|  | /* | 
|  | * Copyright 2009 The Android Open Source Project | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "SkQuadClipper.h" | 
|  | #include "SkGeometry.h" | 
|  |  | 
|  | SkQuadClipper::SkQuadClipper() { | 
|  | fClip.setEmpty(); | 
|  | } | 
|  |  | 
|  | void SkQuadClipper::setClip(const SkIRect& clip) { | 
|  | // conver to scalars, since that's where we'll see the points | 
|  | fClip.set(clip); | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2, | 
|  | SkScalar target, SkScalar* t) { | 
|  | /* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2 | 
|  | *  We solve for t, using quadratic equation, hence we have to rearrange | 
|  | * our cooefficents to look like At^2 + Bt + C | 
|  | */ | 
|  | SkScalar A = c0 - c1 - c1 + c2; | 
|  | SkScalar B = 2*(c1 - c0); | 
|  | SkScalar C = c0 - target; | 
|  |  | 
|  | SkScalar roots[2];  // we only expect one, but make room for 2 for safety | 
|  | int count = SkFindUnitQuadRoots(A, B, C, roots); | 
|  | if (count) { | 
|  | *t = roots[0]; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) { | 
|  | return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t); | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | /*  If we somehow returned the fact that we had to flip the pts in Y, we could | 
|  | communicate that to setQuadratic, and then avoid having to flip it back | 
|  | here (only to have setQuadratic do the flip again) | 
|  | */ | 
|  | bool SkQuadClipper::clipQuad(const SkPoint srcPts[3], SkPoint dst[3]) { | 
|  | bool reverse; | 
|  |  | 
|  | // we need the data to be monotonically increasing in Y | 
|  | if (srcPts[0].fY > srcPts[2].fY) { | 
|  | dst[0] = srcPts[2]; | 
|  | dst[1] = srcPts[1]; | 
|  | dst[2] = srcPts[0]; | 
|  | reverse = true; | 
|  | } else { | 
|  | memcpy(dst, srcPts, 3 * sizeof(SkPoint)); | 
|  | reverse = false; | 
|  | } | 
|  |  | 
|  | // are we completely above or below | 
|  | const SkScalar ctop = fClip.fTop; | 
|  | const SkScalar cbot = fClip.fBottom; | 
|  | if (dst[2].fY <= ctop || dst[0].fY >= cbot) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkScalar t; | 
|  | SkPoint tmp[5]; // for SkChopQuadAt | 
|  |  | 
|  | // are we partially above | 
|  | if (dst[0].fY < ctop) { | 
|  | if (chopMonoQuadAtY(dst, ctop, &t)) { | 
|  | // take the 2nd chopped quad | 
|  | SkChopQuadAt(dst, tmp, t); | 
|  | dst[0] = tmp[2]; | 
|  | dst[1] = tmp[3]; | 
|  | } else { | 
|  | // if chopMonoQuadAtY failed, then we may have hit inexact numerics | 
|  | // so we just clamp against the top | 
|  | for (int i = 0; i < 3; i++) { | 
|  | if (dst[i].fY < ctop) { | 
|  | dst[i].fY = ctop; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // are we partially below | 
|  | if (dst[2].fY > cbot) { | 
|  | if (chopMonoQuadAtY(dst, cbot, &t)) { | 
|  | SkChopQuadAt(dst, tmp, t); | 
|  | dst[1] = tmp[1]; | 
|  | dst[2] = tmp[2]; | 
|  | } else { | 
|  | // if chopMonoQuadAtY failed, then we may have hit inexact numerics | 
|  | // so we just clamp against the bottom | 
|  | for (int i = 0; i < 3; i++) { | 
|  | if (dst[i].fY > cbot) { | 
|  | dst[i].fY = cbot; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (reverse) { | 
|  | SkTSwap<SkPoint>(dst[0], dst[2]); | 
|  | } | 
|  | return true; | 
|  | } |