| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrOvalOpFactory.h" |
| #include "GrDrawOpTest.h" |
| #include "GrGeometryProcessor.h" |
| #include "GrOpFlushState.h" |
| #include "GrProcessor.h" |
| #include "GrResourceProvider.h" |
| #include "GrShaderCaps.h" |
| #include "GrStyle.h" |
| #include "SkRRectPriv.h" |
| #include "SkStrokeRec.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLGeometryProcessor.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| #include "glsl/GrGLSLUniformHandler.h" |
| #include "glsl/GrGLSLUtil.h" |
| #include "glsl/GrGLSLVarying.h" |
| #include "glsl/GrGLSLVertexGeoBuilder.h" |
| #include "ops/GrMeshDrawOp.h" |
| #include "ops/GrSimpleMeshDrawOpHelper.h" |
| |
| #include <utility> |
| |
| namespace { |
| |
| struct EllipseVertex { |
| SkPoint fPos; |
| GrColor fColor; |
| SkPoint fOffset; |
| SkPoint fOuterRadii; |
| SkPoint fInnerRadii; |
| }; |
| |
| struct DIEllipseVertex { |
| SkPoint fPos; |
| GrColor fColor; |
| SkPoint fOuterOffset; |
| SkPoint fInnerOffset; |
| }; |
| |
| static inline bool circle_stays_circle(const SkMatrix& m) { return m.isSimilarity(); } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for a circle. It |
| * operates in a space normalized by the circle radius (outer radius in the case of a stroke) |
| * with origin at the circle center. Three vertex attributes are used: |
| * vec2f : position in device space of the bounding geometry vertices |
| * vec4ub: color |
| * vec4f : (p.xy, outerRad, innerRad) |
| * p is the position in the normalized space. |
| * outerRad is the outerRadius in device space. |
| * innerRad is the innerRadius in normalized space (ignored if not stroking). |
| * Additional clip planes are supported for rendering circular arcs. The additional planes are |
| * either intersected or unioned together. Up to three planes are supported (an initial plane, |
| * a plane intersected with the initial plane, and a plane unioned with the first two). Only two |
| * are useful for any given arc, but having all three in one instance allows combining different |
| * types of arcs. |
| * Round caps for stroking are allowed as well. The caps are specified as two circle center points |
| * in the same space as p.xy. |
| */ |
| |
| class CircleGeometryProcessor : public GrGeometryProcessor { |
| public: |
| CircleGeometryProcessor(bool stroke, bool clipPlane, bool isectPlane, bool unionPlane, |
| bool roundCaps, const SkMatrix& localMatrix) |
| : INHERITED(kCircleGeometryProcessor_ClassID) |
| , fLocalMatrix(localMatrix) |
| , fStroke(stroke) { |
| int cnt = 3; |
| if (clipPlane) { |
| fInClipPlane = {"inClipPlane", kHalf3_GrVertexAttribType}; |
| ++cnt; |
| } |
| if (isectPlane) { |
| fInIsectPlane = {"inIsectPlane", kHalf3_GrVertexAttribType}; |
| ++cnt; |
| } |
| if (unionPlane) { |
| fInUnionPlane = {"inUnionPlane", kHalf3_GrVertexAttribType}; |
| ++cnt; |
| } |
| if (roundCaps) { |
| SkASSERT(stroke); |
| SkASSERT(clipPlane); |
| fInRoundCapCenters = {"inRoundCapCenters", kFloat4_GrVertexAttribType}; |
| ++cnt; |
| } |
| this->setVertexAttributeCnt(cnt); |
| } |
| |
| ~CircleGeometryProcessor() override {} |
| |
| const char* name() const override { return "CircleEdge"; } |
| |
| void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { |
| GLSLProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { |
| return new GLSLProcessor(); |
| } |
| |
| private: |
| class GLSLProcessor : public GrGLSLGeometryProcessor { |
| public: |
| GLSLProcessor() {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| const CircleGeometryProcessor& cgp = args.fGP.cast<CircleGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(cgp); |
| fragBuilder->codeAppend("float4 circleEdge;"); |
| varyingHandler->addPassThroughAttribute(cgp.kInCircleEdge, "circleEdge"); |
| if (cgp.fInClipPlane.isInitialized()) { |
| fragBuilder->codeAppend("half3 clipPlane;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInClipPlane, "clipPlane"); |
| } |
| if (cgp.fInIsectPlane.isInitialized()) { |
| fragBuilder->codeAppend("half3 isectPlane;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInIsectPlane, "isectPlane"); |
| } |
| if (cgp.fInUnionPlane.isInitialized()) { |
| SkASSERT(cgp.fInClipPlane.isInitialized()); |
| fragBuilder->codeAppend("half3 unionPlane;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInUnionPlane, "unionPlane"); |
| } |
| GrGLSLVarying capRadius(kFloat_GrSLType); |
| if (cgp.fInRoundCapCenters.isInitialized()) { |
| fragBuilder->codeAppend("float4 roundCapCenters;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInRoundCapCenters, "roundCapCenters"); |
| varyingHandler->addVarying("capRadius", &capRadius, |
| GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
| // This is the cap radius in normalized space where the outer radius is 1 and |
| // circledEdge.w is the normalized inner radius. |
| vertBuilder->codeAppendf("%s = (1.0 - %s.w) / 2.0;", capRadius.vsOut(), |
| cgp.kInCircleEdge.name()); |
| } |
| |
| // setup pass through color |
| varyingHandler->addPassThroughAttribute(cgp.kInColor, args.fOutputColor); |
| |
| // Setup position |
| this->writeOutputPosition(vertBuilder, gpArgs, cgp.kInPosition.name()); |
| |
| // emit transforms |
| this->emitTransforms(vertBuilder, |
| varyingHandler, |
| uniformHandler, |
| cgp.kInPosition.asShaderVar(), |
| cgp.fLocalMatrix, |
| args.fFPCoordTransformHandler); |
| |
| fragBuilder->codeAppend("float d = length(circleEdge.xy);"); |
| fragBuilder->codeAppend("half distanceToOuterEdge = circleEdge.z * (1.0 - d);"); |
| fragBuilder->codeAppend("half edgeAlpha = clamp(distanceToOuterEdge, 0.0, 1.0);"); |
| if (cgp.fStroke) { |
| fragBuilder->codeAppend( |
| "half distanceToInnerEdge = circleEdge.z * (d - circleEdge.w);"); |
| fragBuilder->codeAppend("half innerAlpha = clamp(distanceToInnerEdge, 0.0, 1.0);"); |
| fragBuilder->codeAppend("edgeAlpha *= innerAlpha;"); |
| } |
| |
| if (cgp.fInClipPlane.isInitialized()) { |
| fragBuilder->codeAppend( |
| "half clip = clamp(circleEdge.z * dot(circleEdge.xy, clipPlane.xy) + " |
| "clipPlane.z, 0.0, 1.0);"); |
| if (cgp.fInIsectPlane.isInitialized()) { |
| fragBuilder->codeAppend( |
| "clip *= clamp(circleEdge.z * dot(circleEdge.xy, isectPlane.xy) + " |
| "isectPlane.z, 0.0, 1.0);"); |
| } |
| if (cgp.fInUnionPlane.isInitialized()) { |
| fragBuilder->codeAppend( |
| "clip += (1.0 - clip)*clamp(circleEdge.z * dot(circleEdge.xy, " |
| "unionPlane.xy) + unionPlane.z, 0.0, 1.0);"); |
| } |
| fragBuilder->codeAppend("edgeAlpha *= clip;"); |
| if (cgp.fInRoundCapCenters.isInitialized()) { |
| // We compute coverage of the round caps as circles at the butt caps produced |
| // by the clip planes. The inverse of the clip planes is applied so that there |
| // is no double counting. |
| fragBuilder->codeAppendf( |
| "half dcap1 = circleEdge.z * (%s - length(circleEdge.xy - " |
| " roundCapCenters.xy));" |
| "half dcap2 = circleEdge.z * (%s - length(circleEdge.xy - " |
| " roundCapCenters.zw));" |
| "half capAlpha = (1 - clip) * (max(dcap1, 0) + max(dcap2, 0));" |
| "edgeAlpha = min(edgeAlpha + capAlpha, 1.0);", |
| capRadius.fsIn(), capRadius.fsIn()); |
| } |
| } |
| fragBuilder->codeAppendf("%s = half4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrShaderCaps&, |
| GrProcessorKeyBuilder* b) { |
| const CircleGeometryProcessor& cgp = gp.cast<CircleGeometryProcessor>(); |
| uint16_t key; |
| key = cgp.fStroke ? 0x01 : 0x0; |
| key |= cgp.fLocalMatrix.hasPerspective() ? 0x02 : 0x0; |
| key |= cgp.fInClipPlane.isInitialized() ? 0x04 : 0x0; |
| key |= cgp.fInIsectPlane.isInitialized() ? 0x08 : 0x0; |
| key |= cgp.fInUnionPlane.isInitialized() ? 0x10 : 0x0; |
| key |= cgp.fInRoundCapCenters.isInitialized() ? 0x20 : 0x0; |
| b->add32(key); |
| } |
| |
| void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc, |
| FPCoordTransformIter&& transformIter) override { |
| this->setTransformDataHelper(primProc.cast<CircleGeometryProcessor>().fLocalMatrix, |
| pdman, &transformIter); |
| } |
| |
| private: |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| const Attribute& onVertexAttribute(int i) const override { |
| return IthInitializedAttribute(i, kInPosition, kInColor, kInCircleEdge, fInClipPlane, |
| fInIsectPlane, fInUnionPlane, fInRoundCapCenters); |
| } |
| |
| SkMatrix fLocalMatrix; |
| |
| static constexpr Attribute kInPosition = {"inPosition", kFloat2_GrVertexAttribType}; |
| static constexpr Attribute kInColor = {"inColor", kUByte4_norm_GrVertexAttribType}; |
| static constexpr Attribute kInCircleEdge = {"inCircleEdge", kFloat4_GrVertexAttribType}; |
| |
| // Optional attributes. |
| Attribute fInClipPlane; |
| Attribute fInIsectPlane; |
| Attribute fInUnionPlane; |
| Attribute fInRoundCapCenters; |
| |
| bool fStroke; |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| constexpr GrPrimitiveProcessor::Attribute CircleGeometryProcessor::kInPosition; |
| constexpr GrPrimitiveProcessor::Attribute CircleGeometryProcessor::kInColor; |
| constexpr GrPrimitiveProcessor::Attribute CircleGeometryProcessor::kInCircleEdge; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleGeometryProcessor); |
| |
| #if GR_TEST_UTILS |
| sk_sp<GrGeometryProcessor> CircleGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| bool stroke = d->fRandom->nextBool(); |
| bool roundCaps = stroke ? d->fRandom->nextBool() : false; |
| bool clipPlane = d->fRandom->nextBool(); |
| bool isectPlane = d->fRandom->nextBool(); |
| bool unionPlane = d->fRandom->nextBool(); |
| const SkMatrix& matrix = GrTest::TestMatrix(d->fRandom); |
| return sk_sp<GrGeometryProcessor>(new CircleGeometryProcessor(stroke, roundCaps, clipPlane, |
| isectPlane, unionPlane, matrix)); |
| } |
| #endif |
| |
| class ButtCapDashedCircleGeometryProcessor : public GrGeometryProcessor { |
| public: |
| ButtCapDashedCircleGeometryProcessor(const SkMatrix& localMatrix) |
| : INHERITED(kButtCapStrokedCircleGeometryProcessor_ClassID), fLocalMatrix(localMatrix) { |
| this->setVertexAttributeCnt(4); |
| } |
| |
| ~ButtCapDashedCircleGeometryProcessor() override {} |
| |
| const char* name() const override { return "ButtCapDashedCircleGeometryProcessor"; } |
| |
| void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { |
| GLSLProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { |
| return new GLSLProcessor(); |
| } |
| |
| private: |
| class GLSLProcessor : public GrGLSLGeometryProcessor { |
| public: |
| GLSLProcessor() {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| const ButtCapDashedCircleGeometryProcessor& bcscgp = |
| args.fGP.cast<ButtCapDashedCircleGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(bcscgp); |
| fragBuilder->codeAppend("float4 circleEdge;"); |
| varyingHandler->addPassThroughAttribute(bcscgp.kInCircleEdge, "circleEdge"); |
| |
| fragBuilder->codeAppend("float4 dashParams;"); |
| varyingHandler->addPassThroughAttribute( |
| bcscgp.kInDashParams, "dashParams", |
| GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
| GrGLSLVarying wrapDashes(kHalf4_GrSLType); |
| varyingHandler->addVarying("wrapDashes", &wrapDashes, |
| GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
| GrGLSLVarying lastIntervalLength(kHalf_GrSLType); |
| varyingHandler->addVarying("lastIntervalLength", &lastIntervalLength, |
| GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
| vertBuilder->codeAppendf("float4 dashParams = %s;", bcscgp.kInDashParams.name()); |
| // Our fragment shader works in on/off intervals as specified by dashParams.xy: |
| // x = length of on interval, y = length of on + off. |
| // There are two other parameters in dashParams.zw: |
| // z = start angle in radians, w = phase offset in radians in range -y/2..y/2. |
| // Each interval has a "corresponding" dash which may be shifted partially or |
| // fully out of its interval by the phase. So there may be up to two "visual" |
| // dashes in an interval. |
| // When computing coverage in an interval we look at three dashes. These are the |
| // "corresponding" dashes from the current, previous, and next intervals. Any of these |
| // may be phase shifted into our interval or even when phase=0 they may be within half a |
| // pixel distance of a pixel center in the interval. |
| // When in the first interval we need to check the dash from the last interval. And |
| // similarly when in the last interval we need to check the dash from the first |
| // interval. When 2pi is not perfectly divisible dashParams.y this is a boundary case. |
| // We compute the dash begin/end angles in the vertex shader and apply them in the |
| // fragment shader when we detect we're in the first/last interval. |
| vertBuilder->codeAppend(R"( |
| // The two boundary dash intervals are stored in wrapDashes.xy and .zw and fed |
| // to the fragment shader as a varying. |
| float4 wrapDashes; |
| half lastIntervalLength = mod(6.28318530718, dashParams.y); |
| // We can happen to be perfectly divisible. |
| if (0 == lastIntervalLength) { |
| lastIntervalLength = dashParams.y; |
| } |
| // Let 'l' be the last interval before reaching 2 pi. |
| // Based on the phase determine whether (l-1)th, l-th, or (l+1)th interval's |
| // "corresponding" dash appears in the l-th interval and is closest to the 0-th |
| // interval. |
| half offset = 0; |
| if (-dashParams.w >= lastIntervalLength) { |
| offset = -dashParams.y; |
| } else if (dashParams.w > dashParams.y - lastIntervalLength) { |
| offset = dashParams.y; |
| } |
| wrapDashes.x = -lastIntervalLength + offset - dashParams.w; |
| // The end of this dash may be beyond the 2 pi and therefore clipped. Hence the |
| // min. |
| wrapDashes.y = min(wrapDashes.x + dashParams.x, 0); |
| |
| // Based on the phase determine whether the -1st, 0th, or 1st interval's |
| // "corresponding" dash appears in the 0th interval and is closest to l. |
| offset = 0; |
| if (dashParams.w >= dashParams.x) { |
| offset = dashParams.y; |
| } else if (-dashParams.w > dashParams.y - dashParams.x) { |
| offset = -dashParams.y; |
| } |
| wrapDashes.z = lastIntervalLength + offset - dashParams.w; |
| wrapDashes.w = wrapDashes.z + dashParams.x; |
| // The start of the dash we're considering may be clipped by the start of the |
| // circle. |
| wrapDashes.z = max(wrapDashes.z, lastIntervalLength); |
| )"); |
| vertBuilder->codeAppendf("%s = wrapDashes;", wrapDashes.vsOut()); |
| vertBuilder->codeAppendf("%s = lastIntervalLength;", lastIntervalLength.vsOut()); |
| fragBuilder->codeAppendf("half4 wrapDashes = %s;", wrapDashes.fsIn()); |
| fragBuilder->codeAppendf("half lastIntervalLength = %s;", lastIntervalLength.fsIn()); |
| |
| // setup pass through color |
| varyingHandler->addPassThroughAttribute( |
| bcscgp.kInColor, args.fOutputColor, |
| GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
| |
| // Setup position |
| this->writeOutputPosition(vertBuilder, gpArgs, bcscgp.kInPosition.name()); |
| |
| // emit transforms |
| this->emitTransforms(vertBuilder, |
| varyingHandler, |
| uniformHandler, |
| bcscgp.kInPosition.asShaderVar(), |
| bcscgp.fLocalMatrix, |
| args.fFPCoordTransformHandler); |
| GrShaderVar fnArgs[] = { |
| GrShaderVar("angleToEdge", kFloat_GrSLType), |
| GrShaderVar("diameter", kFloat_GrSLType), |
| }; |
| SkString fnName; |
| fragBuilder->emitFunction(kFloat_GrSLType, "coverage_from_dash_edge", |
| SK_ARRAY_COUNT(fnArgs), fnArgs, R"( |
| float linearDist; |
| angleToEdge = clamp(angleToEdge, -3.1415, 3.1415); |
| linearDist = diameter * sin(angleToEdge / 2); |
| return clamp(linearDist + 0.5, 0, 1); |
| )", |
| &fnName); |
| fragBuilder->codeAppend(R"( |
| float d = length(circleEdge.xy) * circleEdge.z; |
| |
| // Compute coverage from outer/inner edges of the stroke. |
| half distanceToOuterEdge = circleEdge.z - d; |
| half edgeAlpha = clamp(distanceToOuterEdge, 0.0, 1.0); |
| half distanceToInnerEdge = d - circleEdge.z * circleEdge.w; |
| half innerAlpha = clamp(distanceToInnerEdge, 0.0, 1.0); |
| edgeAlpha *= innerAlpha; |
| |
| half angleFromStart = atan(circleEdge.y, circleEdge.x) - dashParams.z; |
| angleFromStart = mod(angleFromStart, 6.28318530718); |
| float x = mod(angleFromStart, dashParams.y); |
| // Convert the radial distance from center to pixel into a diameter. |
| d *= 2; |
| half2 currDash = half2(-dashParams.w, dashParams.x - dashParams.w); |
| half2 nextDash = half2(dashParams.y - dashParams.w, |
| dashParams.y + dashParams.x - dashParams.w); |
| half2 prevDash = half2(-dashParams.y - dashParams.w, |
| -dashParams.y + dashParams.x - dashParams.w); |
| half dashAlpha = 0; |
| )"); |
| fragBuilder->codeAppendf(R"( |
| if (angleFromStart - x + dashParams.y >= 6.28318530718) { |
| dashAlpha += %s(x - wrapDashes.z, d) * %s(wrapDashes.w - x, d); |
| currDash.y = min(currDash.y, lastIntervalLength); |
| if (nextDash.x >= lastIntervalLength) { |
| // The next dash is outside the 0..2pi range, throw it away |
| nextDash.xy = half2(1000); |
| } else { |
| // Clip the end of the next dash to the end of the circle |
| nextDash.y = min(nextDash.y, lastIntervalLength); |
| } |
| } |
| )", fnName.c_str(), fnName.c_str()); |
| fragBuilder->codeAppendf(R"( |
| if (angleFromStart - x - dashParams.y < -0.01) { |
| dashAlpha += %s(x - wrapDashes.x, d) * %s(wrapDashes.y - x, d); |
| currDash.x = max(currDash.x, 0); |
| if (prevDash.y <= 0) { |
| // The previous dash is outside the 0..2pi range, throw it away |
| prevDash.xy = half2(1000); |
| } else { |
| // Clip the start previous dash to the start of the circle |
| prevDash.x = max(prevDash.x, 0); |
| } |
| } |
| )", fnName.c_str(), fnName.c_str()); |
| fragBuilder->codeAppendf(R"( |
| dashAlpha += %s(x - currDash.x, d) * %s(currDash.y - x, d); |
| dashAlpha += %s(x - nextDash.x, d) * %s(nextDash.y - x, d); |
| dashAlpha += %s(x - prevDash.x, d) * %s(prevDash.y - x, d); |
| dashAlpha = min(dashAlpha, 1); |
| edgeAlpha *= dashAlpha; |
| )", fnName.c_str(), fnName.c_str(), fnName.c_str(), fnName.c_str(), fnName.c_str(), |
| fnName.c_str()); |
| fragBuilder->codeAppendf("%s = half4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrShaderCaps&, |
| GrProcessorKeyBuilder* b) { |
| const ButtCapDashedCircleGeometryProcessor& bcscgp = |
| gp.cast<ButtCapDashedCircleGeometryProcessor>(); |
| b->add32(bcscgp.fLocalMatrix.hasPerspective()); |
| } |
| |
| void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc, |
| FPCoordTransformIter&& transformIter) override { |
| this->setTransformDataHelper( |
| primProc.cast<ButtCapDashedCircleGeometryProcessor>().fLocalMatrix, pdman, |
| &transformIter); |
| } |
| |
| private: |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| const Attribute& onVertexAttribute(int i) const override { |
| return IthAttribute(i, kInPosition, kInColor, kInCircleEdge, kInDashParams); |
| } |
| |
| SkMatrix fLocalMatrix; |
| static constexpr Attribute kInPosition = {"inPosition", kFloat2_GrVertexAttribType}; |
| static constexpr Attribute kInColor = {"inColor", kUByte4_norm_GrVertexAttribType}; |
| static constexpr Attribute kInCircleEdge = {"inCircleEdge", kFloat4_GrVertexAttribType}; |
| static constexpr Attribute kInDashParams = {"inDashParams", kFloat4_GrVertexAttribType}; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| constexpr GrPrimitiveProcessor::Attribute ButtCapDashedCircleGeometryProcessor::kInPosition; |
| constexpr GrPrimitiveProcessor::Attribute ButtCapDashedCircleGeometryProcessor::kInColor; |
| constexpr GrPrimitiveProcessor::Attribute ButtCapDashedCircleGeometryProcessor::kInCircleEdge; |
| constexpr GrPrimitiveProcessor::Attribute ButtCapDashedCircleGeometryProcessor::kInDashParams; |
| |
| #if GR_TEST_UTILS |
| sk_sp<GrGeometryProcessor> ButtCapDashedCircleGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| const SkMatrix& matrix = GrTest::TestMatrix(d->fRandom); |
| return sk_sp<GrGeometryProcessor>(new ButtCapDashedCircleGeometryProcessor(matrix)); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for an axis-aligned |
| * ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii, |
| * in both x and y directions. |
| * |
| * We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0. |
| */ |
| |
| class EllipseGeometryProcessor : public GrGeometryProcessor { |
| public: |
| EllipseGeometryProcessor(bool stroke, const SkMatrix& localMatrix) |
| : INHERITED(kEllipseGeometryProcessor_ClassID) |
| , fLocalMatrix(localMatrix) { |
| this->setVertexAttributeCnt(4); |
| fStroke = stroke; |
| } |
| |
| ~EllipseGeometryProcessor() override {} |
| |
| const char* name() const override { return "EllipseEdge"; } |
| |
| void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { |
| GLSLProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { |
| return new GLSLProcessor(); |
| } |
| |
| private: |
| class GLSLProcessor : public GrGLSLGeometryProcessor { |
| public: |
| GLSLProcessor() {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| const EllipseGeometryProcessor& egp = args.fGP.cast<EllipseGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(egp); |
| |
| GrGLSLVarying ellipseOffsets(kHalf2_GrSLType); |
| varyingHandler->addVarying("EllipseOffsets", &ellipseOffsets); |
| vertBuilder->codeAppendf("%s = %s;", ellipseOffsets.vsOut(), |
| egp.kInEllipseOffset.name()); |
| |
| GrGLSLVarying ellipseRadii(kHalf4_GrSLType); |
| varyingHandler->addVarying("EllipseRadii", &ellipseRadii); |
| vertBuilder->codeAppendf("%s = %s;", ellipseRadii.vsOut(), egp.kInEllipseRadii.name()); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| // setup pass through color |
| varyingHandler->addPassThroughAttribute(egp.kInColor, args.fOutputColor); |
| |
| // Setup position |
| this->writeOutputPosition(vertBuilder, gpArgs, egp.kInPosition.name()); |
| |
| // emit transforms |
| this->emitTransforms(vertBuilder, |
| varyingHandler, |
| uniformHandler, |
| egp.kInPosition.asShaderVar(), |
| egp.fLocalMatrix, |
| args.fFPCoordTransformHandler); |
| |
| // for outer curve |
| fragBuilder->codeAppendf("half2 scaledOffset = %s*%s.xy;", ellipseOffsets.fsIn(), |
| ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("half test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("half2 grad = 2.0*scaledOffset*%s.xy;", ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("half grad_dot = dot(grad, grad);"); |
| |
| // avoid calling inversesqrt on zero. |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); |
| fragBuilder->codeAppend("half invlen = inversesqrt(grad_dot);"); |
| fragBuilder->codeAppend("half edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);"); |
| |
| // for inner curve |
| if (egp.fStroke) { |
| fragBuilder->codeAppendf("scaledOffset = %s*%s.zw;", ellipseOffsets.fsIn(), |
| ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("grad = 2.0*scaledOffset*%s.zw;", ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));"); |
| fragBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);"); |
| } |
| |
| fragBuilder->codeAppendf("%s = half4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrShaderCaps&, |
| GrProcessorKeyBuilder* b) { |
| const EllipseGeometryProcessor& egp = gp.cast<EllipseGeometryProcessor>(); |
| uint16_t key = egp.fStroke ? 0x1 : 0x0; |
| key |= egp.fLocalMatrix.hasPerspective() ? 0x2 : 0x0; |
| b->add32(key); |
| } |
| |
| void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc, |
| FPCoordTransformIter&& transformIter) override { |
| const EllipseGeometryProcessor& egp = primProc.cast<EllipseGeometryProcessor>(); |
| this->setTransformDataHelper(egp.fLocalMatrix, pdman, &transformIter); |
| } |
| |
| private: |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| const Attribute& onVertexAttribute(int i) const override { |
| return IthAttribute(i, kInPosition, kInColor, kInEllipseOffset, kInEllipseRadii); |
| } |
| |
| static constexpr Attribute kInPosition = {"inPosition", kFloat2_GrVertexAttribType}; |
| static constexpr Attribute kInColor = {"inColor", kUByte4_norm_GrVertexAttribType}; |
| static constexpr Attribute kInEllipseOffset = {"inEllipseOffset", kHalf2_GrVertexAttribType}; |
| static constexpr Attribute kInEllipseRadii = {"inEllipseRadii", kHalf4_GrVertexAttribType}; |
| |
| SkMatrix fLocalMatrix; |
| bool fStroke; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| constexpr GrPrimitiveProcessor::Attribute EllipseGeometryProcessor::kInPosition; |
| constexpr GrPrimitiveProcessor::Attribute EllipseGeometryProcessor::kInColor; |
| constexpr GrPrimitiveProcessor::Attribute EllipseGeometryProcessor::kInEllipseOffset; |
| constexpr GrPrimitiveProcessor::Attribute EllipseGeometryProcessor::kInEllipseRadii; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseGeometryProcessor); |
| |
| #if GR_TEST_UTILS |
| sk_sp<GrGeometryProcessor> EllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| return sk_sp<GrGeometryProcessor>( |
| new EllipseGeometryProcessor(d->fRandom->nextBool(), GrTest::TestMatrix(d->fRandom))); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for an ellipse, |
| * specified as a 2D offset from center for both the outer and inner paths (if stroked). The |
| * implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by |
| * using differentials. |
| * |
| * The result is device-independent and can be used with any affine matrix. |
| */ |
| |
| enum class DIEllipseStyle { kStroke = 0, kHairline, kFill }; |
| |
| class DIEllipseGeometryProcessor : public GrGeometryProcessor { |
| public: |
| DIEllipseGeometryProcessor(const SkMatrix& viewMatrix, DIEllipseStyle style) |
| : INHERITED(kDIEllipseGeometryProcessor_ClassID) |
| , fViewMatrix(viewMatrix) { |
| fStyle = style; |
| this->setVertexAttributeCnt(4); |
| } |
| |
| ~DIEllipseGeometryProcessor() override {} |
| |
| const char* name() const override { return "DIEllipseEdge"; } |
| |
| void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { |
| GLSLProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { |
| return new GLSLProcessor(); |
| } |
| |
| private: |
| class GLSLProcessor : public GrGLSLGeometryProcessor { |
| public: |
| GLSLProcessor() : fViewMatrix(SkMatrix::InvalidMatrix()) {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| const DIEllipseGeometryProcessor& diegp = args.fGP.cast<DIEllipseGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(diegp); |
| |
| GrGLSLVarying offsets0(kHalf2_GrSLType); |
| varyingHandler->addVarying("EllipseOffsets0", &offsets0); |
| vertBuilder->codeAppendf("%s = %s;", offsets0.vsOut(), diegp.kInEllipseOffsets0.name()); |
| |
| GrGLSLVarying offsets1(kHalf2_GrSLType); |
| varyingHandler->addVarying("EllipseOffsets1", &offsets1); |
| vertBuilder->codeAppendf("%s = %s;", offsets1.vsOut(), diegp.kInEllipseOffsets1.name()); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| varyingHandler->addPassThroughAttribute(diegp.kInColor, args.fOutputColor); |
| |
| // Setup position |
| this->writeOutputPosition(vertBuilder, |
| uniformHandler, |
| gpArgs, |
| diegp.kInPosition.name(), |
| diegp.fViewMatrix, |
| &fViewMatrixUniform); |
| |
| // emit transforms |
| this->emitTransforms(vertBuilder, |
| varyingHandler, |
| uniformHandler, |
| diegp.kInPosition.asShaderVar(), |
| args.fFPCoordTransformHandler); |
| |
| // for outer curve |
| fragBuilder->codeAppendf("half2 scaledOffset = %s.xy;", offsets0.fsIn()); |
| fragBuilder->codeAppend("half test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("half2 duvdx = dFdx(%s);", offsets0.fsIn()); |
| fragBuilder->codeAppendf("half2 duvdy = dFdy(%s);", offsets0.fsIn()); |
| fragBuilder->codeAppendf( |
| "half2 grad = half2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y," |
| " 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);", |
| offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn()); |
| |
| fragBuilder->codeAppend("half grad_dot = dot(grad, grad);"); |
| // avoid calling inversesqrt on zero. |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); |
| fragBuilder->codeAppend("half invlen = inversesqrt(grad_dot);"); |
| if (DIEllipseStyle::kHairline == diegp.fStyle) { |
| // can probably do this with one step |
| fragBuilder->codeAppend("half edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);"); |
| fragBuilder->codeAppend("edgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);"); |
| } else { |
| fragBuilder->codeAppend("half edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);"); |
| } |
| |
| // for inner curve |
| if (DIEllipseStyle::kStroke == diegp.fStyle) { |
| fragBuilder->codeAppendf("scaledOffset = %s.xy;", offsets1.fsIn()); |
| fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("duvdx = dFdx(%s);", offsets1.fsIn()); |
| fragBuilder->codeAppendf("duvdy = dFdy(%s);", offsets1.fsIn()); |
| fragBuilder->codeAppendf( |
| "grad = half2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y," |
| " 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);", |
| offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn()); |
| fragBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));"); |
| fragBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);"); |
| } |
| |
| fragBuilder->codeAppendf("%s = half4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrShaderCaps&, |
| GrProcessorKeyBuilder* b) { |
| const DIEllipseGeometryProcessor& diegp = gp.cast<DIEllipseGeometryProcessor>(); |
| uint16_t key = static_cast<uint16_t>(diegp.fStyle); |
| key |= ComputePosKey(diegp.fViewMatrix) << 10; |
| b->add32(key); |
| } |
| |
| void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp, |
| FPCoordTransformIter&& transformIter) override { |
| const DIEllipseGeometryProcessor& diegp = gp.cast<DIEllipseGeometryProcessor>(); |
| |
| if (!diegp.fViewMatrix.isIdentity() && !fViewMatrix.cheapEqualTo(diegp.fViewMatrix)) { |
| fViewMatrix = diegp.fViewMatrix; |
| float viewMatrix[3 * 3]; |
| GrGLSLGetMatrix<3>(viewMatrix, fViewMatrix); |
| pdman.setMatrix3f(fViewMatrixUniform, viewMatrix); |
| } |
| this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter); |
| } |
| |
| private: |
| SkMatrix fViewMatrix; |
| UniformHandle fViewMatrixUniform; |
| |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| const Attribute& onVertexAttribute(int i) const override { |
| return IthAttribute(i, kInPosition, kInColor, kInEllipseOffsets0, kInEllipseOffsets1); |
| } |
| |
| static constexpr Attribute kInPosition = {"inPosition", kFloat2_GrVertexAttribType}; |
| static constexpr Attribute kInColor = {"inColor", kUByte4_norm_GrVertexAttribType}; |
| static constexpr Attribute kInEllipseOffsets0 = {"inEllipseOffsets0", |
| kHalf2_GrVertexAttribType}; |
| static constexpr Attribute kInEllipseOffsets1 = {"inEllipseOffsets1", |
| kHalf2_GrVertexAttribType}; |
| |
| SkMatrix fViewMatrix; |
| DIEllipseStyle fStyle; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| constexpr GrPrimitiveProcessor::Attribute DIEllipseGeometryProcessor::kInPosition; |
| constexpr GrPrimitiveProcessor::Attribute DIEllipseGeometryProcessor::kInColor; |
| constexpr GrPrimitiveProcessor::Attribute DIEllipseGeometryProcessor::kInEllipseOffsets0; |
| constexpr GrPrimitiveProcessor::Attribute DIEllipseGeometryProcessor::kInEllipseOffsets1; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseGeometryProcessor); |
| |
| #if GR_TEST_UTILS |
| sk_sp<GrGeometryProcessor> DIEllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| return sk_sp<GrGeometryProcessor>(new DIEllipseGeometryProcessor( |
| GrTest::TestMatrix(d->fRandom), (DIEllipseStyle)(d->fRandom->nextRangeU(0, 2)))); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // We have two possible cases for geometry for a circle: |
| |
| // In the case of a normal fill, we draw geometry for the circle as an octagon. |
| static const uint16_t gFillCircleIndices[] = { |
| // enter the octagon |
| // clang-format off |
| 0, 1, 8, 1, 2, 8, |
| 2, 3, 8, 3, 4, 8, |
| 4, 5, 8, 5, 6, 8, |
| 6, 7, 8, 7, 0, 8 |
| // clang-format on |
| }; |
| |
| // For stroked circles, we use two nested octagons. |
| static const uint16_t gStrokeCircleIndices[] = { |
| // enter the octagon |
| // clang-format off |
| 0, 1, 9, 0, 9, 8, |
| 1, 2, 10, 1, 10, 9, |
| 2, 3, 11, 2, 11, 10, |
| 3, 4, 12, 3, 12, 11, |
| 4, 5, 13, 4, 13, 12, |
| 5, 6, 14, 5, 14, 13, |
| 6, 7, 15, 6, 15, 14, |
| 7, 0, 8, 7, 8, 15, |
| // clang-format on |
| }; |
| |
| |
| static const int kIndicesPerFillCircle = SK_ARRAY_COUNT(gFillCircleIndices); |
| static const int kIndicesPerStrokeCircle = SK_ARRAY_COUNT(gStrokeCircleIndices); |
| static const int kVertsPerStrokeCircle = 16; |
| static const int kVertsPerFillCircle = 9; |
| |
| static int circle_type_to_vert_count(bool stroked) { |
| return stroked ? kVertsPerStrokeCircle : kVertsPerFillCircle; |
| } |
| |
| static int circle_type_to_index_count(bool stroked) { |
| return stroked ? kIndicesPerStrokeCircle : kIndicesPerFillCircle; |
| } |
| |
| static const uint16_t* circle_type_to_indices(bool stroked) { |
| return stroked ? gStrokeCircleIndices : gFillCircleIndices; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class CircleOp final : public GrMeshDrawOp { |
| private: |
| using Helper = GrSimpleMeshDrawOpHelper; |
| |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| /** Optional extra params to render a partial arc rather than a full circle. */ |
| struct ArcParams { |
| SkScalar fStartAngleRadians; |
| SkScalar fSweepAngleRadians; |
| bool fUseCenter; |
| }; |
| |
| static std::unique_ptr<GrDrawOp> Make(GrContext* context, |
| GrPaint&& paint, |
| const SkMatrix& viewMatrix, |
| SkPoint center, |
| SkScalar radius, |
| const GrStyle& style, |
| const ArcParams* arcParams = nullptr) { |
| SkASSERT(circle_stays_circle(viewMatrix)); |
| if (style.hasPathEffect()) { |
| return nullptr; |
| } |
| const SkStrokeRec& stroke = style.strokeRec(); |
| SkStrokeRec::Style recStyle = stroke.getStyle(); |
| if (arcParams) { |
| // Arc support depends on the style. |
| switch (recStyle) { |
| case SkStrokeRec::kStrokeAndFill_Style: |
| // This produces a strange result that this op doesn't implement. |
| return nullptr; |
| case SkStrokeRec::kFill_Style: |
| // This supports all fills. |
| break; |
| case SkStrokeRec::kStroke_Style: |
| // Strokes that don't use the center point are supported with butt and round |
| // caps. |
| if (arcParams->fUseCenter || stroke.getCap() == SkPaint::kSquare_Cap) { |
| return nullptr; |
| } |
| break; |
| case SkStrokeRec::kHairline_Style: |
| // Hairline only supports butt cap. Round caps could be emulated by slightly |
| // extending the angle range if we ever care to. |
| if (arcParams->fUseCenter || stroke.getCap() != SkPaint::kButt_Cap) { |
| return nullptr; |
| } |
| break; |
| } |
| } |
| return Helper::FactoryHelper<CircleOp>(context, std::move(paint), viewMatrix, center, |
| radius, style, arcParams); |
| } |
| |
| CircleOp(const Helper::MakeArgs& helperArgs, GrColor color, const SkMatrix& viewMatrix, |
| SkPoint center, SkScalar radius, const GrStyle& style, const ArcParams* arcParams) |
| : GrMeshDrawOp(ClassID()), fHelper(helperArgs, GrAAType::kCoverage) { |
| const SkStrokeRec& stroke = style.strokeRec(); |
| SkStrokeRec::Style recStyle = stroke.getStyle(); |
| |
| fRoundCaps = false; |
| |
| viewMatrix.mapPoints(¢er, 1); |
| radius = viewMatrix.mapRadius(radius); |
| SkScalar strokeWidth = viewMatrix.mapRadius(stroke.getWidth()); |
| |
| bool isStrokeOnly = |
| SkStrokeRec::kStroke_Style == recStyle || SkStrokeRec::kHairline_Style == recStyle; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == recStyle; |
| |
| SkScalar innerRadius = -SK_ScalarHalf; |
| SkScalar outerRadius = radius; |
| SkScalar halfWidth = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(strokeWidth)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(strokeWidth); |
| } |
| |
| outerRadius += halfWidth; |
| if (isStrokeOnly) { |
| innerRadius = radius - halfWidth; |
| } |
| } |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform |
| // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
| // Second, the outer radius is used to compute the verts of the bounding box that is |
| // rendered and the outset ensures the box will cover all partially covered by the circle. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| bool stroked = isStrokeOnly && innerRadius > 0.0f; |
| fViewMatrixIfUsingLocalCoords = viewMatrix; |
| |
| // This makes every point fully inside the intersection plane. |
| static constexpr SkScalar kUnusedIsectPlane[] = {0.f, 0.f, 1.f}; |
| // This makes every point fully outside the union plane. |
| static constexpr SkScalar kUnusedUnionPlane[] = {0.f, 0.f, 0.f}; |
| static constexpr SkPoint kUnusedRoundCaps[] = {{1e10f, 1e10f}, {1e10f, 1e10f}}; |
| SkRect devBounds = SkRect::MakeLTRB(center.fX - outerRadius, center.fY - outerRadius, |
| center.fX + outerRadius, center.fY + outerRadius); |
| if (arcParams) { |
| // The shader operates in a space where the circle is translated to be centered at the |
| // origin. Here we compute points on the unit circle at the starting and ending angles. |
| SkPoint startPoint, stopPoint; |
| startPoint.fY = SkScalarSinCos(arcParams->fStartAngleRadians, &startPoint.fX); |
| SkScalar endAngle = arcParams->fStartAngleRadians + arcParams->fSweepAngleRadians; |
| stopPoint.fY = SkScalarSinCos(endAngle, &stopPoint.fX); |
| |
| // Adjust the start and end points based on the view matrix (to handle rotated arcs) |
| startPoint = viewMatrix.mapVector(startPoint.fX, startPoint.fY); |
| stopPoint = viewMatrix.mapVector(stopPoint.fX, stopPoint.fY); |
| startPoint.normalize(); |
| stopPoint.normalize(); |
| |
| // If the matrix included scale (on one axis) we need to swap our start and end points |
| if ((viewMatrix.getScaleX() < 0) != (viewMatrix.getScaleY() < 0)) { |
| using std::swap; |
| swap(startPoint, stopPoint); |
| } |
| |
| fRoundCaps = style.strokeRec().getWidth() > 0 && |
| style.strokeRec().getCap() == SkPaint::kRound_Cap; |
| SkPoint roundCaps[2]; |
| if (fRoundCaps) { |
| // Compute the cap center points in the normalized space. |
| SkScalar midRadius = (innerRadius + outerRadius) / (2 * outerRadius); |
| roundCaps[0] = startPoint * midRadius; |
| roundCaps[1] = stopPoint * midRadius; |
| } else { |
| roundCaps[0] = kUnusedRoundCaps[0]; |
| roundCaps[1] = kUnusedRoundCaps[1]; |
| } |
| |
| // Like a fill without useCenter, butt-cap stroke can be implemented by clipping against |
| // radial lines. We treat round caps the same way, but tack coverage of circles at the |
| // center of the butts. |
| // However, in both cases we have to be careful about the half-circle. |
| // case. In that case the two radial lines are equal and so that edge gets clipped |
| // twice. Since the shared edge goes through the center we fall back on the !useCenter |
| // case. |
| auto absSweep = SkScalarAbs(arcParams->fSweepAngleRadians); |
| bool useCenter = (arcParams->fUseCenter || isStrokeOnly) && |
| !SkScalarNearlyEqual(absSweep, SK_ScalarPI); |
| if (useCenter) { |
| SkVector norm0 = {startPoint.fY, -startPoint.fX}; |
| SkVector norm1 = {stopPoint.fY, -stopPoint.fX}; |
| if (arcParams->fSweepAngleRadians > 0) { |
| norm0.negate(); |
| } else { |
| norm1.negate(); |
| } |
| fClipPlane = true; |
| if (absSweep > SK_ScalarPI) { |
| fCircles.emplace_back(Circle{ |
| color, |
| innerRadius, |
| outerRadius, |
| {norm0.fX, norm0.fY, 0.5f}, |
| {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
| {norm1.fX, norm1.fY, 0.5f}, |
| {roundCaps[0], roundCaps[1]}, |
| devBounds, |
| stroked}); |
| fClipPlaneIsect = false; |
| fClipPlaneUnion = true; |
| } else { |
| fCircles.emplace_back(Circle{ |
| color, |
| innerRadius, |
| outerRadius, |
| {norm0.fX, norm0.fY, 0.5f}, |
| {norm1.fX, norm1.fY, 0.5f}, |
| {kUnusedUnionPlane[0], kUnusedUnionPlane[1], kUnusedUnionPlane[2]}, |
| {roundCaps[0], roundCaps[1]}, |
| devBounds, |
| stroked}); |
| fClipPlaneIsect = true; |
| fClipPlaneUnion = false; |
| } |
| } else { |
| // We clip to a secant of the original circle. |
| startPoint.scale(radius); |
| stopPoint.scale(radius); |
| SkVector norm = {startPoint.fY - stopPoint.fY, stopPoint.fX - startPoint.fX}; |
| norm.normalize(); |
| if (arcParams->fSweepAngleRadians > 0) { |
| norm.negate(); |
| } |
| SkScalar d = -norm.dot(startPoint) + 0.5f; |
| |
| fCircles.emplace_back( |
| Circle{color, |
| innerRadius, |
| outerRadius, |
| {norm.fX, norm.fY, d}, |
| {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
| {kUnusedUnionPlane[0], kUnusedUnionPlane[1], kUnusedUnionPlane[2]}, |
| {roundCaps[0], roundCaps[1]}, |
| devBounds, |
| stroked}); |
| fClipPlane = true; |
| fClipPlaneIsect = false; |
| fClipPlaneUnion = false; |
| } |
| } else { |
| fCircles.emplace_back( |
| Circle{color, |
| innerRadius, |
| outerRadius, |
| {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
| {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
| {kUnusedUnionPlane[0], kUnusedUnionPlane[1], kUnusedUnionPlane[2]}, |
| {kUnusedRoundCaps[0], kUnusedRoundCaps[1]}, |
| devBounds, |
| stroked}); |
| fClipPlane = false; |
| fClipPlaneIsect = false; |
| fClipPlaneUnion = false; |
| } |
| // Use the original radius and stroke radius for the bounds so that it does not include the |
| // AA bloat. |
| radius += halfWidth; |
| this->setBounds( |
| {center.fX - radius, center.fY - radius, center.fX + radius, center.fY + radius}, |
| HasAABloat::kYes, IsZeroArea::kNo); |
| fVertCount = circle_type_to_vert_count(stroked); |
| fIndexCount = circle_type_to_index_count(stroked); |
| fAllFill = !stroked; |
| } |
| |
| const char* name() const override { return "CircleOp"; } |
| |
| void visitProxies(const VisitProxyFunc& func) const override { |
| fHelper.visitProxies(func); |
| } |
| |
| SkString dumpInfo() const override { |
| SkString string; |
| for (int i = 0; i < fCircles.count(); ++i) { |
| string.appendf( |
| "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f]," |
| "InnerRad: %.2f, OuterRad: %.2f\n", |
| fCircles[i].fColor, fCircles[i].fDevBounds.fLeft, fCircles[i].fDevBounds.fTop, |
| fCircles[i].fDevBounds.fRight, fCircles[i].fDevBounds.fBottom, |
| fCircles[i].fInnerRadius, fCircles[i].fOuterRadius); |
| } |
| string += fHelper.dumpInfo(); |
| string += INHERITED::dumpInfo(); |
| return string; |
| } |
| |
| RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrPixelConfigIsClamped dstIsClamped) override { |
| GrColor* color = &fCircles.front().fColor; |
| return fHelper.xpRequiresDstTexture(caps, clip, dstIsClamped, |
| GrProcessorAnalysisCoverage::kSingleChannel, color); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
| |
| private: |
| void onPrepareDraws(Target* target) override { |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| sk_sp<GrGeometryProcessor> gp(new CircleGeometryProcessor( |
| !fAllFill, fClipPlane, fClipPlaneIsect, fClipPlaneUnion, fRoundCaps, localMatrix)); |
| |
| struct CircleVertex { |
| SkPoint fPos; |
| GrColor fColor; |
| SkPoint fOffset; |
| SkScalar fOuterRadius; |
| SkScalar fInnerRadius; |
| // These planes may or may not be present in the vertex buffer. |
| SkScalar fHalfPlanes[3][3]; |
| }; |
| |
| int numPlanes = (int)fClipPlane + fClipPlaneIsect + fClipPlaneUnion; |
| auto vertexCapCenters = [numPlanes](CircleVertex* v) { |
| return (void*)(v->fHalfPlanes + numPlanes); |
| }; |
| size_t vertexStride = sizeof(CircleVertex) - (fClipPlane ? 0 : 3 * sizeof(SkScalar)) - |
| (fClipPlaneIsect ? 0 : 3 * sizeof(SkScalar)) - |
| (fClipPlaneUnion ? 0 : 3 * sizeof(SkScalar)) + |
| (fRoundCaps ? 2 * sizeof(SkPoint) : 0); |
| SkASSERT(vertexStride == gp->debugOnly_vertexStride()); |
| |
| const GrBuffer* vertexBuffer; |
| int firstVertex; |
| char* vertices = (char*)target->makeVertexSpace(vertexStride, fVertCount, &vertexBuffer, |
| &firstVertex); |
| if (!vertices) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| const GrBuffer* indexBuffer = nullptr; |
| int firstIndex = 0; |
| uint16_t* indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex); |
| if (!indices) { |
| SkDebugf("Could not allocate indices\n"); |
| return; |
| } |
| |
| int currStartVertex = 0; |
| for (const auto& circle : fCircles) { |
| SkScalar innerRadius = circle.fInnerRadius; |
| SkScalar outerRadius = circle.fOuterRadius; |
| GrColor color = circle.fColor; |
| const SkRect& bounds = circle.fDevBounds; |
| |
| CircleVertex* v0 = reinterpret_cast<CircleVertex*>(vertices + 0 * vertexStride); |
| CircleVertex* v1 = reinterpret_cast<CircleVertex*>(vertices + 1 * vertexStride); |
| CircleVertex* v2 = reinterpret_cast<CircleVertex*>(vertices + 2 * vertexStride); |
| CircleVertex* v3 = reinterpret_cast<CircleVertex*>(vertices + 3 * vertexStride); |
| CircleVertex* v4 = reinterpret_cast<CircleVertex*>(vertices + 4 * vertexStride); |
| CircleVertex* v5 = reinterpret_cast<CircleVertex*>(vertices + 5 * vertexStride); |
| CircleVertex* v6 = reinterpret_cast<CircleVertex*>(vertices + 6 * vertexStride); |
| CircleVertex* v7 = reinterpret_cast<CircleVertex*>(vertices + 7 * vertexStride); |
| |
| // The inner radius in the vertex data must be specified in normalized space. |
| innerRadius = innerRadius / outerRadius; |
| |
| SkPoint center = SkPoint::Make(bounds.centerX(), bounds.centerY()); |
| SkScalar halfWidth = 0.5f * bounds.width(); |
| SkScalar octOffset = 0.41421356237f; // sqrt(2) - 1 |
| |
| v0->fPos = center + SkPoint::Make(-octOffset * halfWidth, -halfWidth); |
| v0->fColor = color; |
| v0->fOffset = SkPoint::Make(-octOffset, -1); |
| v0->fOuterRadius = outerRadius; |
| v0->fInnerRadius = innerRadius; |
| |
| v1->fPos = center + SkPoint::Make(octOffset * halfWidth, -halfWidth); |
| v1->fColor = color; |
| v1->fOffset = SkPoint::Make(octOffset, -1); |
| v1->fOuterRadius = outerRadius; |
| v1->fInnerRadius = innerRadius; |
| |
| v2->fPos = center + SkPoint::Make(halfWidth, -octOffset * halfWidth); |
| v2->fColor = color; |
| v2->fOffset = SkPoint::Make(1, -octOffset); |
| v2->fOuterRadius = outerRadius; |
| v2->fInnerRadius = innerRadius; |
| |
| v3->fPos = center + SkPoint::Make(halfWidth, octOffset * halfWidth); |
| v3->fColor = color; |
| v3->fOffset = SkPoint::Make(1, octOffset); |
| v3->fOuterRadius = outerRadius; |
| v3->fInnerRadius = innerRadius; |
| |
| v4->fPos = center + SkPoint::Make(octOffset * halfWidth, halfWidth); |
| v4->fColor = color; |
| v4->fOffset = SkPoint::Make(octOffset, 1); |
| v4->fOuterRadius = outerRadius; |
| v4->fInnerRadius = innerRadius; |
| |
| v5->fPos = center + SkPoint::Make(-octOffset * halfWidth, halfWidth); |
| v5->fColor = color; |
| v5->fOffset = SkPoint::Make(-octOffset, 1); |
| v5->fOuterRadius = outerRadius; |
| v5->fInnerRadius = innerRadius; |
| |
| v6->fPos = center + SkPoint::Make(-halfWidth, octOffset * halfWidth); |
| v6->fColor = color; |
| v6->fOffset = SkPoint::Make(-1, octOffset); |
| v6->fOuterRadius = outerRadius; |
| v6->fInnerRadius = innerRadius; |
| |
| v7->fPos = center + SkPoint::Make(-halfWidth, -octOffset * halfWidth); |
| v7->fColor = color; |
| v7->fOffset = SkPoint::Make(-1, -octOffset); |
| v7->fOuterRadius = outerRadius; |
| v7->fInnerRadius = innerRadius; |
| |
| if (fClipPlane) { |
| memcpy(v0->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v1->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v2->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v3->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v4->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v5->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v6->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v7->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| } |
| int unionIdx = 1; |
| if (fClipPlaneIsect) { |
| memcpy(v0->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v1->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v2->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v3->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v4->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v5->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v6->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v7->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| unionIdx = 2; |
| } |
| if (fClipPlaneUnion) { |
| memcpy(v0->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v1->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v2->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v3->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v4->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v5->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v6->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v7->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| } |
| if (fRoundCaps) { |
| memcpy(vertexCapCenters(v0), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v1), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v2), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v3), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v4), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v5), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v6), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v7), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| } |
| |
| if (circle.fStroked) { |
| // compute the inner ring |
| CircleVertex* v0 = reinterpret_cast<CircleVertex*>(vertices + 8 * vertexStride); |
| CircleVertex* v1 = reinterpret_cast<CircleVertex*>(vertices + 9 * vertexStride); |
| CircleVertex* v2 = reinterpret_cast<CircleVertex*>(vertices + 10 * vertexStride); |
| CircleVertex* v3 = reinterpret_cast<CircleVertex*>(vertices + 11 * vertexStride); |
| CircleVertex* v4 = reinterpret_cast<CircleVertex*>(vertices + 12 * vertexStride); |
| CircleVertex* v5 = reinterpret_cast<CircleVertex*>(vertices + 13 * vertexStride); |
| CircleVertex* v6 = reinterpret_cast<CircleVertex*>(vertices + 14 * vertexStride); |
| CircleVertex* v7 = reinterpret_cast<CircleVertex*>(vertices + 15 * vertexStride); |
| |
| // cosine and sine of pi/8 |
| SkScalar c = 0.923579533f; |
| SkScalar s = 0.382683432f; |
| SkScalar r = circle.fInnerRadius; |
| |
| v0->fPos = center + SkPoint::Make(-s * r, -c * r); |
| v0->fColor = color; |
| v0->fOffset = SkPoint::Make(-s * innerRadius, -c * innerRadius); |
| v0->fOuterRadius = outerRadius; |
| v0->fInnerRadius = innerRadius; |
| |
| v1->fPos = center + SkPoint::Make(s * r, -c * r); |
| v1->fColor = color; |
| v1->fOffset = SkPoint::Make(s * innerRadius, -c * innerRadius); |
| v1->fOuterRadius = outerRadius; |
| v1->fInnerRadius = innerRadius; |
| |
| v2->fPos = center + SkPoint::Make(c * r, -s * r); |
| v2->fColor = color; |
| v2->fOffset = SkPoint::Make(c * innerRadius, -s * innerRadius); |
| v2->fOuterRadius = outerRadius; |
| v2->fInnerRadius = innerRadius; |
| |
| v3->fPos = center + SkPoint::Make(c * r, s * r); |
| v3->fColor = color; |
| v3->fOffset = SkPoint::Make(c * innerRadius, s * innerRadius); |
| v3->fOuterRadius = outerRadius; |
| v3->fInnerRadius = innerRadius; |
| |
| v4->fPos = center + SkPoint::Make(s * r, c * r); |
| v4->fColor = color; |
| v4->fOffset = SkPoint::Make(s * innerRadius, c * innerRadius); |
| v4->fOuterRadius = outerRadius; |
| v4->fInnerRadius = innerRadius; |
| |
| v5->fPos = center + SkPoint::Make(-s * r, c * r); |
| v5->fColor = color; |
| v5->fOffset = SkPoint::Make(-s * innerRadius, c * innerRadius); |
| v5->fOuterRadius = outerRadius; |
| v5->fInnerRadius = innerRadius; |
| |
| v6->fPos = center + SkPoint::Make(-c * r, s * r); |
| v6->fColor = color; |
| v6->fOffset = SkPoint::Make(-c * innerRadius, s * innerRadius); |
| v6->fOuterRadius = outerRadius; |
| v6->fInnerRadius = innerRadius; |
| |
| v7->fPos = center + SkPoint::Make(-c * r, -s * r); |
| v7->fColor = color; |
| v7->fOffset = SkPoint::Make(-c * innerRadius, -s * innerRadius); |
| v7->fOuterRadius = outerRadius; |
| v7->fInnerRadius = innerRadius; |
| |
| if (fClipPlane) { |
| memcpy(v0->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v1->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v2->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v3->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v4->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v5->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v6->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v7->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| } |
| int unionIdx = 1; |
| if (fClipPlaneIsect) { |
| memcpy(v0->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v1->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v2->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v3->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v4->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v5->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v6->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v7->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| unionIdx = 2; |
| } |
| if (fClipPlaneUnion) { |
| memcpy(v0->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v1->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v2->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v3->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v4->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v5->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v6->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v7->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| } |
| if (fRoundCaps) { |
| memcpy(vertexCapCenters(v0), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v1), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v2), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v3), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v4), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v5), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v6), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| memcpy(vertexCapCenters(v7), circle.fRoundCapCenters, 2 * sizeof(SkPoint)); |
| } |
| } else { |
| // filled |
| CircleVertex* v8 = reinterpret_cast<CircleVertex*>(vertices + 8 * vertexStride); |
| v8->fPos = center; |
| v8->fColor = color; |
| v8->fOffset = SkPoint::Make(0, 0); |
| v8->fOuterRadius = outerRadius; |
| v8->fInnerRadius = innerRadius; |
| if (fClipPlane) { |
| memcpy(v8->fHalfPlanes[0], circle.fClipPlane, 3 * sizeof(SkScalar)); |
| } |
| int unionIdx = 1; |
| if (fClipPlaneIsect) { |
| memcpy(v8->fHalfPlanes[1], circle.fIsectPlane, 3 * sizeof(SkScalar)); |
| unionIdx = 2; |
| } |
| if (fClipPlaneUnion) { |
| memcpy(v8->fHalfPlanes[unionIdx], circle.fUnionPlane, 3 * sizeof(SkScalar)); |
| } |
| SkASSERT(!fRoundCaps); |
| } |
| |
| const uint16_t* primIndices = circle_type_to_indices(circle.fStroked); |
| const int primIndexCount = circle_type_to_index_count(circle.fStroked); |
| for (int i = 0; i < primIndexCount; ++i) { |
| *indices++ = primIndices[i] + currStartVertex; |
| } |
| |
| currStartVertex += circle_type_to_vert_count(circle.fStroked); |
| vertices += circle_type_to_vert_count(circle.fStroked) * vertexStride; |
| } |
| |
| GrMesh mesh(GrPrimitiveType::kTriangles); |
| mesh.setIndexed(indexBuffer, fIndexCount, firstIndex, 0, fVertCount - 1, |
| GrPrimitiveRestart::kNo); |
| mesh.setVertexData(vertexBuffer, firstVertex); |
| target->draw(gp.get(), fHelper.makePipeline(target), mesh); |
| } |
| |
| bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override { |
| CircleOp* that = t->cast<CircleOp>(); |
| |
| // can only represent 65535 unique vertices with 16-bit indices |
| if (fVertCount + that->fVertCount > 65536) { |
| return false; |
| } |
| |
| if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
| return false; |
| } |
| |
| if (fHelper.usesLocalCoords() && |
| !fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { |
| return false; |
| } |
| |
| // Because we've set up the ops that don't use the planes with noop values |
| // we can just accumulate used planes by later ops. |
| fClipPlane |= that->fClipPlane; |
| fClipPlaneIsect |= that->fClipPlaneIsect; |
| fClipPlaneUnion |= that->fClipPlaneUnion; |
| fRoundCaps |= that->fRoundCaps; |
| |
| fCircles.push_back_n(that->fCircles.count(), that->fCircles.begin()); |
| this->joinBounds(*that); |
| fVertCount += that->fVertCount; |
| fIndexCount += that->fIndexCount; |
| fAllFill = fAllFill && that->fAllFill; |
| return true; |
| } |
| |
| struct Circle { |
| GrColor fColor; |
| SkScalar fInnerRadius; |
| SkScalar fOuterRadius; |
| SkScalar fClipPlane[3]; |
| SkScalar fIsectPlane[3]; |
| SkScalar fUnionPlane[3]; |
| SkPoint fRoundCapCenters[2]; |
| SkRect fDevBounds; |
| bool fStroked; |
| }; |
| |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| Helper fHelper; |
| SkSTArray<1, Circle, true> fCircles; |
| int fVertCount; |
| int fIndexCount; |
| bool fAllFill; |
| bool fClipPlane; |
| bool fClipPlaneIsect; |
| bool fClipPlaneUnion; |
| bool fRoundCaps; |
| |
| typedef GrMeshDrawOp INHERITED; |
| }; |
| |
| class ButtCapDashedCircleOp final : public GrMeshDrawOp { |
| private: |
| using Helper = GrSimpleMeshDrawOpHelper; |
| |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| static std::unique_ptr<GrDrawOp> Make(GrContext* context, |
| GrPaint&& paint, |
| const SkMatrix& viewMatrix, |
| SkPoint center, |
| SkScalar radius, |
| SkScalar strokeWidth, |
| SkScalar startAngle, |
| SkScalar onAngle, |
| SkScalar offAngle, |
| SkScalar phaseAngle) { |
| SkASSERT(circle_stays_circle(viewMatrix)); |
| SkASSERT(strokeWidth < 2 * radius); |
| return Helper::FactoryHelper<ButtCapDashedCircleOp>(context, std::move(paint), viewMatrix, |
| center, radius, strokeWidth, startAngle, |
| onAngle, offAngle, phaseAngle); |
| } |
| |
| ButtCapDashedCircleOp(const Helper::MakeArgs& helperArgs, GrColor color, |
| const SkMatrix& viewMatrix, SkPoint center, SkScalar radius, |
| SkScalar strokeWidth, SkScalar startAngle, SkScalar onAngle, |
| SkScalar offAngle, SkScalar phaseAngle) |
| : GrMeshDrawOp(ClassID()), fHelper(helperArgs, GrAAType::kCoverage) { |
| SkASSERT(circle_stays_circle(viewMatrix)); |
| viewMatrix.mapPoints(¢er, 1); |
| radius = viewMatrix.mapRadius(radius); |
| strokeWidth = viewMatrix.mapRadius(strokeWidth); |
| |
| // Determine the angle where the circle starts in device space and whether its orientation |
| // has been reversed. |
| SkVector start; |
| bool reflection; |
| if (!startAngle) { |
| start = {1, 0}; |
| } else { |
| start.fY = SkScalarSinCos(startAngle, &start.fX); |
| } |
| viewMatrix.mapVectors(&start, 1); |
| startAngle = SkScalarATan2(start.fY, start.fX); |
| reflection = (viewMatrix.getScaleX() * viewMatrix.getScaleY() - |
| viewMatrix.getSkewX() * viewMatrix.getSkewY()) < 0; |
| |
| auto totalAngle = onAngle + offAngle; |
| phaseAngle = SkScalarMod(phaseAngle + totalAngle / 2, totalAngle) - totalAngle / 2; |
| |
| SkScalar halfWidth = 0; |
| if (SkScalarNearlyZero(strokeWidth)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(strokeWidth); |
| } |
| |
| SkScalar outerRadius = radius + halfWidth; |
| SkScalar innerRadius = radius - halfWidth; |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform |
| // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
| // Second, the outer radius is used to compute the verts of the bounding box that is |
| // rendered and the outset ensures the box will cover all partially covered by the circle. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| fViewMatrixIfUsingLocalCoords = viewMatrix; |
| |
| SkRect devBounds = SkRect::MakeLTRB(center.fX - outerRadius, center.fY - outerRadius, |
| center.fX + outerRadius, center.fY + outerRadius); |
| |
| // We store whether there is a reflection as a negative total angle. |
| if (reflection) { |
| totalAngle = -totalAngle; |
| } |
| fCircles.push_back(Circle{ |
| color, |
| outerRadius, |
| innerRadius, |
| onAngle, |
| totalAngle, |
| startAngle, |
| phaseAngle, |
| devBounds |
| }); |
| // Use the original radius and stroke radius for the bounds so that it does not include the |
| // AA bloat. |
| radius += halfWidth; |
| this->setBounds( |
| {center.fX - radius, center.fY - radius, center.fX + radius, center.fY + radius}, |
| HasAABloat::kYes, IsZeroArea::kNo); |
| fVertCount = circle_type_to_vert_count(true); |
| fIndexCount = circle_type_to_index_count(true); |
| } |
| |
| const char* name() const override { return "ButtCappedDashedCircleOp"; } |
| |
| void visitProxies(const VisitProxyFunc& func) const override { fHelper.visitProxies(func); } |
| |
| SkString dumpInfo() const override { |
| SkString string; |
| for (int i = 0; i < fCircles.count(); ++i) { |
| string.appendf( |
| "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f]," |
| "InnerRad: %.2f, OuterRad: %.2f, OnAngle: %.2f, TotalAngle: %.2f, " |
| "Phase: %.2f\n", |
| fCircles[i].fColor, fCircles[i].fDevBounds.fLeft, fCircles[i].fDevBounds.fTop, |
| fCircles[i].fDevBounds.fRight, fCircles[i].fDevBounds.fBottom, |
| fCircles[i].fInnerRadius, fCircles[i].fOuterRadius, fCircles[i].fOnAngle, |
| fCircles[i].fTotalAngle, fCircles[i].fPhaseAngle); |
| } |
| string += fHelper.dumpInfo(); |
| string += INHERITED::dumpInfo(); |
| return string; |
| } |
| |
| RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrPixelConfigIsClamped dstIsClamped) override { |
| GrColor* color = &fCircles.front().fColor; |
| return fHelper.xpRequiresDstTexture(caps, clip, dstIsClamped, |
| GrProcessorAnalysisCoverage::kSingleChannel, color); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
| |
| private: |
| void onPrepareDraws(Target* target) override { |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| sk_sp<GrGeometryProcessor> gp(new ButtCapDashedCircleGeometryProcessor(localMatrix)); |
| |
| struct CircleVertex { |
| SkPoint fPos; |
| GrColor fColor; |
| SkPoint fOffset; |
| SkScalar fOuterRadius; |
| SkScalar fInnerRadius; |
| SkScalar fOnAngle; |
| SkScalar fTotalAngle; |
| SkScalar fStartAngle; |
| SkScalar fPhaseAngle; |
| }; |
| |
| static constexpr size_t kVertexStride = sizeof(CircleVertex); |
| SkASSERT(kVertexStride == gp->debugOnly_vertexStride()); |
| |
| const GrBuffer* vertexBuffer; |
| int firstVertex; |
| char* vertices = (char*)target->makeVertexSpace(kVertexStride, fVertCount, &vertexBuffer, |
| &firstVertex); |
| if (!vertices) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| const GrBuffer* indexBuffer = nullptr; |
| int firstIndex = 0; |
| uint16_t* indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex); |
| if (!indices) { |
| SkDebugf("Could not allocate indices\n"); |
| return; |
| } |
| |
| int currStartVertex = 0; |
| for (const auto& circle : fCircles) { |
| // The inner radius in the vertex data must be specified in normalized space so that |
| // length() can be called with smaller values to avoid precision issues with half |
| // floats. |
| auto normInnerRadius = circle.fInnerRadius / circle.fOuterRadius; |
| const SkRect& bounds = circle.fDevBounds; |
| bool reflect = false; |
| SkScalar totalAngle = circle.fTotalAngle; |
| if (totalAngle < 0) { |
| reflect = true; |
| totalAngle = -totalAngle; |
| } |
| |
| // The bounding geometry for the circle is composed of an outer bounding octagon and |
| // an inner bounded octagon. |
| |
| // Initializes the attributes that are the same at each vertex. Also applies reflection. |
| auto init_const_attrs_and_reflect = [&](CircleVertex* v) { |
| v->fColor = circle.fColor; |
| v->fOuterRadius = circle.fOuterRadius; |
| v->fInnerRadius = normInnerRadius; |
| v->fOnAngle = circle.fOnAngle; |
| v->fTotalAngle = totalAngle; |
| v->fStartAngle = circle.fStartAngle; |
| v->fPhaseAngle = circle.fPhaseAngle; |
| if (reflect) { |
| v->fStartAngle = -v->fStartAngle; |
| v->fOffset.fY = -v->fOffset.fY; |
| } |
| }; |
| |
| // Compute the vertices of the outer octagon. |
| SkPoint center = SkPoint::Make(bounds.centerX(), bounds.centerY()); |
| SkScalar halfWidth = 0.5f * bounds.width(); |
| auto init_outer_vertex = [&](int idx, SkScalar x, SkScalar y) { |
| CircleVertex* v = reinterpret_cast<CircleVertex*>(vertices + idx * kVertexStride); |
| v->fPos = center + SkPoint{x * halfWidth, y * halfWidth}; |
| v->fOffset = {x, y}; |
| init_const_attrs_and_reflect(v); |
| }; |
| static constexpr SkScalar kOctOffset = 0.41421356237f; // sqrt(2) - 1 |
| init_outer_vertex(0, -kOctOffset, -1); |
| init_outer_vertex(1, kOctOffset, -1); |
| init_outer_vertex(2, 1, -kOctOffset); |
| init_outer_vertex(3, 1, kOctOffset); |
| init_outer_vertex(4, kOctOffset, 1); |
| init_outer_vertex(5, -kOctOffset, 1); |
| init_outer_vertex(6, -1, kOctOffset); |
| init_outer_vertex(7, -1, -kOctOffset); |
| |
| // Compute the vertices of the inner octagon. |
| auto init_inner_vertex = [&](int idx, SkScalar x, SkScalar y) { |
| CircleVertex* v = |
| reinterpret_cast<CircleVertex*>(vertices + (idx + 8) * kVertexStride); |
| v->fPos = center + SkPoint{x * circle.fInnerRadius, y * circle.fInnerRadius}; |
| v->fOffset = {x * normInnerRadius, y * normInnerRadius}; |
| init_const_attrs_and_reflect(v); |
| }; |
| |
| // cosine and sine of pi/8 |
| static constexpr SkScalar kCos = 0.923579533f; |
| static constexpr SkScalar kSin = 0.382683432f; |
| |
| init_inner_vertex(0, -kSin, -kCos); |
| init_inner_vertex(1, kSin, -kCos); |
| init_inner_vertex(2, kCos, -kSin); |
| init_inner_vertex(3, kCos, kSin); |
| init_inner_vertex(4, kSin, kCos); |
| init_inner_vertex(5, -kSin, kCos); |
| init_inner_vertex(6, -kCos, kSin); |
| init_inner_vertex(7, -kCos, -kSin); |
| |
| const uint16_t* primIndices = circle_type_to_indices(true); |
| const int primIndexCount = circle_type_to_index_count(true); |
| for (int i = 0; i < primIndexCount; ++i) { |
| *indices++ = primIndices[i] + currStartVertex; |
| } |
| |
| currStartVertex += circle_type_to_vert_count(true); |
| vertices += circle_type_to_vert_count(true) * kVertexStride; |
| } |
| |
| GrMesh mesh(GrPrimitiveType::kTriangles); |
| mesh.setIndexed(indexBuffer, fIndexCount, firstIndex, 0, fVertCount - 1, |
| GrPrimitiveRestart::kNo); |
| mesh.setVertexData(vertexBuffer, firstVertex); |
| target->draw(gp.get(), fHelper.makePipeline(target), mesh); |
| } |
| |
| bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override { |
| ButtCapDashedCircleOp* that = t->cast<ButtCapDashedCircleOp>(); |
| |
| // can only represent 65535 unique vertices with 16-bit indices |
| if (fVertCount + that->fVertCount > 65536) { |
| return false; |
| } |
| |
| if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
| return false; |
| } |
| |
| if (fHelper.usesLocalCoords() && |
| !fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { |
| return false; |
| } |
| |
| fCircles.push_back_n(that->fCircles.count(), that->fCircles.begin()); |
| this->joinBounds(*that); |
| fVertCount += that->fVertCount; |
| fIndexCount += that->fIndexCount; |
| return true; |
| } |
| |
| struct Circle { |
| GrColor fColor; |
| SkScalar fOuterRadius; |
| SkScalar fInnerRadius; |
| SkScalar fOnAngle; |
| SkScalar fTotalAngle; |
| SkScalar fStartAngle; |
| SkScalar fPhaseAngle; |
| SkRect fDevBounds; |
| }; |
| |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| Helper fHelper; |
| SkSTArray<1, Circle, true> fCircles; |
| int fVertCount; |
| int fIndexCount; |
| |
| typedef GrMeshDrawOp INHERITED; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class EllipseOp : public GrMeshDrawOp { |
| private: |
| using Helper = GrSimpleMeshDrawOpHelper; |
| |
| struct DeviceSpaceParams { |
| SkPoint fCenter; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| }; |
| |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| static std::unique_ptr<GrDrawOp> Make(GrContext* context, |
| GrPaint&& paint, |
| const SkMatrix& viewMatrix, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| DeviceSpaceParams params; |
| // do any matrix crunching before we reset the draw state for device coords |
| params.fCenter = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
| viewMatrix.mapPoints(¶ms.fCenter, 1); |
| SkScalar ellipseXRadius = SkScalarHalf(ellipse.width()); |
| SkScalar ellipseYRadius = SkScalarHalf(ellipse.height()); |
| params.fXRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX] * ellipseXRadius + |
| viewMatrix[SkMatrix::kMSkewX] * ellipseYRadius); |
| params.fYRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewY] * ellipseXRadius + |
| viewMatrix[SkMatrix::kMScaleY] * ellipseYRadius); |
| |
| // do (potentially) anisotropic mapping of stroke |
| SkVector scaledStroke; |
| SkScalar strokeWidth = stroke.getWidth(); |
| scaledStroke.fX = SkScalarAbs( |
| strokeWidth * (viewMatrix[SkMatrix::kMScaleX] + viewMatrix[SkMatrix::kMSkewY])); |
| scaledStroke.fY = SkScalarAbs( |
| strokeWidth * (viewMatrix[SkMatrix::kMSkewX] + viewMatrix[SkMatrix::kMScaleY])); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| bool isStrokeOnly = |
| SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| params.fInnerXRadius = 0; |
| params.fInnerYRadius = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(scaledStroke.length())) { |
| scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); |
| } else { |
| scaledStroke.scale(SK_ScalarHalf); |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (scaledStroke.length() > SK_ScalarHalf && |
| (0.5f * params.fXRadius > params.fYRadius || |
| 0.5f * params.fYRadius > params.fXRadius)) { |
| return nullptr; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (scaledStroke.fX * (params.fXRadius * params.fYRadius) < |
| (scaledStroke.fY * scaledStroke.fY) * params.fXRadius || |
| scaledStroke.fY * (params.fXRadius * params.fXRadius) < |
| (scaledStroke.fX * scaledStroke.fX) * params.fYRadius) { |
| return nullptr; |
| } |
| |
| // this is legit only if scale & translation (which should be the case at the moment) |
| if (isStrokeOnly) { |
| params.fInnerXRadius = params.fXRadius - scaledStroke.fX; |
| params.fInnerYRadius = params.fYRadius - scaledStroke.fY; |
| } |
| |
| params.fXRadius += scaledStroke.fX; |
| params.fYRadius += scaledStroke.fY; |
| } |
| return Helper::FactoryHelper<EllipseOp>(context, std::move(paint), viewMatrix, |
| params, stroke); |
| } |
| |
| EllipseOp(const Helper::MakeArgs& helperArgs, GrColor color, const SkMatrix& viewMatrix, |
| const DeviceSpaceParams& params, const SkStrokeRec& stroke) |
| : INHERITED(ClassID()), fHelper(helperArgs, GrAAType::kCoverage) { |
| SkStrokeRec::Style style = stroke.getStyle(); |
| bool isStrokeOnly = |
| SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; |
| |
| fEllipses.emplace_back(Ellipse{color, params.fXRadius, params.fYRadius, |
| params.fInnerXRadius, params.fInnerYRadius, |
| SkRect::MakeLTRB(params.fCenter.fX - params.fXRadius, |
| params.fCenter.fY - params.fYRadius, |
| params.fCenter.fX + params.fXRadius, |
| params.fCenter.fY + params.fYRadius)}); |
| |
| this->setBounds(fEllipses.back().fDevBounds, HasAABloat::kYes, IsZeroArea::kNo); |
| |
| // Outset bounds to include half-pixel width antialiasing. |
| fEllipses[0].fDevBounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| |
| fStroked = isStrokeOnly && params.fInnerXRadius > 0 && params.fInnerYRadius > 0; |
| fViewMatrixIfUsingLocalCoords = viewMatrix; |
| } |
| |
| const char* name() const override { return "EllipseOp"; } |
| |
| void visitProxies(const VisitProxyFunc& func) const override { |
| fHelper.visitProxies(func); |
| } |
| |
| SkString dumpInfo() const override { |
| SkString string; |
| string.appendf("Stroked: %d\n", fStroked); |
| for (const auto& geo : fEllipses) { |
| string.appendf( |
| "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], " |
| "XRad: %.2f, YRad: %.2f, InnerXRad: %.2f, InnerYRad: %.2f\n", |
| geo.fColor, geo.fDevBounds.fLeft, geo.fDevBounds.fTop, geo.fDevBounds.fRight, |
| geo.fDevBounds.fBottom, geo.fXRadius, geo.fYRadius, geo.fInnerXRadius, |
| geo.fInnerYRadius); |
| } |
| string += fHelper.dumpInfo(); |
| string += INHERITED::dumpInfo(); |
| return string; |
| } |
| |
| RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrPixelConfigIsClamped dstIsClamped) override { |
| GrColor* color = &fEllipses.front().fColor; |
| return fHelper.xpRequiresDstTexture(caps, clip, dstIsClamped, |
| GrProcessorAnalysisCoverage::kSingleChannel, color); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
| |
| private: |
| void onPrepareDraws(Target* target) override { |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| sk_sp<GrGeometryProcessor> gp(new EllipseGeometryProcessor(fStroked, localMatrix)); |
| |
| QuadHelper helper; |
| SkASSERT(sizeof(EllipseVertex) == gp->debugOnly_vertexStride()); |
| EllipseVertex* verts = reinterpret_cast<EllipseVertex*>( |
| helper.init(target, sizeof(EllipseVertex), fEllipses.count())); |
| if (!verts) { |
| return; |
| } |
| |
| for (const auto& ellipse : fEllipses) { |
| GrColor color = ellipse.fColor; |
| SkScalar xRadius = ellipse.fXRadius; |
| SkScalar yRadius = ellipse.fYRadius; |
| |
| // Compute the reciprocals of the radii here to save time in the shader |
| SkScalar xRadRecip = SkScalarInvert(xRadius); |
| SkScalar yRadRecip = SkScalarInvert(yRadius); |
| SkScalar xInnerRadRecip = SkScalarInvert(ellipse.fInnerXRadius); |
| SkScalar yInnerRadRecip = SkScalarInvert(ellipse.fInnerYRadius); |
| |
| // fOffsets are expanded from xyRadii to include the half-pixel antialiasing width. |
| SkScalar xMaxOffset = xRadius + SK_ScalarHalf; |
| SkScalar yMaxOffset = yRadius + SK_ScalarHalf; |
| |
| // The inner radius in the vertex data must be specified in normalized space. |
| verts[0].fPos = SkPoint::Make(ellipse.fDevBounds.fLeft, ellipse.fDevBounds.fTop); |
| verts[0].fColor = color; |
| verts[0].fOffset = SkPoint::Make(-xMaxOffset, -yMaxOffset); |
| verts[0].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[0].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[1].fPos = SkPoint::Make(ellipse.fDevBounds.fLeft, ellipse.fDevBounds.fBottom); |
| verts[1].fColor = color; |
| verts[1].fOffset = SkPoint::Make(-xMaxOffset, yMaxOffset); |
| verts[1].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[1].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[2].fPos = SkPoint::Make(ellipse.fDevBounds.fRight, ellipse.fDevBounds.fTop); |
| verts[2].fColor = color; |
| verts[2].fOffset = SkPoint::Make(xMaxOffset, -yMaxOffset); |
| verts[2].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[2].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[3].fPos = SkPoint::Make(ellipse.fDevBounds.fRight, ellipse.fDevBounds.fBottom); |
| verts[3].fColor = color; |
| verts[3].fOffset = SkPoint::Make(xMaxOffset, yMaxOffset); |
| verts[3].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[3].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts += kVerticesPerQuad; |
| } |
| helper.recordDraw(target, gp.get(), fHelper.makePipeline(target)); |
| } |
| |
| bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override { |
| EllipseOp* that = t->cast<EllipseOp>(); |
| |
| if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
| return false; |
| } |
| |
| if (fStroked != that->fStroked) { |
| return false; |
| } |
| |
| if (fHelper.usesLocalCoords() && |
| !fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { |
| return false; |
| } |
| |
| fEllipses.push_back_n(that->fEllipses.count(), that->fEllipses.begin()); |
| this->joinBounds(*that); |
| return true; |
| } |
| |
| struct Ellipse { |
| GrColor fColor; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| SkRect fDevBounds; |
| }; |
| |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| Helper fHelper; |
| bool fStroked; |
| SkSTArray<1, Ellipse, true> fEllipses; |
| |
| typedef GrMeshDrawOp INHERITED; |
| }; |
| |
| ///////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class DIEllipseOp : public GrMeshDrawOp { |
| private: |
| using Helper = GrSimpleMeshDrawOpHelper; |
| |
| struct DeviceSpaceParams { |
| SkPoint fCenter; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| DIEllipseStyle fStyle; |
| }; |
| |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| static std::unique_ptr<GrDrawOp> Make(GrContext* context, |
| GrPaint&& paint, |
| const SkMatrix& viewMatrix, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| DeviceSpaceParams params; |
| params.fCenter = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
| params.fXRadius = SkScalarHalf(ellipse.width()); |
| params.fYRadius = SkScalarHalf(ellipse.height()); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| params.fStyle = (SkStrokeRec::kStroke_Style == style) |
| ? DIEllipseStyle::kStroke |
| : (SkStrokeRec::kHairline_Style == style) |
| ? DIEllipseStyle::kHairline |
| : DIEllipseStyle::kFill; |
| |
| params.fInnerXRadius = 0; |
| params.fInnerYRadius = 0; |
| if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) { |
| SkScalar strokeWidth = stroke.getWidth(); |
| |
| if (SkScalarNearlyZero(strokeWidth)) { |
| strokeWidth = SK_ScalarHalf; |
| } else { |
| strokeWidth *= SK_ScalarHalf; |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (strokeWidth > SK_ScalarHalf && |
| (SK_ScalarHalf * params.fXRadius > params.fYRadius || |
| SK_ScalarHalf * params.fYRadius > params.fXRadius)) { |
| return nullptr; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (strokeWidth * (params.fYRadius * params.fYRadius) < |
| (strokeWidth * strokeWidth) * params.fXRadius) { |
| return nullptr; |
| } |
| if (strokeWidth * (params.fXRadius * params.fXRadius) < |
| (strokeWidth * strokeWidth) * params.fYRadius) { |
| return nullptr; |
| } |
| |
| // set inner radius (if needed) |
| if (SkStrokeRec::kStroke_Style == style) { |
| params.fInnerXRadius = params.fXRadius - strokeWidth; |
| params.fInnerYRadius = params.fYRadius - strokeWidth; |
| } |
| |
| params.fXRadius += strokeWidth; |
| params.fYRadius += strokeWidth; |
| } |
| if (DIEllipseStyle::kStroke == params.fStyle && |
| (params.fInnerXRadius <= 0 || params.fInnerYRadius <= 0)) { |
| params.fStyle = DIEllipseStyle::kFill; |
| } |
| return Helper::FactoryHelper<DIEllipseOp>(context, std::move(paint), params, viewMatrix); |
| } |
| |
| DIEllipseOp(Helper::MakeArgs& helperArgs, GrColor color, const DeviceSpaceParams& params, |
| const SkMatrix& viewMatrix) |
| : INHERITED(ClassID()), fHelper(helperArgs, GrAAType::kCoverage) { |
| // This expands the outer rect so that after CTM we end up with a half-pixel border |
| SkScalar a = viewMatrix[SkMatrix::kMScaleX]; |
| SkScalar b = viewMatrix[SkMatrix::kMSkewX]; |
| SkScalar c = viewMatrix[SkMatrix::kMSkewY]; |
| SkScalar d = viewMatrix[SkMatrix::kMScaleY]; |
| SkScalar geoDx = SK_ScalarHalf / SkScalarSqrt(a * a + c * c); |
| SkScalar geoDy = SK_ScalarHalf / SkScalarSqrt(b * b + d * d); |
| |
| fEllipses.emplace_back( |
| Ellipse{viewMatrix, color, params.fXRadius, params.fYRadius, params.fInnerXRadius, |
| params.fInnerYRadius, geoDx, geoDy, params.fStyle, |
| SkRect::MakeLTRB(params.fCenter.fX - params.fXRadius - geoDx, |
| params.fCenter.fY - params.fYRadius - geoDy, |
| params.fCenter.fX + params.fXRadius + geoDx, |
| params.fCenter.fY + params.fYRadius + geoDy)}); |
| this->setTransformedBounds(fEllipses[0].fBounds, viewMatrix, HasAABloat::kYes, |
| IsZeroArea::kNo); |
| } |
| |
| const char* name() const override { return "DIEllipseOp"; } |
| |
| void visitProxies(const VisitProxyFunc& func) const override { |
| fHelper.visitProxies(func); |
| } |
| |
| SkString dumpInfo() const override { |
| SkString string; |
| for (const auto& geo : fEllipses) { |
| string.appendf( |
| "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], XRad: %.2f, " |
| "YRad: %.2f, InnerXRad: %.2f, InnerYRad: %.2f, GeoDX: %.2f, " |
| "GeoDY: %.2f\n", |
| geo.fColor, geo.fBounds.fLeft, geo.fBounds.fTop, geo.fBounds.fRight, |
| geo.fBounds.fBottom, geo.fXRadius, geo.fYRadius, geo.fInnerXRadius, |
| geo.fInnerYRadius, geo.fGeoDx, geo.fGeoDy); |
| } |
| string += fHelper.dumpInfo(); |
| string += INHERITED::dumpInfo(); |
| return string; |
| } |
| |
| RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrPixelConfigIsClamped dstIsClamped) override { |
| GrColor* color = &fEllipses.front().fColor; |
| return fHelper.xpRequiresDstTexture(caps, clip, dstIsClamped, |
| GrProcessorAnalysisCoverage::kSingleChannel, color); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
| |
| private: |
| void onPrepareDraws(Target* target) override { |
| // Setup geometry processor |
| sk_sp<GrGeometryProcessor> gp( |
| new DIEllipseGeometryProcessor(this->viewMatrix(), this->style())); |
| |
| SkASSERT(sizeof(DIEllipseVertex) == gp->debugOnly_vertexStride()); |
| QuadHelper helper; |
| DIEllipseVertex* verts = reinterpret_cast<DIEllipseVertex*>( |
| helper.init(target, sizeof(DIEllipseVertex), fEllipses.count())); |
| if (!verts) { |
| return; |
| } |
| |
| for (const auto& ellipse : fEllipses) { |
| GrColor color = ellipse.fColor; |
| SkScalar xRadius = ellipse.fXRadius; |
| SkScalar yRadius = ellipse.fYRadius; |
| |
| const SkRect& bounds = ellipse.fBounds; |
| |
| // This adjusts the "radius" to include the half-pixel border |
| SkScalar offsetDx = ellipse.fGeoDx / xRadius; |
| SkScalar offsetDy = ellipse.fGeoDy / yRadius; |
| |
| verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| verts[0].fColor = color; |
| verts[0].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, -1.0f - offsetDy); |
| verts[0].fInnerOffset = SkPoint::Make(0.0f, 0.0f); |
| |
| verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| verts[1].fColor = color; |
| verts[1].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, 1.0f + offsetDy); |
| verts[1].fInnerOffset = SkPoint::Make(0.0f, 0.0f); |
| |
| verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| verts[2].fColor = color; |
| verts[2].fOuterOffset = SkPoint::Make(1.0f + offsetDx, -1.0f - offsetDy); |
| verts[2].fInnerOffset = SkPoint::Make(0.0f, 0.0f); |
| |
| verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| verts[3].fColor = color; |
| verts[3].fOuterOffset = SkPoint::Make(1.0f + offsetDx, 1.0f + offsetDy); |
| verts[3].fInnerOffset = SkPoint::Make(0.0f, 0.0f); |
| |
| if (DIEllipseStyle::kStroke == this->style()) { |
| SkScalar innerRatioX = xRadius / ellipse.fInnerXRadius; |
| SkScalar innerRatioY = yRadius / ellipse.fInnerYRadius; |
| |
| verts[0].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, |
| -innerRatioY - offsetDy); |
| verts[1].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, |
| innerRatioY + offsetDy); |
| verts[2].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, |
| -innerRatioY - offsetDy); |
| verts[3].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, |
| innerRatioY + offsetDy); |
| } |
| |
| verts += kVerticesPerQuad; |
| } |
| helper.recordDraw(target, gp.get(), fHelper.makePipeline(target)); |
| } |
| |
| bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override { |
| DIEllipseOp* that = t->cast<DIEllipseOp>(); |
| if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
| return false; |
| } |
| |
| if (this->style() != that->style()) { |
| return false; |
| } |
| |
| // TODO rewrite to allow positioning on CPU |
| if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
| return false; |
| } |
| |
| fEllipses.push_back_n(that->fEllipses.count(), that->fEllipses.begin()); |
| this->joinBounds(*that); |
| return true; |
| } |
| |
| const SkMatrix& viewMatrix() const { return fEllipses[0].fViewMatrix; } |
| DIEllipseStyle style() const { return fEllipses[0].fStyle; } |
| |
| struct Ellipse { |
| SkMatrix fViewMatrix; |
| GrColor fColor; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| SkScalar fGeoDx; |
| SkScalar fGeoDy; |
| DIEllipseStyle fStyle; |
| SkRect fBounds; |
| }; |
| |
| Helper fHelper; |
| SkSTArray<1, Ellipse, true> fEllipses; |
| |
| typedef GrMeshDrawOp INHERITED; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // We have three possible cases for geometry for a roundrect. |
| // |
| // In the case of a normal fill or a stroke, we draw the roundrect as a 9-patch: |
| // ____________ |
| // |_|________|_| |
| // | | | | |
| // | | | | |
| // | | | | |
| // |_|________|_| |
| // |_|________|_| |
| // |
| // For strokes, we don't draw the center quad. |
| // |
| // For circular roundrects, in the case where the stroke width is greater than twice |
| // the corner radius (overstroke), we add additional geometry to mark out the rectangle |
| // in the center. The shared vertices are duplicated so we can set a different outer radius |
| // for the fill calculation. |
| // ____________ |
| // |_|________|_| |
| // | |\ ____ /| | |
| // | | | | | | |
| // | | |____| | | |
| // |_|/______\|_| |
| // |_|________|_| |
| // |
| // We don't draw the center quad from the fill rect in this case. |
| // |
| // For filled rrects that need to provide a distance vector we resuse the overstroke |
| // geometry but make the inner rect degenerate (either a point or a horizontal or |
| // vertical line). |
| |
| static const uint16_t gOverstrokeRRectIndices[] = { |
| // clang-format off |
| // overstroke quads |
| // we place this at the beginning so that we can skip these indices when rendering normally |
| 16, 17, 19, 16, 19, 18, |
| 19, 17, 23, 19, 23, 21, |
| 21, 23, 22, 21, 22, 20, |
| 22, 16, 18, 22, 18, 20, |
| |
| // corners |
| 0, 1, 5, 0, 5, 4, |
| 2, 3, 7, 2, 7, 6, |
| 8, 9, 13, 8, 13, 12, |
| 10, 11, 15, 10, 15, 14, |
| |
| // edges |
| 1, 2, 6, 1, 6, 5, |
| 4, 5, 9, 4, 9, 8, |
| 6, 7, 11, 6, 11, 10, |
| 9, 10, 14, 9, 14, 13, |
| |
| // center |
| // we place this at the end so that we can ignore these indices when not rendering as filled |
| 5, 6, 10, 5, 10, 9, |
| // clang-format on |
| }; |
| |
| // fill and standard stroke indices skip the overstroke "ring" |
| static const uint16_t* gStandardRRectIndices = gOverstrokeRRectIndices + 6 * 4; |
| |
| // overstroke count is arraysize minus the center indices |
| static const int kIndicesPerOverstrokeRRect = SK_ARRAY_COUNT(gOverstrokeRRectIndices) - 6; |
| // fill count skips overstroke indices and includes center |
| static const int kIndicesPerFillRRect = kIndicesPerOverstrokeRRect - 6 * 4 + 6; |
| // stroke count is fill count minus center indices |
| static const int kIndicesPerStrokeRRect = kIndicesPerFillRRect - 6; |
| static const int kVertsPerStandardRRect = 16; |
| static const int kVertsPerOverstrokeRRect = 24; |
| |
| enum RRectType { |
| kFill_RRectType, |
| kStroke_RRectType, |
| kOverstroke_RRectType, |
| }; |
| |
| static int rrect_type_to_vert_count(RRectType type) { |
| switch (type) { |
| case kFill_RRectType: |
| case kStroke_RRectType: |
| return kVertsPerStandardRRect; |
| case kOverstroke_RRectType: |
| return kVertsPerOverstrokeRRect; |
| } |
| SK_ABORT("Invalid type"); |
| return 0; |
| } |
| |
| static int rrect_type_to_index_count(RRectType type) { |
| switch (type) { |
| case kFill_RRectType: |
| return kIndicesPerFillRRect; |
| case kStroke_RRectType: |
| return kIndicesPerStrokeRRect; |
| case kOverstroke_RRectType: |
| return kIndicesPerOverstrokeRRect; |
| } |
| SK_ABORT("Invalid type"); |
| return 0; |
| } |
| |
| static const uint16_t* rrect_type_to_indices(RRectType type) { |
| switch (type) { |
| case kFill_RRectType: |
| case kStroke_RRectType: |
| return gStandardRRectIndices; |
| case kOverstroke_RRectType: |
| return gOverstrokeRRectIndices; |
| } |
| SK_ABORT("Invalid type"); |
| return 0; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| // For distance computations in the interior of filled rrects we: |
| // |
| // add a interior degenerate (point or line) rect |
| // each vertex of that rect gets -outerRad as its radius |
| // this makes the computation of the distance to the outer edge be negative |
| // negative values are caught and then handled differently in the GP's onEmitCode |
| // each vertex is also given the normalized x & y distance from the interior rect's edge |
| // the GP takes the min of those depths +1 to get the normalized distance to the outer edge |
| |
| class CircularRRectOp : public GrMeshDrawOp { |
| private: |
| using Helper = GrSimpleMeshDrawOpHelper; |
| |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| // A devStrokeWidth <= 0 indicates a fill only. If devStrokeWidth > 0 then strokeOnly indicates |
| // whether the rrect is only stroked or stroked and filled. |
| static std::unique_ptr<GrDrawOp> Make(GrContext* context, |
| GrPaint&& paint, |
| const SkMatrix& viewMatrix, |
| const SkRect& devRect, |
| float devRadius, |
| float devStrokeWidth, |
| bool strokeOnly) { |
| return Helper::FactoryHelper<CircularRRectOp>(context, std::move(paint), viewMatrix, |
| devRect, devRadius, |
| devStrokeWidth, strokeOnly); |
| } |
| CircularRRectOp(Helper::MakeArgs& helperArgs, GrColor color, const SkMatrix& viewMatrix, |
| const SkRect& devRect, float devRadius, float devStrokeWidth, bool strokeOnly) |
| : INHERITED(ClassID()) |
| , fViewMatrixIfUsingLocalCoords(viewMatrix) |
| , fHelper(helperArgs, GrAAType::kCoverage) { |
| SkRect bounds = devRect; |
| SkASSERT(!(devStrokeWidth <= 0 && strokeOnly)); |
| SkScalar innerRadius = 0.0f; |
| SkScalar outerRadius = devRadius; |
| SkScalar halfWidth = 0; |
| RRectType type = kFill_RRectType; |
| if (devStrokeWidth > 0) { |
| if (SkScalarNearlyZero(devStrokeWidth)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(devStrokeWidth); |
| } |
| |
| if (strokeOnly) { |
| // Outset stroke by 1/4 pixel |
| devStrokeWidth += 0.25f; |
| // If stroke is greater than width or height, this is still a fill |
| // Otherwise we compute stroke params |
| if (devStrokeWidth <= devRect.width() && devStrokeWidth <= devRect.height()) { |
| innerRadius = devRadius - halfWidth; |
| type = (innerRadius >= 0) ? kStroke_RRectType : kOverstroke_RRectType; |
| } |
| } |
| outerRadius += halfWidth; |
| bounds.outset(halfWidth, halfWidth); |
| } |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform |
| // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
| // Second, the outer radius is used to compute the verts of the bounding box that is |
| // rendered and the outset ensures the box will cover all partially covered by the rrect |
| // corners. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| |
| this->setBounds(bounds, HasAABloat::kYes, IsZeroArea::kNo); |
| |
| // Expand the rect for aa to generate correct vertices. |
| bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| |
| fRRects.emplace_back(RRect{color, innerRadius, outerRadius, bounds, type}); |
| fVertCount = rrect_type_to_vert_count(type); |
| fIndexCount = rrect_type_to_index_count(type); |
| fAllFill = (kFill_RRectType == type); |
| } |
| |
| const char* name() const override { return "CircularRRectOp"; } |
| |
| void visitProxies(const VisitProxyFunc& func) const override { |
| fHelper.visitProxies(func); |
| } |
| |
| SkString dumpInfo() const override { |
| SkString string; |
| for (int i = 0; i < fRRects.count(); ++i) { |
| string.appendf( |
| "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f]," |
| "InnerRad: %.2f, OuterRad: %.2f\n", |
| fRRects[i].fColor, fRRects[i].fDevBounds.fLeft, fRRects[i].fDevBounds.fTop, |
| fRRects[i].fDevBounds.fRight, fRRects[i].fDevBounds.fBottom, |
| fRRects[i].fInnerRadius, fRRects[i].fOuterRadius); |
| } |
| string += fHelper.dumpInfo(); |
| string += INHERITED::dumpInfo(); |
| return string; |
| } |
| |
| RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrPixelConfigIsClamped dstIsClamped) override { |
| GrColor* color = &fRRects.front().fColor; |
| return fHelper.xpRequiresDstTexture(caps, clip, dstIsClamped, |
| GrProcessorAnalysisCoverage::kSingleChannel, color); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
| |
| private: |
| struct CircleVertex { |
| SkPoint fPos; |
| GrColor fColor; |
| SkPoint fOffset; |
| SkScalar fOuterRadius; |
| SkScalar fInnerRadius; |
| // No half plane, we don't use it here. |
| }; |
| |
| static void FillInOverstrokeVerts(CircleVertex** verts, const SkRect& bounds, SkScalar smInset, |
| SkScalar bigInset, SkScalar xOffset, SkScalar outerRadius, |
| SkScalar innerRadius, GrColor color) { |
| SkASSERT(smInset < bigInset); |
| |
| // TL |
| (*verts)->fPos = SkPoint::Make(bounds.fLeft + smInset, bounds.fTop + smInset); |
| (*verts)->fColor = color; |
| (*verts)->fOffset = SkPoint::Make(xOffset, 0); |
| (*verts)->fOuterRadius = outerRadius; |
| (*verts)->fInnerRadius = innerRadius; |
| (*verts)++; |
| |
| // TR |
| (*verts)->fPos = SkPoint::Make(bounds.fRight - smInset, bounds.fTop + smInset); |
| (*verts)->fColor = color; |
| (*verts)->fOffset = SkPoint::Make(xOffset, 0); |
| (*verts)->fOuterRadius = outerRadius; |
| (*verts)->fInnerRadius = innerRadius; |
| (*verts)++; |
| |
| (*verts)->fPos = SkPoint::Make(bounds.fLeft + bigInset, bounds.fTop + bigInset); |
| (*verts)->fColor = color; |
| (*verts)->fOffset = SkPoint::Make(0, 0); |
| (*verts)->fOuterRadius = outerRadius; |
| (*verts)->fInnerRadius = innerRadius; |
| (*verts)++; |
| |
| (*verts)->fPos = SkPoint::Make(bounds.fRight - bigInset, bounds.fTop + bigInset); |
| (*verts)->fColor = color; |
| (*verts)->fOffset = SkPoint::Make(0, 0); |
| (*verts)->fOuterRadius = outerRadius; |
| (*verts)->fInnerRadius = innerRadius; |
| (*verts)++; |
| |
| (*verts)->fPos = SkPoint::Make(bounds.fLeft + bigInset, bounds.fBottom - bigInset); |
| (*verts)->fColor = color; |
| (*verts)->fOffset = SkPoint::Make(0, 0); |
| (*verts)->fOuterRadius = outerRadius; |
| (*verts)->fInnerRadius = innerRadius; |
| (*verts)++; |
| |
| (*verts)->fPos = SkPoint::Make(bounds.fRight - bigInset, bounds.fBottom - bigInset);<
|