blob: 3347227f04508c88dd508a95d8f39d1aa907e812 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDefaultGeoProcFactory.h"
#include "GrOpFlushState.h"
#include "GrRectOpFactory.h"
#include "GrResourceKey.h"
#include "GrResourceProvider.h"
#include "GrSimpleMeshDrawOpHelper.h"
#include "SkPointPriv.h"
#include "SkStrokeRec.h"
GR_DECLARE_STATIC_UNIQUE_KEY(gMiterIndexBufferKey);
GR_DECLARE_STATIC_UNIQUE_KEY(gBevelIndexBufferKey);
static void set_inset_fan(SkPoint* pts, size_t stride, const SkRect& r, SkScalar dx, SkScalar dy) {
SkPointPriv::SetRectFan(pts, r.fLeft + dx, r.fTop + dy, r.fRight - dx, r.fBottom - dy, stride);
}
// We support all hairlines, bevels, and miters, but not round joins. Also, check whether the miter
// limit makes a miter join effectively beveled.
inline static bool allowed_stroke(const SkStrokeRec& stroke, bool* isMiter) {
SkASSERT(stroke.getStyle() == SkStrokeRec::kStroke_Style ||
stroke.getStyle() == SkStrokeRec::kHairline_Style);
// For hairlines, make bevel and round joins appear the same as mitered ones.
if (!stroke.getWidth()) {
*isMiter = true;
return true;
}
if (stroke.getJoin() == SkPaint::kBevel_Join) {
*isMiter = false;
return true;
}
if (stroke.getJoin() == SkPaint::kMiter_Join) {
*isMiter = stroke.getMiter() >= SK_ScalarSqrt2;
return true;
}
return false;
}
static void compute_rects(SkRect* devOutside, SkRect* devOutsideAssist, SkRect* devInside,
bool* isDegenerate, const SkMatrix& viewMatrix, const SkRect& rect,
SkScalar strokeWidth, bool miterStroke) {
SkRect devRect;
viewMatrix.mapRect(&devRect, rect);
SkVector devStrokeSize;
if (strokeWidth > 0) {
devStrokeSize.set(strokeWidth, strokeWidth);
viewMatrix.mapVectors(&devStrokeSize, 1);
devStrokeSize.setAbs(devStrokeSize);
} else {
devStrokeSize.set(SK_Scalar1, SK_Scalar1);
}
const SkScalar dx = devStrokeSize.fX;
const SkScalar dy = devStrokeSize.fY;
const SkScalar rx = SkScalarHalf(dx);
const SkScalar ry = SkScalarHalf(dy);
*devOutside = devRect;
*devOutsideAssist = devRect;
*devInside = devRect;
devOutside->outset(rx, ry);
devInside->inset(rx, ry);
// If we have a degenerate stroking rect(ie the stroke is larger than inner rect) then we
// make a degenerate inside rect to avoid double hitting. We will also jam all of the points
// together when we render these rects.
SkScalar spare;
{
SkScalar w = devRect.width() - dx;
SkScalar h = devRect.height() - dy;
spare = SkTMin(w, h);
}
*isDegenerate = spare <= 0;
if (*isDegenerate) {
devInside->fLeft = devInside->fRight = devRect.centerX();
devInside->fTop = devInside->fBottom = devRect.centerY();
}
// For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist)
// to draw the outside of the octagon. Because there are 8 vertices on the outer
// edge, while vertex number of inner edge is 4, the same as miter-stroke.
if (!miterStroke) {
devOutside->inset(0, ry);
devOutsideAssist->outset(0, ry);
}
}
static sk_sp<GrGeometryProcessor> create_stroke_rect_gp(bool tweakAlphaForCoverage,
const SkMatrix& viewMatrix,
bool usesLocalCoords) {
using namespace GrDefaultGeoProcFactory;
Coverage::Type coverageType;
if (tweakAlphaForCoverage) {
coverageType = Coverage::kSolid_Type;
} else {
coverageType = Coverage::kAttribute_Type;
}
LocalCoords::Type localCoordsType =
usesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type;
return MakeForDeviceSpace(Color::kPremulGrColorAttribute_Type, coverageType, localCoordsType,
viewMatrix);
}
namespace {
class AAStrokeRectOp final : public GrMeshDrawOp {
private:
using Helper = GrSimpleMeshDrawOpHelper;
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<GrDrawOp> Make(GrContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkRect& devOutside,
const SkRect& devInside) {
return Helper::FactoryHelper<AAStrokeRectOp>(context, std::move(paint), viewMatrix,
devOutside, devInside);
}
AAStrokeRectOp(const Helper::MakeArgs& helperArgs, GrColor color, const SkMatrix& viewMatrix,
const SkRect& devOutside, const SkRect& devInside)
: INHERITED(ClassID())
, fHelper(helperArgs, GrAAType::kCoverage)
, fViewMatrix(viewMatrix) {
SkASSERT(!devOutside.isEmpty());
SkASSERT(!devInside.isEmpty());
fRects.emplace_back(RectInfo{color, devOutside, devOutside, devInside, false});
this->setBounds(devOutside, HasAABloat::kYes, IsZeroArea::kNo);
fMiterStroke = true;
}
static std::unique_ptr<GrDrawOp> Make(GrContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkRect& rect,
const SkStrokeRec& stroke) {
bool isMiter;
if (!allowed_stroke(stroke, &isMiter)) {
return nullptr;
}
return Helper::FactoryHelper<AAStrokeRectOp>(context, std::move(paint), viewMatrix, rect,
stroke, isMiter);
}
AAStrokeRectOp(const Helper::MakeArgs& helperArgs, GrColor color, const SkMatrix& viewMatrix,
const SkRect& rect, const SkStrokeRec& stroke, bool isMiter)
: INHERITED(ClassID())
, fHelper(helperArgs, GrAAType::kCoverage)
, fViewMatrix(viewMatrix) {
fMiterStroke = isMiter;
RectInfo& info = fRects.push_back();
compute_rects(&info.fDevOutside, &info.fDevOutsideAssist, &info.fDevInside,
&info.fDegenerate, viewMatrix, rect, stroke.getWidth(), isMiter);
info.fColor = color;
if (isMiter) {
this->setBounds(info.fDevOutside, HasAABloat::kYes, IsZeroArea::kNo);
} else {
// The outer polygon of the bevel stroke is an octagon specified by the points of a
// pair of overlapping rectangles where one is wide and the other is narrow.
SkRect bounds = info.fDevOutside;
bounds.joinPossiblyEmptyRect(info.fDevOutsideAssist);
this->setBounds(bounds, HasAABloat::kYes, IsZeroArea::kNo);
}
}
const char* name() const override { return "AAStrokeRect"; }
void visitProxies(const VisitProxyFunc& func) const override {
fHelper.visitProxies(func);
}
SkString dumpInfo() const override {
SkString string;
for (const auto& info : fRects) {
string.appendf(
"Color: 0x%08x, ORect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], "
"AssistORect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], "
"IRect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], Degen: %d",
info.fColor, info.fDevOutside.fLeft, info.fDevOutside.fTop,
info.fDevOutside.fRight, info.fDevOutside.fBottom, info.fDevOutsideAssist.fLeft,
info.fDevOutsideAssist.fTop, info.fDevOutsideAssist.fRight,
info.fDevOutsideAssist.fBottom, info.fDevInside.fLeft, info.fDevInside.fTop,
info.fDevInside.fRight, info.fDevInside.fBottom, info.fDegenerate);
}
string += fHelper.dumpInfo();
string += INHERITED::dumpInfo();
return string;
}
FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrPixelConfigIsClamped dstIsClamped) override {
return fHelper.xpRequiresDstTexture(caps, clip, dstIsClamped,
GrProcessorAnalysisCoverage::kSingleChannel,
&fRects.back().fColor);
}
private:
void onPrepareDraws(Target*) override;
static const int kMiterIndexCnt = 3 * 24;
static const int kMiterVertexCnt = 16;
static const int kNumMiterRectsInIndexBuffer = 256;
static const int kBevelIndexCnt = 48 + 36 + 24;
static const int kBevelVertexCnt = 24;
static const int kNumBevelRectsInIndexBuffer = 256;
static sk_sp<const GrBuffer> GetIndexBuffer(GrResourceProvider*, bool miterStroke);
const SkMatrix& viewMatrix() const { return fViewMatrix; }
bool miterStroke() const { return fMiterStroke; }
bool onCombineIfPossible(GrOp* t, const GrCaps&) override;
void generateAAStrokeRectGeometry(void* vertices,
size_t offset,
size_t vertexStride,
int outerVertexNum,
int innerVertexNum,
GrColor color,
const SkRect& devOutside,
const SkRect& devOutsideAssist,
const SkRect& devInside,
bool miterStroke,
bool degenerate,
bool tweakAlphaForCoverage) const;
// TODO support AA rotated stroke rects by copying around view matrices
struct RectInfo {
GrColor fColor;
SkRect fDevOutside;
SkRect fDevOutsideAssist;
SkRect fDevInside;
bool fDegenerate;
};
Helper fHelper;
SkSTArray<1, RectInfo, true> fRects;
SkMatrix fViewMatrix;
bool fMiterStroke;
typedef GrMeshDrawOp INHERITED;
};
} // anonymous namespace
void AAStrokeRectOp::onPrepareDraws(Target* target) {
sk_sp<GrGeometryProcessor> gp(create_stroke_rect_gp(fHelper.compatibleWithAlphaAsCoverage(),
this->viewMatrix(),
fHelper.usesLocalCoords()));
if (!gp) {
SkDebugf("Couldn't create GrGeometryProcessor\n");
return;
}
size_t vertexStride = fHelper.compatibleWithAlphaAsCoverage()
? sizeof(GrDefaultGeoProcFactory::PositionColorAttr)
: sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr);
SkASSERT(vertexStride == gp->debugOnly_vertexStride());
int innerVertexNum = 4;
int outerVertexNum = this->miterStroke() ? 4 : 8;
int verticesPerInstance = (outerVertexNum + innerVertexNum) * 2;
int indicesPerInstance = this->miterStroke() ? kMiterIndexCnt : kBevelIndexCnt;
int instanceCount = fRects.count();
sk_sp<const GrBuffer> indexBuffer = GetIndexBuffer(target->resourceProvider(), this->miterStroke());
PatternHelper helper(GrPrimitiveType::kTriangles);
void* vertices =
helper.init(target, vertexStride, indexBuffer.get(),
verticesPerInstance, indicesPerInstance, instanceCount);
if (!vertices || !indexBuffer) {
SkDebugf("Could not allocate vertices\n");
return;
}
for (int i = 0; i < instanceCount; i++) {
const RectInfo& info = fRects[i];
this->generateAAStrokeRectGeometry(vertices,
i * verticesPerInstance * vertexStride,
vertexStride,
outerVertexNum,
innerVertexNum,
info.fColor,
info.fDevOutside,
info.fDevOutsideAssist,
info.fDevInside,
fMiterStroke,
info.fDegenerate,
fHelper.compatibleWithAlphaAsCoverage());
}
helper.recordDraw(target, gp.get(), fHelper.makePipeline(target));
}
sk_sp<const GrBuffer> AAStrokeRectOp::GetIndexBuffer(GrResourceProvider* resourceProvider,
bool miterStroke) {
if (miterStroke) {
// clang-format off
static const uint16_t gMiterIndices[] = {
0 + 0, 1 + 0, 5 + 0, 5 + 0, 4 + 0, 0 + 0,
1 + 0, 2 + 0, 6 + 0, 6 + 0, 5 + 0, 1 + 0,
2 + 0, 3 + 0, 7 + 0, 7 + 0, 6 + 0, 2 + 0,
3 + 0, 0 + 0, 4 + 0, 4 + 0, 7 + 0, 3 + 0,
0 + 4, 1 + 4, 5 + 4, 5 + 4, 4 + 4, 0 + 4,
1 + 4, 2 + 4, 6 + 4, 6 + 4, 5 + 4, 1 + 4,
2 + 4, 3 + 4, 7 + 4, 7 + 4, 6 + 4, 2 + 4,
3 + 4, 0 + 4, 4 + 4, 4 + 4, 7 + 4, 3 + 4,
0 + 8, 1 + 8, 5 + 8, 5 + 8, 4 + 8, 0 + 8,
1 + 8, 2 + 8, 6 + 8, 6 + 8, 5 + 8, 1 + 8,
2 + 8, 3 + 8, 7 + 8, 7 + 8, 6 + 8, 2 + 8,
3 + 8, 0 + 8, 4 + 8, 4 + 8, 7 + 8, 3 + 8,
};
// clang-format on
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gMiterIndices) == kMiterIndexCnt);
GR_DEFINE_STATIC_UNIQUE_KEY(gMiterIndexBufferKey);
return resourceProvider->findOrCreatePatternedIndexBuffer(
gMiterIndices, kMiterIndexCnt, kNumMiterRectsInIndexBuffer, kMiterVertexCnt,
gMiterIndexBufferKey);
} else {
/**
* As in miter-stroke, index = a + b, and a is the current index, b is the shift
* from the first index. The index layout:
* outer AA line: 0~3, 4~7
* outer edge: 8~11, 12~15
* inner edge: 16~19
* inner AA line: 20~23
* Following comes a bevel-stroke rect and its indices:
*
* 4 7
* *********************************
* * ______________________________ *
* * / 12 15 \ *
* * / \ *
* 0 * |8 16_____________________19 11 | * 3
* * | | | | *
* * | | **************** | | *
* * | | * 20 23 * | | *
* * | | * * | | *
* * | | * 21 22 * | | *
* * | | **************** | | *
* * | |____________________| | *
* 1 * |9 17 18 10| * 2
* * \ / *
* * \13 __________________________14/ *
* * *
* **********************************
* 5 6
*/
// clang-format off
static const uint16_t gBevelIndices[] = {
// Draw outer AA, from outer AA line to outer edge, shift is 0.
0 + 0, 1 + 0, 9 + 0, 9 + 0, 8 + 0, 0 + 0,
1 + 0, 5 + 0, 13 + 0, 13 + 0, 9 + 0, 1 + 0,
5 + 0, 6 + 0, 14 + 0, 14 + 0, 13 + 0, 5 + 0,
6 + 0, 2 + 0, 10 + 0, 10 + 0, 14 + 0, 6 + 0,
2 + 0, 3 + 0, 11 + 0, 11 + 0, 10 + 0, 2 + 0,
3 + 0, 7 + 0, 15 + 0, 15 + 0, 11 + 0, 3 + 0,
7 + 0, 4 + 0, 12 + 0, 12 + 0, 15 + 0, 7 + 0,
4 + 0, 0 + 0, 8 + 0, 8 + 0, 12 + 0, 4 + 0,
// Draw the stroke, from outer edge to inner edge, shift is 8.
0 + 8, 1 + 8, 9 + 8, 9 + 8, 8 + 8, 0 + 8,
1 + 8, 5 + 8, 9 + 8,
5 + 8, 6 + 8, 10 + 8, 10 + 8, 9 + 8, 5 + 8,
6 + 8, 2 + 8, 10 + 8,
2 + 8, 3 + 8, 11 + 8, 11 + 8, 10 + 8, 2 + 8,
3 + 8, 7 + 8, 11 + 8,
7 + 8, 4 + 8, 8 + 8, 8 + 8, 11 + 8, 7 + 8,
4 + 8, 0 + 8, 8 + 8,
// Draw the inner AA, from inner edge to inner AA line, shift is 16.
0 + 16, 1 + 16, 5 + 16, 5 + 16, 4 + 16, 0 + 16,
1 + 16, 2 + 16, 6 + 16, 6 + 16, 5 + 16, 1 + 16,
2 + 16, 3 + 16, 7 + 16, 7 + 16, 6 + 16, 2 + 16,
3 + 16, 0 + 16, 4 + 16, 4 + 16, 7 + 16, 3 + 16,
};
// clang-format on
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gBevelIndices) == kBevelIndexCnt);
GR_DEFINE_STATIC_UNIQUE_KEY(gBevelIndexBufferKey);
return resourceProvider->findOrCreatePatternedIndexBuffer(
gBevelIndices, kBevelIndexCnt, kNumBevelRectsInIndexBuffer, kBevelVertexCnt,
gBevelIndexBufferKey);
}
}
bool AAStrokeRectOp::onCombineIfPossible(GrOp* t, const GrCaps& caps) {
AAStrokeRectOp* that = t->cast<AAStrokeRectOp>();
if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
return false;
}
// TODO combine across miterstroke changes
if (this->miterStroke() != that->miterStroke()) {
return false;
}
// We apply the viewmatrix to the rect points on the cpu. However, if the pipeline uses
// local coords then we won't be able to combine. TODO: Upload local coords as an attribute.
if (fHelper.usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
fRects.push_back_n(that->fRects.count(), that->fRects.begin());
this->joinBounds(*that);
return true;
}
static void setup_scale(int* scale, SkScalar inset) {
if (inset < SK_ScalarHalf) {
*scale = SkScalarFloorToInt(512.0f * inset / (inset + SK_ScalarHalf));
SkASSERT(*scale >= 0 && *scale <= 255);
} else {
*scale = 0xff;
}
}
void AAStrokeRectOp::generateAAStrokeRectGeometry(void* vertices,
size_t offset,
size_t vertexStride,
int outerVertexNum,
int innerVertexNum,
GrColor color,
const SkRect& devOutside,
const SkRect& devOutsideAssist,
const SkRect& devInside,
bool miterStroke,
bool degenerate,
bool tweakAlphaForCoverage) const {
intptr_t verts = reinterpret_cast<intptr_t>(vertices) + offset;
// We create vertices for four nested rectangles. There are two ramps from 0 to full
// coverage, one on the exterior of the stroke and the other on the interior.
// The following pointers refer to the four rects, from outermost to innermost.
SkPoint* fan0Pos = reinterpret_cast<SkPoint*>(verts);
SkPoint* fan1Pos = reinterpret_cast<SkPoint*>(verts + outerVertexNum * vertexStride);
SkPoint* fan2Pos = reinterpret_cast<SkPoint*>(verts + 2 * outerVertexNum * vertexStride);
SkPoint* fan3Pos = reinterpret_cast<SkPoint*>(
verts + (2 * outerVertexNum + innerVertexNum) * vertexStride);
#ifndef SK_IGNORE_THIN_STROKED_RECT_FIX
// TODO: this only really works if the X & Y margins are the same all around
// the rect (or if they are all >= 1.0).
SkScalar inset;
if (!degenerate) {
inset = SkMinScalar(SK_Scalar1, devOutside.fRight - devInside.fRight);
inset = SkMinScalar(inset, devInside.fLeft - devOutside.fLeft);
inset = SkMinScalar(inset, devInside.fTop - devOutside.fTop);
if (miterStroke) {
inset = SK_ScalarHalf * SkMinScalar(inset, devOutside.fBottom - devInside.fBottom);
} else {
inset = SK_ScalarHalf *
SkMinScalar(inset, devOutsideAssist.fBottom - devInside.fBottom);
}
SkASSERT(inset >= 0);
} else {
// TODO use real devRect here
inset = SkMinScalar(devOutside.width(), SK_Scalar1);
inset = SK_ScalarHalf *
SkMinScalar(inset, SkTMax(devOutside.height(), devOutsideAssist.height()));
}
#else
SkScalar inset;
if (!degenerate) {
inset = SK_ScalarHalf;
} else {
// TODO use real devRect here
inset = SkMinScalar(devOutside.width(), SK_Scalar1);
inset = SK_ScalarHalf *
SkMinScalar(inset, SkTMax(devOutside.height(), devOutsideAssist.height()));
}
#endif
if (miterStroke) {
// outermost
set_inset_fan(fan0Pos, vertexStride, devOutside, -SK_ScalarHalf, -SK_ScalarHalf);
// inner two
set_inset_fan(fan1Pos, vertexStride, devOutside, inset, inset);
if (!degenerate) {
set_inset_fan(fan2Pos, vertexStride, devInside, -inset, -inset);
// innermost
set_inset_fan(fan3Pos, vertexStride, devInside, SK_ScalarHalf, SK_ScalarHalf);
} else {
// When the interior rect has become degenerate we smoosh to a single point
SkASSERT(devInside.fLeft == devInside.fRight && devInside.fTop == devInside.fBottom);
SkPointPriv::SetRectFan(fan2Pos, devInside.fLeft, devInside.fTop, devInside.fRight,
devInside.fBottom, vertexStride);
SkPointPriv::SetRectFan(fan3Pos, devInside.fLeft, devInside.fTop, devInside.fRight,
devInside.fBottom, vertexStride);
}
} else {
SkPoint* fan0AssistPos = reinterpret_cast<SkPoint*>(verts + 4 * vertexStride);
SkPoint* fan1AssistPos =
reinterpret_cast<SkPoint*>(verts + (outerVertexNum + 4) * vertexStride);
// outermost
set_inset_fan(fan0Pos, vertexStride, devOutside, -SK_ScalarHalf, -SK_ScalarHalf);
set_inset_fan(fan0AssistPos, vertexStride, devOutsideAssist, -SK_ScalarHalf,
-SK_ScalarHalf);
// outer one of the inner two
set_inset_fan(fan1Pos, vertexStride, devOutside, inset, inset);
set_inset_fan(fan1AssistPos, vertexStride, devOutsideAssist, inset, inset);
if (!degenerate) {
// inner one of the inner two
set_inset_fan(fan2Pos, vertexStride, devInside, -inset, -inset);
// innermost
set_inset_fan(fan3Pos, vertexStride, devInside, SK_ScalarHalf, SK_ScalarHalf);
} else {
// When the interior rect has become degenerate we smoosh to a single point
SkASSERT(devInside.fLeft == devInside.fRight && devInside.fTop == devInside.fBottom);
SkPointPriv::SetRectFan(fan2Pos, devInside.fLeft, devInside.fTop, devInside.fRight,
devInside.fBottom, vertexStride);
SkPointPriv::SetRectFan(fan3Pos, devInside.fLeft, devInside.fTop, devInside.fRight,
devInside.fBottom, vertexStride);
}
}
// Make verts point to vertex color and then set all the color and coverage vertex attrs
// values. The outermost rect has 0 coverage
verts += sizeof(SkPoint);
for (int i = 0; i < outerVertexNum; ++i) {
if (tweakAlphaForCoverage) {
*reinterpret_cast<GrColor*>(verts + i * vertexStride) = 0;
} else {
*reinterpret_cast<GrColor*>(verts + i * vertexStride) = color;
*reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) = 0;
}
}
// scale is the coverage for the the inner two rects.
int scale;
setup_scale(&scale, inset);
float innerCoverage = GrNormalizeByteToFloat(scale);
GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale);
verts += outerVertexNum * vertexStride;
for (int i = 0; i < outerVertexNum + innerVertexNum; ++i) {
if (tweakAlphaForCoverage) {
*reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor;
} else {
*reinterpret_cast<GrColor*>(verts + i * vertexStride) = color;
*reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) = innerCoverage;
}
}
// The innermost rect has 0 coverage, unless we are degenerate, in which case we must apply the
// scaled coverage
verts += (outerVertexNum + innerVertexNum) * vertexStride;
if (!degenerate) {
innerCoverage = 0;
scaledColor = 0;
}
for (int i = 0; i < innerVertexNum; ++i) {
if (tweakAlphaForCoverage) {
*reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor;
} else {
*reinterpret_cast<GrColor*>(verts + i * vertexStride) = color;
*reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) = innerCoverage;
}
}
}
namespace GrRectOpFactory {
std::unique_ptr<GrDrawOp> MakeAAFillNestedRects(GrContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkRect rects[2]) {
SkASSERT(viewMatrix.rectStaysRect());
SkASSERT(!rects[0].isEmpty() && !rects[1].isEmpty());
SkRect devOutside, devInside;
viewMatrix.mapRect(&devOutside, rects[0]);
viewMatrix.mapRect(&devInside, rects[1]);
if (devInside.isEmpty()) {
if (devOutside.isEmpty()) {
return nullptr;
}
return MakeAAFill(context, std::move(paint), viewMatrix, rects[0]);
}
return AAStrokeRectOp::Make(context, std::move(paint), viewMatrix, devOutside, devInside);
}
std::unique_ptr<GrDrawOp> MakeAAStroke(GrContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkRect& rect,
const SkStrokeRec& stroke) {
return AAStrokeRectOp::Make(context, std::move(paint), viewMatrix, rect, stroke);
}
} // namespace GrRectOpFactory
///////////////////////////////////////////////////////////////////////////////////////////////////
#if GR_TEST_UTILS
#include "GrDrawOpTest.h"
GR_DRAW_OP_TEST_DEFINE(AAStrokeRectOp) {
bool miterStroke = random->nextBool();
// Create either a empty rect or a non-empty rect.
SkRect rect =
random->nextBool() ? SkRect::MakeXYWH(10, 10, 50, 40) : SkRect::MakeXYWH(6, 7, 0, 0);
SkScalar minDim = SkMinScalar(rect.width(), rect.height());
SkScalar strokeWidth = random->nextUScalar1() * minDim;
SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
rec.setStrokeStyle(strokeWidth);
rec.setStrokeParams(SkPaint::kButt_Cap,
miterStroke ? SkPaint::kMiter_Join : SkPaint::kBevel_Join, 1.f);
SkMatrix matrix = GrTest::TestMatrixRectStaysRect(random);
return GrRectOpFactory::MakeAAStroke(context, std::move(paint), matrix, rect, rec);
}
#endif