | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | #else | 
|  | int start = angle->start(); | 
|  | int end = angle->end(); | 
|  | int maxWinding; | 
|  | segment->setUpWinding(start, end, maxWinding, sumWinding); | 
|  | if (!segment->done(angle)) { | 
|  | if (!first) { | 
|  | first = segment; | 
|  | tIndex = start; | 
|  | endIndex = end; | 
|  | } | 
|  | (void) segment->markAngle(maxWinding, sumWinding, true, angle); | 
|  | } | 
|  | #endif | 
|  | } while (++nextIndex != lastIndex); | 
|  | #if TRY_ROTATE | 
|  | *chase.insert(0) = span; | 
|  | #else | 
|  | *chase.append() = span; | 
|  | #endif | 
|  | return segment; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #if DEBUG_ACTIVE_SPANS | 
|  | static void debugShowActiveSpans(SkTDArray<Contour*>& contourList) { | 
|  | int index; | 
|  | for (index = 0; index < contourList.count(); ++ index) { | 
|  | contourList[index]->debugShowActiveSpans(); | 
|  | } | 
|  | for (index = 0; index < contourList.count(); ++ index) { | 
|  | contourList[index]->validateActiveSpans(); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static Segment* findSortableTop(SkTDArray<Contour*>& contourList, int& index, | 
|  | int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, bool onlySortable) { | 
|  | Segment* result; | 
|  | do { | 
|  | SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax}; | 
|  | int contourCount = contourList.count(); | 
|  | Segment* topStart = NULL; | 
|  | done = true; | 
|  | for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | 
|  | Contour* contour = contourList[cIndex]; | 
|  | if (contour->done()) { | 
|  | continue; | 
|  | } | 
|  | const Bounds& bounds = contour->bounds(); | 
|  | if (bounds.fBottom < topLeft.fY) { | 
|  | done = false; | 
|  | continue; | 
|  | } | 
|  | if (bounds.fBottom == topLeft.fY && bounds.fRight < topLeft.fX) { | 
|  | done = false; | 
|  | continue; | 
|  | } | 
|  | contour->topSortableSegment(topLeft, bestXY, topStart); | 
|  | if (!contour->done()) { | 
|  | done = false; | 
|  | } | 
|  | } | 
|  | if (!topStart) { | 
|  | return NULL; | 
|  | } | 
|  | topLeft = bestXY; | 
|  | result = topStart->findTop(index, endIndex, unsortable, onlySortable); | 
|  | } while (!result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int rightAngleWinding(SkTDArray<Contour*>& contourList, | 
|  | Segment*& current, int& index, int& endIndex, double& tHit, SkScalar& hitDx, bool& tryAgain, | 
|  | bool opp) { | 
|  | double test = 0.9; | 
|  | int contourWinding; | 
|  | do { | 
|  | contourWinding = contourRangeCheckY(contourList, current, index, endIndex, tHit, hitDx, | 
|  | tryAgain, test, opp); | 
|  | if (contourWinding != SK_MinS32 || tryAgain) { | 
|  | return contourWinding; | 
|  | } | 
|  | test /= 2; | 
|  | } while (!approximately_negative(test)); | 
|  | SkASSERT(0); // should be OK to comment out, but interested when this hits | 
|  | return contourWinding; | 
|  | } | 
|  |  | 
|  | static void skipVertical(SkTDArray<Contour*>& contourList, | 
|  | Segment*& current, int& index, int& endIndex) { | 
|  | if (!current->isVertical(index, endIndex)) { | 
|  | return; | 
|  | } | 
|  | int contourCount = contourList.count(); | 
|  | for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | 
|  | Contour* contour = contourList[cIndex]; | 
|  | if (contour->done()) { | 
|  | continue; | 
|  | } | 
|  | current = contour->nonVerticalSegment(index, endIndex); | 
|  | if (current) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static Segment* findSortableTop(SkTDArray<Contour*>& contourList, bool& firstContour, int& index, | 
|  | int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, bool binary) { | 
|  | Segment* current = findSortableTop(contourList, index, endIndex, topLeft, unsortable, done, | 
|  | true); | 
|  | if (!current) { | 
|  | return NULL; | 
|  | } | 
|  | if (firstContour) { | 
|  | current->initWinding(index, endIndex); | 
|  | firstContour = false; | 
|  | return current; | 
|  | } | 
|  | int minIndex = SkMin32(index, endIndex); | 
|  | int sumWinding = current->windSum(minIndex); | 
|  | if (sumWinding != SK_MinS32) { | 
|  | return current; | 
|  | } | 
|  | sumWinding = current->computeSum(index, endIndex, binary); | 
|  | if (sumWinding != SK_MinS32) { | 
|  | return current; | 
|  | } | 
|  | int contourWinding; | 
|  | int oppContourWinding = 0; | 
|  | // the simple upward projection of the unresolved points hit unsortable angles | 
|  | // shoot rays at right angles to the segment to find its winding, ignoring angle cases | 
|  | bool tryAgain; | 
|  | double tHit; | 
|  | SkScalar hitDx = 0; | 
|  | SkScalar hitOppDx = 0; | 
|  | do { | 
|  | // if current is vertical, find another candidate which is not | 
|  | // if only remaining candidates are vertical, then they can be marked done | 
|  | SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); | 
|  | skipVertical(contourList, current, index, endIndex); | 
|  | SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); | 
|  | tryAgain = false; | 
|  | contourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitDx, | 
|  | tryAgain, false); | 
|  | if (tryAgain) { | 
|  | continue; | 
|  | } | 
|  | if (!binary) { | 
|  | break; | 
|  | } | 
|  | oppContourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitOppDx, | 
|  | tryAgain, true); | 
|  | } while (tryAgain); | 
|  |  | 
|  | current->initWinding(index, endIndex, tHit, contourWinding, hitDx, oppContourWinding, hitOppDx); | 
|  | return current; | 
|  | } | 
|  |  | 
|  | // rewrite that abandons keeping local track of winding | 
|  | static bool bridgeWinding(SkTDArray<Contour*>& contourList, PathWrapper& simple) { | 
|  | bool firstContour = true; | 
|  | bool unsortable = false; | 
|  | bool topUnsortable = false; | 
|  | SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin}; | 
|  | do { | 
|  | int index, endIndex; | 
|  | bool topDone; | 
|  | Segment* current = findSortableTop(contourList, firstContour, index, endIndex, topLeft, | 
|  | topUnsortable, topDone, false); | 
|  | if (!current) { | 
|  | if (topUnsortable || !topDone) { | 
|  | topUnsortable = false; | 
|  | SkASSERT(topLeft.fX != SK_ScalarMin && topLeft.fY != SK_ScalarMin); | 
|  | topLeft.fX = topLeft.fY = SK_ScalarMin; | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | SkTDArray<Span*> chaseArray; | 
|  | do { | 
|  | if (current->activeWinding(index, endIndex)) { | 
|  | do { | 
|  | #if DEBUG_ACTIVE_SPANS | 
|  | if (!unsortable && current->done()) { | 
|  | debugShowActiveSpans(contourList); | 
|  | } | 
|  | #endif | 
|  | SkASSERT(unsortable || !current->done()); | 
|  | int nextStart = index; | 
|  | int nextEnd = endIndex; | 
|  | Segment* next = current->findNextWinding(chaseArray, nextStart, nextEnd, | 
|  | unsortable); | 
|  | if (!next) { | 
|  | if (!unsortable && simple.hasMove() | 
|  | && current->verb() != SkPath::kLine_Verb | 
|  | && !simple.isClosed()) { | 
|  | current->addCurveTo(index, endIndex, simple, true); | 
|  | SkASSERT(simple.isClosed()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | #if DEBUG_FLOW | 
|  | SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__, | 
|  | current->debugID(), current->xyAtT(index).fX, current->xyAtT(index).fY, | 
|  | current->xyAtT(endIndex).fX, current->xyAtT(endIndex).fY); | 
|  | #endif | 
|  | current->addCurveTo(index, endIndex, simple, true); | 
|  | current = next; | 
|  | index = nextStart; | 
|  | endIndex = nextEnd; | 
|  | } while (!simple.isClosed() && (!unsortable | 
|  | || !current->done(SkMin32(index, endIndex)))); | 
|  | if (current->activeWinding(index, endIndex) && !simple.isClosed()) { | 
|  | SkASSERT(unsortable); | 
|  | int min = SkMin32(index, endIndex); | 
|  | if (!current->done(min)) { | 
|  | current->addCurveTo(index, endIndex, simple, true); | 
|  | current->markDoneUnary(min); | 
|  | } | 
|  | } | 
|  | simple.close(); | 
|  | } else { | 
|  | Span* last = current->markAndChaseDoneUnary(index, endIndex); | 
|  | if (last && !last->fLoop) { | 
|  | *chaseArray.append() = last; | 
|  | } | 
|  | } | 
|  | current = findChase(chaseArray, index, endIndex); | 
|  | #if DEBUG_ACTIVE_SPANS | 
|  | debugShowActiveSpans(contourList); | 
|  | #endif | 
|  | if (!current) { | 
|  | break; | 
|  | } | 
|  | } while (true); | 
|  | } while (true); | 
|  | return simple.someAssemblyRequired(); | 
|  | } | 
|  |  | 
|  | // returns true if all edges were processed | 
|  | static bool bridgeXor(SkTDArray<Contour*>& contourList, PathWrapper& simple) { | 
|  | Segment* current; | 
|  | int start, end; | 
|  | bool unsortable = false; | 
|  | bool closable = true; | 
|  | while ((current = findUndone(contourList, start, end))) { | 
|  | do { | 
|  | #if DEBUG_ACTIVE_SPANS | 
|  | if (!unsortable && current->done()) { | 
|  | debugShowActiveSpans(contourList); | 
|  | } | 
|  | #endif | 
|  | SkASSERT(unsortable || !current->done()); | 
|  | int nextStart = start; | 
|  | int nextEnd = end; | 
|  | Segment* next = current->findNextXor(nextStart, nextEnd, unsortable); | 
|  | if (!next) { | 
|  | if (!unsortable && simple.hasMove() | 
|  | && current->verb() != SkPath::kLine_Verb | 
|  | && !simple.isClosed()) { | 
|  | current->addCurveTo(start, end, simple, true); | 
|  | SkASSERT(simple.isClosed()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | #if DEBUG_FLOW | 
|  | SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__, | 
|  | current->debugID(), current->xyAtT(start).fX, current->xyAtT(start).fY, | 
|  | current->xyAtT(end).fX, current->xyAtT(end).fY); | 
|  | #endif | 
|  | current->addCurveTo(start, end, simple, true); | 
|  | current = next; | 
|  | start = nextStart; | 
|  | end = nextEnd; | 
|  | } while (!simple.isClosed() && (!unsortable || !current->done(SkMin32(start, end)))); | 
|  | if (!simple.isClosed()) { | 
|  | SkASSERT(unsortable); | 
|  | int min = SkMin32(start, end); | 
|  | if (!current->done(min)) { | 
|  | current->addCurveTo(start, end, simple, true); | 
|  | current->markDone(min, 1); | 
|  | } | 
|  | closable = false; | 
|  | } | 
|  | simple.close(); | 
|  | #if DEBUG_ACTIVE_SPANS | 
|  | debugShowActiveSpans(contourList); | 
|  | #endif | 
|  | } | 
|  | return closable; | 
|  | } | 
|  |  | 
|  | static void fixOtherTIndex(SkTDArray<Contour*>& contourList) { | 
|  | int contourCount = contourList.count(); | 
|  | for (int cTest = 0; cTest < contourCount; ++cTest) { | 
|  | Contour* contour = contourList[cTest]; | 
|  | contour->fixOtherTIndex(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sortSegments(SkTDArray<Contour*>& contourList) { | 
|  | int contourCount = contourList.count(); | 
|  | for (int cTest = 0; cTest < contourCount; ++cTest) { | 
|  | Contour* contour = contourList[cTest]; | 
|  | contour->sortSegments(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void makeContourList(SkTArray<Contour>& contours, SkTDArray<Contour*>& list, | 
|  | bool evenOdd, bool oppEvenOdd) { | 
|  | int count = contours.count(); | 
|  | if (count == 0) { | 
|  | return; | 
|  | } | 
|  | for (int index = 0; index < count; ++index) { | 
|  | Contour& contour = contours[index]; | 
|  | contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd); | 
|  | *list.append() = &contour; | 
|  | } | 
|  | QSort<Contour>(list.begin(), list.end() - 1); | 
|  | } | 
|  |  | 
|  | static bool approximatelyEqual(const SkPoint& a, const SkPoint& b) { | 
|  | return AlmostEqualUlps(a.fX, b.fX) && AlmostEqualUlps(a.fY, b.fY); | 
|  | } | 
|  |  | 
|  | static bool lessThan(SkTDArray<double>& distances, const int one, const int two) { | 
|  | return distances[one] < distances[two]; | 
|  | } | 
|  | /* | 
|  | check start and end of each contour | 
|  | if not the same, record them | 
|  | match them up | 
|  | connect closest | 
|  | reassemble contour pieces into new path | 
|  | */ | 
|  | static void assemble(const PathWrapper& path, PathWrapper& simple) { | 
|  | #if DEBUG_PATH_CONSTRUCTION | 
|  | SkDebugf("%s\n", __FUNCTION__); | 
|  | #endif | 
|  | SkTArray<Contour> contours; | 
|  | EdgeBuilder builder(path, contours); | 
|  | builder.finish(); | 
|  | int count = contours.count(); | 
|  | int outer; | 
|  | SkTDArray<int> runs; // indices of partial contours | 
|  | for (outer = 0; outer < count; ++outer) { | 
|  | const Contour& eContour = contours[outer]; | 
|  | const SkPoint& eStart = eContour.start(); | 
|  | const SkPoint& eEnd = eContour.end(); | 
|  | #if DEBUG_ASSEMBLE | 
|  | SkDebugf("%s contour", __FUNCTION__); | 
|  | if (!approximatelyEqual(eStart, eEnd)) { | 
|  | SkDebugf("[%d]", runs.count()); | 
|  | } else { | 
|  | SkDebugf("   "); | 
|  | } | 
|  | SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", | 
|  | eStart.fX, eStart.fY, eEnd.fX, eEnd.fY); | 
|  | #endif | 
|  | if (approximatelyEqual(eStart, eEnd)) { | 
|  | eContour.toPath(simple); | 
|  | continue; | 
|  | } | 
|  | *runs.append() = outer; | 
|  | } | 
|  | count = runs.count(); | 
|  | if (count == 0) { | 
|  | return; | 
|  | } | 
|  | SkTDArray<int> sLink, eLink; | 
|  | sLink.setCount(count); | 
|  | eLink.setCount(count); | 
|  | int rIndex, iIndex; | 
|  | for (rIndex = 0; rIndex < count; ++rIndex) { | 
|  | sLink[rIndex] = eLink[rIndex] = SK_MaxS32; | 
|  | } | 
|  | SkTDArray<double> distances; | 
|  | const int ends = count * 2; // all starts and ends | 
|  | const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2 | 
|  | distances.setCount(entries); | 
|  | for (rIndex = 0; rIndex < ends - 1; ++rIndex) { | 
|  | outer = runs[rIndex >> 1]; | 
|  | const Contour& oContour = contours[outer]; | 
|  | const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start(); | 
|  | const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2) | 
|  | * ends - rIndex - 1; | 
|  | for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) { | 
|  | int inner = runs[iIndex >> 1]; | 
|  | const Contour& iContour = contours[inner]; | 
|  | const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start(); | 
|  | double dx = iPt.fX - oPt.fX; | 
|  | double dy = iPt.fY - oPt.fY; | 
|  | double dist = dx * dx + dy * dy; | 
|  | distances[row + iIndex] = dist; // oStart distance from iStart | 
|  | } | 
|  | } | 
|  | SkTDArray<int> sortedDist; | 
|  | sortedDist.setCount(entries); | 
|  | for (rIndex = 0; rIndex < entries; ++rIndex) { | 
|  | sortedDist[rIndex] = rIndex; | 
|  | } | 
|  | QSort<SkTDArray<double>, int>(distances, sortedDist.begin(), sortedDist.end() - 1, lessThan); | 
|  | int remaining = count; // number of start/end pairs | 
|  | for (rIndex = 0; rIndex < entries; ++rIndex) { | 
|  | int pair = sortedDist[rIndex]; | 
|  | int row = pair / ends; | 
|  | int col = pair - row * ends; | 
|  | int thingOne = row < col ? row : ends - row - 2; | 
|  | int ndxOne = thingOne >> 1; | 
|  | bool endOne = thingOne & 1; | 
|  | int* linkOne = endOne ? eLink.begin() : sLink.begin(); | 
|  | if (linkOne[ndxOne] != SK_MaxS32) { | 
|  | continue; | 
|  | } | 
|  | int thingTwo = row < col ? col : ends - row + col - 1; | 
|  | int ndxTwo = thingTwo >> 1; | 
|  | bool endTwo = thingTwo & 1; | 
|  | int* linkTwo = endTwo ? eLink.begin() : sLink.begin(); | 
|  | if (linkTwo[ndxTwo] != SK_MaxS32) { | 
|  | continue; | 
|  | } | 
|  | SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]); | 
|  | bool flip = endOne == endTwo; | 
|  | linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo; | 
|  | linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne; | 
|  | if (!--remaining) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | SkASSERT(!remaining); | 
|  | #if DEBUG_ASSEMBLE | 
|  | for (rIndex = 0; rIndex < count; ++rIndex) { | 
|  | int s = sLink[rIndex]; | 
|  | int e = eLink[rIndex]; | 
|  | SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e', | 
|  | s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e); | 
|  | } | 
|  | #endif | 
|  | rIndex = 0; | 
|  | do { | 
|  | bool forward = true; | 
|  | bool first = true; | 
|  | int sIndex = sLink[rIndex]; | 
|  | SkASSERT(sIndex != SK_MaxS32); | 
|  | sLink[rIndex] = SK_MaxS32; | 
|  | int eIndex; | 
|  | if (sIndex < 0) { | 
|  | eIndex = sLink[~sIndex]; | 
|  | sLink[~sIndex] = SK_MaxS32; | 
|  | } else { | 
|  | eIndex = eLink[sIndex]; | 
|  | eLink[sIndex] = SK_MaxS32; | 
|  | } | 
|  | SkASSERT(eIndex != SK_MaxS32); | 
|  | #if DEBUG_ASSEMBLE | 
|  | SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e', | 
|  | sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e', | 
|  | eIndex < 0 ? ~eIndex : eIndex); | 
|  | #endif | 
|  | do { | 
|  | outer = runs[rIndex]; | 
|  | const Contour& contour = contours[outer]; | 
|  | if (first) { | 
|  | first = false; | 
|  | const SkPoint* startPtr = &contour.start(); | 
|  | simple.deferredMove(startPtr[0]); | 
|  | } | 
|  | if (forward) { | 
|  | contour.toPartialForward(simple); | 
|  | } else { | 
|  | contour.toPartialBackward(simple); | 
|  | } | 
|  | #if DEBUG_ASSEMBLE | 
|  | SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex, | 
|  | eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex, | 
|  | sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)); | 
|  | #endif | 
|  | if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) { | 
|  | simple.close(); | 
|  | break; | 
|  | } | 
|  | if (forward) { | 
|  | eIndex = eLink[rIndex]; | 
|  | SkASSERT(eIndex != SK_MaxS32); | 
|  | eLink[rIndex] = SK_MaxS32; | 
|  | if (eIndex >= 0) { | 
|  | SkASSERT(sLink[eIndex] == rIndex); | 
|  | sLink[eIndex] = SK_MaxS32; | 
|  | } else { | 
|  | SkASSERT(eLink[~eIndex] == ~rIndex); | 
|  | eLink[~eIndex] = SK_MaxS32; | 
|  | } | 
|  | } else { | 
|  | eIndex = sLink[rIndex]; | 
|  | SkASSERT(eIndex != SK_MaxS32); | 
|  | sLink[rIndex] = SK_MaxS32; | 
|  | if (eIndex >= 0) { | 
|  | SkASSERT(eLink[eIndex] == rIndex); | 
|  | eLink[eIndex] = SK_MaxS32; | 
|  | } else { | 
|  | SkASSERT(sLink[~eIndex] == ~rIndex); | 
|  | sLink[~eIndex] = SK_MaxS32; | 
|  | } | 
|  | } | 
|  | rIndex = eIndex; | 
|  | if (rIndex < 0) { | 
|  | forward ^= 1; | 
|  | rIndex = ~rIndex; | 
|  | } | 
|  | } while (true); | 
|  | for (rIndex = 0; rIndex < count; ++rIndex) { | 
|  | if (sLink[rIndex] != SK_MaxS32) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } while (rIndex < count); | 
|  | #if DEBUG_ASSEMBLE | 
|  | for (rIndex = 0; rIndex < count; ++rIndex) { | 
|  | SkASSERT(sLink[rIndex] == SK_MaxS32); | 
|  | SkASSERT(eLink[rIndex] == SK_MaxS32); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void simplifyx(const SkPath& path, SkPath& result) { | 
|  | #if DEBUG_SORT || DEBUG_SWAP_TOP | 
|  | gDebugSortCount = gDebugSortCountDefault; | 
|  | #endif | 
|  | // returns 1 for evenodd, -1 for winding, regardless of inverse-ness | 
|  | result.reset(); | 
|  | result.setFillType(SkPath::kEvenOdd_FillType); | 
|  | PathWrapper simple(result); | 
|  |  | 
|  | // turn path into list of segments | 
|  | SkTArray<Contour> contours; | 
|  | EdgeBuilder builder(path, contours); | 
|  | builder.finish(); | 
|  | SkTDArray<Contour*> contourList; | 
|  | makeContourList(contours, contourList, false, false); | 
|  | Contour** currentPtr = contourList.begin(); | 
|  | if (!currentPtr) { | 
|  | return; | 
|  | } | 
|  | Contour** listEnd = contourList.end(); | 
|  | // find all intersections between segments | 
|  | do { | 
|  | Contour** nextPtr = currentPtr; | 
|  | Contour* current = *currentPtr++; | 
|  | if (current->containsCubics()) { | 
|  | addSelfIntersectTs(current); | 
|  | } | 
|  | Contour* next; | 
|  | do { | 
|  | next = *nextPtr++; | 
|  | } while (addIntersectTs(current, next) && nextPtr != listEnd); | 
|  | } while (currentPtr != listEnd); | 
|  | // eat through coincident edges | 
|  | coincidenceCheck(contourList, 0); | 
|  | fixOtherTIndex(contourList); | 
|  | sortSegments(contourList); | 
|  | #if DEBUG_ACTIVE_SPANS | 
|  | debugShowActiveSpans(contourList); | 
|  | #endif | 
|  | // construct closed contours | 
|  | if (builder.xorMask() == kWinding_Mask ? bridgeWinding(contourList, simple) | 
|  | : !bridgeXor(contourList, simple)) | 
|  | { // if some edges could not be resolved, assemble remaining fragments | 
|  | SkPath temp; | 
|  | temp.setFillType(SkPath::kEvenOdd_FillType); | 
|  | PathWrapper assembled(temp); | 
|  | assemble(simple, assembled); | 
|  | result = *assembled.nativePath(); | 
|  | } | 
|  | } |