blob: 48cd21b426d15cceeca418e259c1c707f4807f4e [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrGLGpu_DEFINED
#define GrGLGpu_DEFINED
#include "GrGLContext.h"
#include "GrGLIRect.h"
#include "GrGLPathRendering.h"
#include "GrGLProgram.h"
#include "GrGLRenderTarget.h"
#include "GrGLStencilAttachment.h"
#include "GrGLTexture.h"
#include "GrGLVertexArray.h"
#include "GrGpu.h"
#include "GrMesh.h"
#include "GrWindowRectsState.h"
#include "GrXferProcessor.h"
#include "SkLRUCache.h"
#include "SkTArray.h"
#include "SkTypes.h"
class GrGLBuffer;
class GrPipeline;
class GrSwizzle;
#ifdef SK_DEBUG
#define PROGRAM_CACHE_STATS
#endif
class GrGLGpu final : public GrGpu, private GrMesh::SendToGpuImpl {
public:
static sk_sp<GrGpu> Make(sk_sp<const GrGLInterface>, const GrContextOptions&, GrContext*);
~GrGLGpu() override;
void disconnect(DisconnectType) override;
const GrGLContext& glContext() const { return *fGLContext; }
const GrGLInterface* glInterface() const { return fGLContext->interface(); }
const GrGLContextInfo& ctxInfo() const { return *fGLContext; }
GrGLStandard glStandard() const { return fGLContext->standard(); }
GrGLVersion glVersion() const { return fGLContext->version(); }
GrGLSLGeneration glslGeneration() const { return fGLContext->glslGeneration(); }
const GrGLCaps& glCaps() const { return *fGLContext->caps(); }
GrGLPathRendering* glPathRendering() {
SkASSERT(glCaps().shaderCaps()->pathRenderingSupport());
return static_cast<GrGLPathRendering*>(pathRendering());
}
// Used by GrGLProgram to configure OpenGL state.
void bindTexture(int unitIdx, const GrSamplerState& samplerState, GrGLTexture* texture,
GrSurfaceOrigin textureOrigin);
void bindTexelBuffer(int unitIdx, GrPixelConfig, GrGLBuffer*);
void generateMipmaps(const GrSamplerState& params, GrGLTexture* texture,
GrSurfaceOrigin textureOrigin);
// These functions should be used to bind GL objects. They track the GL state and skip redundant
// bindings. Making the equivalent glBind calls directly will confuse the state tracking.
void bindVertexArray(GrGLuint id) {
fHWVertexArrayState.setVertexArrayID(this, id);
}
// These callbacks update state tracking when GL objects are deleted. They are called from
// GrGLResource onRelease functions.
void notifyVertexArrayDelete(GrGLuint id) {
fHWVertexArrayState.notifyVertexArrayDelete(id);
}
// Binds a buffer to the GL target corresponding to 'type', updates internal state tracking, and
// returns the GL target the buffer was bound to.
// When 'type' is kIndex_GrBufferType, this function will also implicitly bind the default VAO.
// If the caller wishes to bind an index buffer to a specific VAO, it can call glBind directly.
GrGLenum bindBuffer(GrBufferType type, const GrBuffer*);
// Called by GrGLBuffer after its buffer object has been destroyed.
void notifyBufferReleased(const GrGLBuffer*);
// The GrGLGpuRTCommandBuffer does not buffer up draws before submitting them to the gpu.
// Thus this is the implementation of the draw call for the corresponding passthrough function
// on GrGLRTGpuCommandBuffer.
void draw(const GrPipeline&,
const GrPrimitiveProcessor&,
const GrMesh[],
const GrPipeline::DynamicState[],
int meshCount);
// GrMesh::SendToGpuImpl methods. These issue the actual GL draw calls.
// Marked final as a hint to the compiler to not use virtual dispatch.
void sendMeshToGpu(GrPrimitiveType, const GrBuffer* vertexBuffer, int vertexCount,
int baseVertex) final;
void sendIndexedMeshToGpu(GrPrimitiveType, const GrBuffer* indexBuffer, int indexCount,
int baseIndex, uint16_t minIndexValue, uint16_t maxIndexValue,
const GrBuffer* vertexBuffer, int baseVertex,
GrPrimitiveRestart) final;
void sendInstancedMeshToGpu(GrPrimitiveType, const GrBuffer* vertexBuffer, int vertexCount,
int baseVertex, const GrBuffer* instanceBuffer, int instanceCount,
int baseInstance) final;
void sendIndexedInstancedMeshToGpu(GrPrimitiveType, const GrBuffer* indexBuffer, int indexCount,
int baseIndex, const GrBuffer* vertexBuffer, int baseVertex,
const GrBuffer* instanceBuffer, int instanceCount,
int baseInstance, GrPrimitiveRestart) final;
// The GrGLGpuRTCommandBuffer does not buffer up draws before submitting them to the gpu.
// Thus this is the implementation of the clear call for the corresponding passthrough function
// on GrGLGpuRTCommandBuffer.
void clear(const GrFixedClip&, GrColor, GrRenderTarget*, GrSurfaceOrigin);
void clearColorAsDraw(const GrFixedClip&, GrGLfloat r, GrGLfloat g, GrGLfloat b, GrGLfloat a,
GrRenderTarget*, GrSurfaceOrigin);
// The GrGLGpuRTCommandBuffer does not buffer up draws before submitting them to the gpu.
// Thus this is the implementation of the clearStencil call for the corresponding passthrough
// function on GrGLGpuRTCommandBuffer.
void clearStencilClip(const GrFixedClip&, bool insideStencilMask,
GrRenderTarget*, GrSurfaceOrigin);
void clearStencil(GrRenderTarget*, int clearValue) override;
GrGpuRTCommandBuffer* createCommandBuffer(
GrRenderTarget*, GrSurfaceOrigin,
const GrGpuRTCommandBuffer::LoadAndStoreInfo&,
const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo&) override;
GrGpuTextureCommandBuffer* createCommandBuffer(GrTexture*, GrSurfaceOrigin) override;
void invalidateBoundRenderTarget() {
fHWBoundRenderTargetUniqueID.makeInvalid();
}
GrStencilAttachment* createStencilAttachmentForRenderTarget(const GrRenderTarget* rt,
int width,
int height) override;
#if GR_TEST_UTILS
GrBackendTexture createTestingOnlyBackendTexture(const void* pixels, int w, int h,
GrPixelConfig config, bool isRenderTarget,
GrMipMapped mipMapped) override;
bool isTestingOnlyBackendTexture(const GrBackendTexture&) const override;
void deleteTestingOnlyBackendTexture(const GrBackendTexture&) override;
GrBackendRenderTarget createTestingOnlyBackendRenderTarget(int w, int h, GrColorType,
GrSRGBEncoded) override;
void deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget&) override;
const GrGLContext* glContextForTesting() const override { return &this->glContext(); }
void resetShaderCacheForTesting() const override { fProgramCache->abandon(); }
void testingOnly_flushGpuAndSync() override;
#endif
GrFence SK_WARN_UNUSED_RESULT insertFence() override;
bool waitFence(GrFence, uint64_t timeout) override;
void deleteFence(GrFence) const override;
sk_sp<GrSemaphore> SK_WARN_UNUSED_RESULT makeSemaphore(bool isOwned) override;
sk_sp<GrSemaphore> wrapBackendSemaphore(const GrBackendSemaphore& semaphore,
GrResourceProvider::SemaphoreWrapType wrapType,
GrWrapOwnership ownership) override;
void insertSemaphore(sk_sp<GrSemaphore> semaphore, bool flush) override;
void waitSemaphore(sk_sp<GrSemaphore> semaphore) override;
sk_sp<GrSemaphore> prepareTextureForCrossContextUsage(GrTexture*) override;
void deleteSync(GrGLsync) const;
void insertEventMarker(const char*);
void bindFramebuffer(GrGLenum fboTarget, GrGLuint fboid);
void deleteFramebuffer(GrGLuint fboid);
private:
GrGLGpu(std::unique_ptr<GrGLContext>, GrContext*);
// GrGpu overrides
void onResetContext(uint32_t resetBits) override;
void xferBarrier(GrRenderTarget*, GrXferBarrierType) override;
sk_sp<GrTexture> onCreateTexture(const GrSurfaceDesc& desc, SkBudgeted budgeted,
const GrMipLevel texels[], int mipLevelCount) override;
GrBuffer* onCreateBuffer(size_t size, GrBufferType intendedType, GrAccessPattern,
const void* data) override;
sk_sp<GrTexture> onWrapBackendTexture(const GrBackendTexture&, GrWrapOwnership) override;
sk_sp<GrTexture> onWrapRenderableBackendTexture(const GrBackendTexture&,
int sampleCnt,
GrWrapOwnership) override;
sk_sp<GrRenderTarget> onWrapBackendRenderTarget(const GrBackendRenderTarget&) override;
sk_sp<GrRenderTarget> onWrapBackendTextureAsRenderTarget(const GrBackendTexture&,
int sampleCnt) override;
// Given a GrPixelConfig return the index into the stencil format array on GrGLCaps to a
// compatible stencil format, or negative if there is no compatible stencil format.
int getCompatibleStencilIndex(GrPixelConfig config);
// Returns whether the texture is successfully created. On success, the
// result is stored in |info|.
// The texture is populated with |texels|, if it exists.
// The texture parameters are cached in |initialTexParams|.
bool createTextureImpl(const GrSurfaceDesc& desc, GrGLTextureInfo* info, bool renderTarget,
GrGLTexture::TexParams* initialTexParams, const GrMipLevel texels[],
int mipLevelCount, GrMipMapsStatus* mipMapsStatus);
// Checks whether glReadPixels can be called to get pixel values in readConfig from the
// render target.
bool readPixelsSupported(GrRenderTarget* target, GrPixelConfig readConfig);
// Checks whether glReadPixels can be called to get pixel values in readConfig from a
// render target that has renderTargetConfig. This may have to create a temporary
// render target and thus is less preferable than the variant that takes a render target.
bool readPixelsSupported(GrPixelConfig renderTargetConfig, GrPixelConfig readConfig);
// Checks whether glReadPixels can be called to get pixel values in readConfig from a
// render target that has the same config as surfaceForConfig. Calls one of the the two
// variations above, depending on whether the surface is a render target or not.
bool readPixelsSupported(GrSurface* surfaceForConfig, GrPixelConfig readConfig);
bool onReadPixels(GrSurface*, int left, int top, int width, int height, GrColorType,
void* buffer, size_t rowBytes) override;
bool onWritePixels(GrSurface*, int left, int top, int width, int height, GrColorType,
const GrMipLevel texels[], int mipLevelCount) override;
bool onTransferPixels(GrTexture*, int left, int top, int width, int height, GrColorType,
GrBuffer* transferBuffer, size_t offset, size_t rowBytes) override;
// Before calling any variation of TexImage, TexSubImage, etc..., call this to ensure that the
// PIXEL_UNPACK_BUFFER is unbound.
void unbindCpuToGpuXferBuffer();
void onResolveRenderTarget(GrRenderTarget* target) override;
bool onCopySurface(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect, const SkIPoint& dstPoint,
bool canDiscardOutsideDstRect) override;
// binds texture unit in GL
void setTextureUnit(int unitIdx);
void setTextureSwizzle(int unitIdx, GrGLenum target, const GrGLenum swizzle[]);
// Flushes state from GrPipeline to GL. Returns false if the state couldn't be set.
// willDrawPoints must be true if point primitives will be rendered after setting the GL state.
bool flushGLState(const GrPipeline&, const GrPrimitiveProcessor&, bool willDrawPoints);
void flushProgram(sk_sp<GrGLProgram>);
// Version for programs that aren't GrGLProgram.
void flushProgram(GrGLuint);
// Sets up vertex/instance attribute pointers and strides.
void setupGeometry(const GrBuffer* indexBuffer,
const GrBuffer* vertexBuffer,
int baseVertex,
const GrBuffer* instanceBuffer,
int baseInstance,
GrPrimitiveRestart);
void flushBlend(const GrXferProcessor::BlendInfo& blendInfo, const GrSwizzle&);
void onFinishFlush(bool insertedSemaphores) override;
bool hasExtension(const char* ext) const { return fGLContext->hasExtension(ext); }
bool copySurfaceAsDraw(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect, const SkIPoint& dstPoint);
void copySurfaceAsCopyTexSubImage(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect, const SkIPoint& dstPoint);
bool copySurfaceAsBlitFramebuffer(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect, const SkIPoint& dstPoint);
bool generateMipmap(GrGLTexture* texture, GrSurfaceOrigin textureOrigin);
void clearStencilClipAsDraw(const GrFixedClip&, bool insideStencilMask,
GrRenderTarget*, GrSurfaceOrigin);
static bool BlendCoeffReferencesConstant(GrBlendCoeff coeff);
class ProgramCache : public ::SkNoncopyable {
public:
ProgramCache(GrGLGpu* gpu);
~ProgramCache();
void abandon();
GrGLProgram* refProgram(const GrGLGpu*, const GrPipeline&, const GrPrimitiveProcessor&,
bool hasPointSize);
private:
// We may actually have kMaxEntries+1 shaders in the GL context because we create a new
// shader before evicting from the cache.
static const int kMaxEntries = 128;
struct Entry;
// binary search for entry matching desc. returns index into fEntries that matches desc or ~
// of the index of where it should be inserted.
int search(const GrProgramDesc& desc) const;
struct DescHash {
uint32_t operator()(const GrProgramDesc& desc) const {
return SkOpts::hash_fn(desc.asKey(), desc.keyLength(), 0);
}
};
SkLRUCache<GrProgramDesc, std::unique_ptr<Entry>, DescHash> fMap;
GrGLGpu* fGpu;
#ifdef PROGRAM_CACHE_STATS
int fTotalRequests;
int fCacheMisses;
int fHashMisses; // cache hit but hash table missed
#endif
};
void flushColorWrite(bool writeColor);
// flushes the scissor. see the note on flushBoundTextureAndParams about
// flushing the scissor after that function is called.
void flushScissor(const GrScissorState&,
const GrGLIRect& rtViewport,
GrSurfaceOrigin rtOrigin);
// disables the scissor
void disableScissor();
void flushWindowRectangles(const GrWindowRectsState&, const GrGLRenderTarget*, GrSurfaceOrigin);
void disableWindowRectangles();
// sets a texture unit to use for texture operations other than binding a texture to a program.
// ensures that such operations don't negatively interact with tracking bound textures.
void setScratchTextureUnit();
// The passed bounds contains the render target's color values that will subsequently be
// written.
void flushRenderTarget(GrGLRenderTarget*, GrSurfaceOrigin, const SkIRect& bounds,
bool disableSRGB = false);
// This version has an implicit bounds of the entire render target.
void flushRenderTarget(GrGLRenderTarget*, bool disableSRGB = false);
// This version can be used when the render target's colors will not be written.
void flushRenderTargetNoColorWrites(GrGLRenderTarget*, bool disableSRGB = false);
// Need not be called if flushRenderTarget is used.
void flushViewport(const GrGLIRect&);
void flushStencil(const GrStencilSettings&);
void disableStencil();
// rt is used only if useHWAA is true.
void flushHWAAState(GrRenderTarget* rt, bool useHWAA, bool stencilEnabled);
void flushMinSampleShading(float minSampleShading);
void flushFramebufferSRGB(bool enable);
// helper for onCreateTexture and writeTexturePixels
enum UploadType {
kNewTexture_UploadType, // we are creating a new texture
kWrite_UploadType, // we are using TexSubImage2D to copy data to an existing texture
};
bool uploadTexData(GrPixelConfig texConfig, int texWidth, int texHeight, GrGLenum target,
UploadType uploadType, int left, int top, int width, int height,
GrPixelConfig dataConfig, const GrMipLevel texels[], int mipLevelCount,
GrMipMapsStatus* mipMapsStatus = nullptr);
bool createRenderTargetObjects(const GrSurfaceDesc&, const GrGLTextureInfo& texInfo,
GrGLRenderTarget::IDDesc*);
enum TempFBOTarget {
kSrc_TempFBOTarget,
kDst_TempFBOTarget
};
// Binds a surface as a FBO for copying, reading, or clearing. If the surface already owns an
// FBO ID then that ID is bound. If not the surface is temporarily bound to a FBO and that FBO
// is bound. This must be paired with a call to unbindSurfaceFBOForPixelOps().
void bindSurfaceFBOForPixelOps(GrSurface* surface, GrGLenum fboTarget, GrGLIRect* viewport,
TempFBOTarget tempFBOTarget);
// Must be called if bindSurfaceFBOForPixelOps was used to bind a surface for copying.
void unbindTextureFBOForPixelOps(GrGLenum fboTarget, GrSurface* surface);
void onDumpJSON(SkJSONWriter*) const override;
bool createCopyProgram(GrTexture* srcTexture);
bool createMipmapProgram(int progIdx);
bool createStencilClipClearProgram();
bool createClearColorProgram();
std::unique_ptr<GrGLContext> fGLContext;
// GL program-related state
ProgramCache* fProgramCache;
///////////////////////////////////////////////////////////////////////////
///@name Caching of GL State
///@{
int fHWActiveTextureUnitIdx;
GrGLuint fHWProgramID;
sk_sp<GrGLProgram> fHWProgram;
enum TriState {
kNo_TriState,
kYes_TriState,
kUnknown_TriState
};
GrGLuint fTempSrcFBOID;
GrGLuint fTempDstFBOID;
GrGLuint fStencilClearFBOID;
// last scissor / viewport scissor state seen by the GL.
struct {
TriState fEnabled;
GrGLIRect fRect;
void invalidate() {
fEnabled = kUnknown_TriState;
fRect.invalidate();
}
} fHWScissorSettings;
class {
public:
bool valid() const { return kInvalidSurfaceOrigin != fRTOrigin; }
void invalidate() { fRTOrigin = kInvalidSurfaceOrigin; }
bool knownDisabled() const { return this->valid() && !fWindowState.enabled(); }
void setDisabled() {
fRTOrigin = kTopLeft_GrSurfaceOrigin;
fWindowState.setDisabled();
}
void set(GrSurfaceOrigin rtOrigin, const GrGLIRect& viewport,
const GrWindowRectsState& windowState) {
fRTOrigin = rtOrigin;
fViewport = viewport;
fWindowState = windowState;
}
bool knownEqualTo(GrSurfaceOrigin rtOrigin, const GrGLIRect& viewport,
const GrWindowRectsState& windowState) const {
if (!this->valid()) {
return false;
}
if (fWindowState.numWindows() && (fRTOrigin != rtOrigin || fViewport != viewport)) {
return false;
}
return fWindowState == windowState;
}
private:
enum { kInvalidSurfaceOrigin = -1 };
int fRTOrigin;
GrGLIRect fViewport;
GrWindowRectsState fWindowState;
} fHWWindowRectsState;
GrGLIRect fHWViewport;
/**
* Tracks vertex attrib array state.
*/
class HWVertexArrayState {
public:
HWVertexArrayState() : fCoreProfileVertexArray(nullptr) { this->invalidate(); }
~HWVertexArrayState() { delete fCoreProfileVertexArray; }
void invalidate() {
fBoundVertexArrayIDIsValid = false;
fDefaultVertexArrayAttribState.invalidate();
if (fCoreProfileVertexArray) {
fCoreProfileVertexArray->invalidateCachedState();
}
}
void notifyVertexArrayDelete(GrGLuint id) {
if (fBoundVertexArrayIDIsValid && fBoundVertexArrayID == id) {
// Does implicit bind to 0
fBoundVertexArrayID = 0;
}
}
void setVertexArrayID(GrGLGpu* gpu, GrGLuint arrayID) {
if (!gpu->glCaps().vertexArrayObjectSupport()) {
SkASSERT(0 == arrayID);
return;
}
if (!fBoundVertexArrayIDIsValid || arrayID != fBoundVertexArrayID) {
GR_GL_CALL(gpu->glInterface(), BindVertexArray(arrayID));
fBoundVertexArrayIDIsValid = true;
fBoundVertexArrayID = arrayID;
}
}
/**
* Binds the vertex array that should be used for internal draws, and returns its attrib
* state. This binds the default VAO (ID=zero) unless we are on a core profile, in which
* case we use a dummy array instead.
*
* If an index buffer is privided, it will be bound to the vertex array. Otherwise the
* index buffer binding will be left unchanged.
*
* The returned GrGLAttribArrayState should be used to set vertex attribute arrays.
*/
GrGLAttribArrayState* bindInternalVertexArray(GrGLGpu*, const GrBuffer* ibuff = nullptr);
private:
GrGLuint fBoundVertexArrayID;
bool fBoundVertexArrayIDIsValid;
// We return a non-const pointer to this from bindArrayAndBuffersToDraw when vertex array 0
// is bound. However, this class is internal to GrGLGpu and this object never leaks out of
// GrGLGpu.
GrGLAttribArrayState fDefaultVertexArrayAttribState;
// This is used when we're using a core profile.
GrGLVertexArray* fCoreProfileVertexArray;
} fHWVertexArrayState;
struct {
GrGLenum fGLTarget;
GrGpuResource::UniqueID fBoundBufferUniqueID;
bool fBufferZeroKnownBound;
void invalidate() {
fBoundBufferUniqueID.makeInvalid();
fBufferZeroKnownBound = false;
}
} fHWBufferState[kGrBufferTypeCount];
struct {
GrBlendEquation fEquation;
GrBlendCoeff fSrcCoeff;
GrBlendCoeff fDstCoeff;
GrColor fConstColor;
bool fConstColorValid;
TriState fEnabled;
void invalidate() {
fEquation = static_cast<GrBlendEquation>(-1);
fSrcCoeff = static_cast<GrBlendCoeff>(-1);
fDstCoeff = static_cast<GrBlendCoeff>(-1);
fConstColorValid = false;
fEnabled = kUnknown_TriState;
}
} fHWBlendState;
TriState fMSAAEnabled;
GrStencilSettings fHWStencilSettings;
TriState fHWStencilTestEnabled;
TriState fHWWriteToColor;
GrGpuResource::UniqueID fHWBoundRenderTargetUniqueID;
TriState fHWSRGBFramebuffer;
SkTArray<GrGpuResource::UniqueID, true> fHWBoundTextureUniqueIDs;
GrGLuint fBoundDrawFramebuffer = 0;
struct BufferTexture {
BufferTexture() : fTextureID(0), fKnownBound(false),
fAttachedBufferUniqueID(SK_InvalidUniqueID),
fSwizzle(GrSwizzle::RGBA()) {}
GrGLuint fTextureID;
bool fKnownBound;
GrPixelConfig fTexelConfig;
GrGpuResource::UniqueID fAttachedBufferUniqueID;
GrSwizzle fSwizzle;
};
SkTArray<BufferTexture, true> fHWBufferTextures;
int fHWMaxUsedBufferTextureUnit;
// EXT_raster_multisample.
TriState fHWRasterMultisampleEnabled;
int fHWNumRasterSamples;
///@}
/** IDs for copy surface program. (3 sampler types) */
struct {
GrGLuint fProgram = 0;
GrGLint fTextureUniform = 0;
GrGLint fTexCoordXformUniform = 0;
GrGLint fPosXformUniform = 0;
} fCopyPrograms[3];
sk_sp<GrGLBuffer> fCopyProgramArrayBuffer;
/** IDs for texture mipmap program. (4 filter configurations) */
struct {
GrGLuint fProgram = 0;
GrGLint fTextureUniform = 0;
GrGLint fTexCoordXformUniform = 0;
} fMipmapPrograms[4];
sk_sp<GrGLBuffer> fMipmapProgramArrayBuffer;
GrGLuint fStencilClipClearProgram = 0;
sk_sp<GrGLBuffer> fStencilClipClearArrayBuffer;
/** IDs for clear render target color program. */
struct {
GrGLuint fProgram = 0;
GrGLint fColorUniform = 0;
} fClearColorProgram;
sk_sp<GrGLBuffer> fClearProgramArrayBuffer;
static int TextureToCopyProgramIdx(GrTexture* texture);
static int TextureSizeToMipmapProgramIdx(int width, int height) {
const bool wide = (width > 1) && SkToBool(width & 0x1);
const bool tall = (height > 1) && SkToBool(height & 0x1);
return (wide ? 0x2 : 0x0) | (tall ? 0x1 : 0x0);
}
float fHWMinSampleShading;
GrPrimitiveType fLastPrimitiveType;
bool fRequiresFlushBeforeNextInstancedDraw = false;
typedef GrGpu INHERITED;
friend class GrGLPathRendering; // For accessing setTextureUnit.
};
#endif