| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkTextureCompressor.h" |
| |
| #include "SkEndian.h" |
| |
| // #define COMPRESS_R11_EAC_SLOW 1 |
| // #define COMPRESS_R11_EAC_FAST 1 |
| #define COMPRESS_R11_EAC_FASTEST 1 |
| |
| // Blocks compressed into R11 EAC are represented as follows: |
| // 0000000000000000000000000000000000000000000000000000000000000000 |
| // |base_cw|mod|mul| ----------------- indices ------------------- |
| // |
| // To reconstruct the value of a given pixel, we use the formula: |
| // clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8) |
| // |
| // mod_val is chosen from a palette of values based on the index of the |
| // given pixel. The palette is chosen by the value stored in mod. |
| // This formula returns a value between 0 and 2047, which is converted |
| // to a float from 0 to 1 in OpenGL. |
| // |
| // If mul is zero, then we set mul = 1/8, so that the formula becomes |
| // clamp[0, 2047](base_cw * 8 + 4 + mod_val) |
| |
| #if COMPRESS_R11_EAC_SLOW |
| |
| static const int kNumR11EACPalettes = 16; |
| static const int kR11EACPaletteSize = 8; |
| static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = { |
| {-3, -6, -9, -15, 2, 5, 8, 14}, |
| {-3, -7, -10, -13, 2, 6, 9, 12}, |
| {-2, -5, -8, -13, 1, 4, 7, 12}, |
| {-2, -4, -6, -13, 1, 3, 5, 12}, |
| {-3, -6, -8, -12, 2, 5, 7, 11}, |
| {-3, -7, -9, -11, 2, 6, 8, 10}, |
| {-4, -7, -8, -11, 3, 6, 7, 10}, |
| {-3, -5, -8, -11, 2, 4, 7, 10}, |
| {-2, -6, -8, -10, 1, 5, 7, 9}, |
| {-2, -5, -8, -10, 1, 4, 7, 9}, |
| {-2, -4, -8, -10, 1, 3, 7, 9}, |
| {-2, -5, -7, -10, 1, 4, 6, 9}, |
| {-3, -4, -7, -10, 2, 3, 6, 9}, |
| {-1, -2, -3, -10, 0, 1, 2, 9}, |
| {-4, -6, -8, -9, 3, 5, 7, 8}, |
| {-3, -5, -7, -9, 2, 4, 6, 8} |
| }; |
| |
| // Pack the base codeword, palette, and multiplier into the 64 bits necessary |
| // to decode it. |
| static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier, |
| uint64_t indices) { |
| SkASSERT(palette < 16); |
| SkASSERT(multiplier < 16); |
| SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
| |
| const uint64_t b = static_cast<uint64_t>(base_cw) << 56; |
| const uint64_t m = static_cast<uint64_t>(multiplier) << 52; |
| const uint64_t p = static_cast<uint64_t>(palette) << 48; |
| return SkEndian_SwapBE64(b | m | p | indices); |
| } |
| |
| // Given a base codeword, a modifier, and a multiplier, compute the proper |
| // pixel value in the range [0, 2047]. |
| static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) { |
| int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8); |
| return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret); |
| } |
| |
| // Compress a block into R11 EAC format. |
| // The compression works as follows: |
| // 1. Find the center of the span of the block's values. Use this as the base codeword. |
| // 2. Choose a multiplier based roughly on the size of the span of block values |
| // 3. Iterate through each palette and choose the one with the most accurate |
| // modifiers. |
| static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
| // Find the center of the data... |
| uint16_t bmin = block[0]; |
| uint16_t bmax = block[0]; |
| for (int i = 1; i < 16; ++i) { |
| bmin = SkTMin<uint16_t>(bmin, block[i]); |
| bmax = SkTMax<uint16_t>(bmax, block[i]); |
| } |
| |
| uint16_t center = (bmax + bmin) >> 1; |
| SkASSERT(center <= 255); |
| |
| // Based on the min and max, we can guesstimate a proper multiplier |
| // This is kind of a magic choice to start with. |
| uint16_t multiplier = (bmax - center) / 10; |
| |
| // Now convert the block to 11 bits and transpose it to match |
| // the proper layout |
| uint16_t cblock[16]; |
| for (int i = 0; i < 4; ++i) { |
| for (int j = 0; j < 4; ++j) { |
| int srcIdx = i*4+j; |
| int dstIdx = j*4+i; |
| cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5); |
| } |
| } |
| |
| // Finally, choose the proper palette and indices |
| uint32_t bestError = 0xFFFFFFFF; |
| uint64_t bestIndices = 0; |
| uint16_t bestPalette = 0; |
| for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) { |
| const int *palette = kR11EACModifierPalettes[paletteIdx]; |
| |
| // Iterate through each pixel to find the best palette index |
| // and update the indices with the choice. Also store the error |
| // for this palette to be compared against the best error... |
| uint32_t error = 0; |
| uint64_t indices = 0; |
| for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) { |
| const uint16_t pixel = cblock[pixelIdx]; |
| |
| // Iterate through each palette value to find the best index |
| // for this particular pixel for this particular palette. |
| uint16_t bestPixelError = |
| abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier)); |
| int bestIndex = 0; |
| for (int i = 1; i < kR11EACPaletteSize; ++i) { |
| const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier); |
| const uint16_t perror = abs_diff(pixel, p); |
| |
| // Is this index better? |
| if (perror < bestPixelError) { |
| bestIndex = i; |
| bestPixelError = perror; |
| } |
| } |
| |
| SkASSERT(bestIndex < 8); |
| |
| error += bestPixelError; |
| indices <<= 3; |
| indices |= bestIndex; |
| } |
| |
| SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
| |
| // Is this palette better? |
| if (error < bestError) { |
| bestPalette = paletteIdx; |
| bestIndices = indices; |
| bestError = error; |
| } |
| } |
| |
| // Finally, pack everything together... |
| return pack_r11eac_block(center, bestPalette, multiplier, bestIndices); |
| } |
| #endif // COMPRESS_R11_EAC_SLOW |
| |
| #if COMPRESS_R11_EAC_FAST |
| // This function takes into account that most blocks that we compress have a gradation from |
| // fully opaque to fully transparent. The compression scheme works by selecting the |
| // palette and multiplier that has the tightest fit to the 0-255 range. This is encoded |
| // as the block header (0x8490). The indices are then selected by considering the top |
| // three bits of each alpha value. For alpha masks, this reduces the dynamic range from |
| // 17 to 8, but the quality is still acceptable. |
| // |
| // There are a few caveats that need to be taken care of... |
| // |
| // 1. The block is read in as scanlines, so the indices are stored as: |
| // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| // However, the decomrpession routine reads them in column-major order, so they |
| // need to be packed as: |
| // 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 |
| // So when reading, they must be transposed. |
| // |
| // 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes |
| // above store the modulation values first decreasing and then increasing: |
| // e.g. {-3, -6, -9, -15, 2, 5, 8, 14} |
| // Hence, we need to convert the indices with the following mapping: |
| // From: 0 1 2 3 4 5 6 7 |
| // To: 3 2 1 0 4 5 6 7 |
| static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
| uint64_t retVal = static_cast<uint64_t>(0x8490) << 48; |
| for(int i = 0; i < 4; ++i) { |
| for(int j = 0; j < 4; ++j) { |
| const int shift = 45-3*(j*4+i); |
| SkASSERT(shift <= 45); |
| const uint64_t idx = block[i*4+j] >> 5; |
| SkASSERT(idx < 8); |
| |
| // !SPEED! This is slightly faster than having an if-statement. |
| switch(idx) { |
| case 0: |
| case 1: |
| case 2: |
| case 3: |
| retVal |= (3-idx) << shift; |
| break; |
| default: |
| retVal |= idx << shift; |
| break; |
| } |
| } |
| } |
| |
| return SkEndian_SwapBE64(retVal); |
| } |
| #endif // COMPRESS_R11_EAC_FAST |
| |
| #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
| static uint64_t compress_r11eac_block(const uint8_t block[16]) { |
| // Are all blocks a solid color? |
| bool solid = true; |
| for (int i = 1; i < 16; ++i) { |
| if (block[i] != block[0]) { |
| solid = false; |
| break; |
| } |
| } |
| |
| if (solid) { |
| switch(block[0]) { |
| // Fully transparent? We know the encoding... |
| case 0: |
| // (0x0020 << 48) produces the following: |
| // basw_cw: 0 |
| // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14} |
| // multiplier: 2 |
| // mod_val: -3 |
| // |
| // this gives the following formula: |
| // clamp[0, 2047](0*8+4+(-3)*2*8) = 0 |
| // |
| // Furthermore, it is impervious to endianness: |
| // 0x0020000000002000ULL |
| // Will produce one pixel with index 2, which gives: |
| // clamp[0, 2047](0*8+4+(-9)*2*8) = 0 |
| return 0x0020000000002000ULL; |
| |
| // Fully opaque? We know this encoding too... |
| case 255: |
| |
| // -1 produces the following: |
| // basw_cw: 255 |
| // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8} |
| // mod_val: 8 |
| // |
| // this gives the following formula: |
| // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047 |
| return 0xFFFFFFFFFFFFFFFFULL; |
| |
| default: |
| // !TODO! krajcevski: |
| // This will probably never happen, since we're using this format |
| // primarily for compressing alpha maps. Usually the only |
| // non-fullly opaque or fully transparent blocks are not a solid |
| // intermediate color. If we notice that they are, then we can |
| // add another optimization... |
| break; |
| } |
| } |
| |
| return compress_heterogeneous_r11eac_block(block); |
| } |
| |
| // This function is used by R11 EAC to compress 4x4 blocks |
| // of 8-bit alpha into 64-bit values that comprise the compressed data. |
| // We need to make sure that the dimensions of the src pixels are divisible |
| // by 4, and copy 4x4 blocks one at a time for compression. |
| typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]); |
| |
| static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src, |
| int width, int height, int rowBytes, |
| A84x4To64BitProc proc) { |
| // Make sure that our data is well-formed enough to be considered for compression |
| if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
| return false; |
| } |
| |
| int blocksX = width >> 2; |
| int blocksY = height >> 2; |
| |
| uint8_t block[16]; |
| uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
| for (int y = 0; y < blocksY; ++y) { |
| for (int x = 0; x < blocksX; ++x) { |
| // Load block |
| for (int k = 0; k < 4; ++k) { |
| memcpy(block + k*4, src + k*rowBytes + 4*x, 4); |
| } |
| |
| // Compress it |
| *encPtr = proc(block); |
| ++encPtr; |
| } |
| src += 4 * rowBytes; |
| } |
| |
| return true; |
| } |
| #endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
| |
| #if COMPRESS_R11_EAC_FASTEST |
| template<unsigned shift> |
| static inline uint64_t swap_shift(uint64_t x, uint64_t mask) { |
| const uint64_t t = (x ^ (x >> shift)) & mask; |
| return x ^ t ^ (t << shift); |
| } |
| |
| static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) { |
| // If our 3-bit block indices are laid out as: |
| // a b c d |
| // e f g h |
| // i j k l |
| // m n o p |
| // |
| // This function expects topRows and bottomRows to contain the first two rows |
| // of indices interleaved in the least significant bits of a and b. In other words... |
| // |
| // If the architecture is big endian, then topRows and bottomRows will contain the following: |
| // Bits 31-0: |
| // a: 00 a e 00 b f 00 c g 00 d h |
| // b: 00 i m 00 j n 00 k o 00 l p |
| // |
| // If the architecture is little endian, then topRows and bottomRows will contain |
| // the following: |
| // Bits 31-0: |
| // a: 00 d h 00 c g 00 b f 00 a e |
| // b: 00 l p 00 k o 00 j n 00 i m |
| // |
| // This function returns a 48-bit packing of the form: |
| // a e i m b f j n c g k o d h l p |
| // |
| // !SPEED! this function might be even faster if certain SIMD intrinsics are |
| // used.. |
| |
| // For both architectures, we can figure out a packing of the bits by |
| // using a shuffle and a few shift-rotates... |
| uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows); |
| |
| // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p |
| |
| x = swap_shift<10>(x, 0x3FC0003FC00000ULL); |
| |
| // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p |
| |
| x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 16; |
| |
| // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n |
| |
| x = swap_shift<6>(x, 0xFC0000ULL); |
| |
| #if defined (SK_CPU_BENDIAN) |
| // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n |
| |
| x = swap_shift<36>(x, 0x3FULL); |
| |
| // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p |
| |
| x = swap_shift<12>(x, 0xFFF000000ULL); |
| #else |
| // If our CPU is little endian, then the above logic will |
| // produce the following indices: |
| // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o |
| |
| x = swap_shift<36>(x, 0xFC0ULL); |
| |
| // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o |
| |
| x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL); |
| #endif |
| |
| // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p |
| return x; |
| } |
| |
| // This function converts an integer containing four bytes of alpha |
| // values into an integer containing four bytes of indices into R11 EAC. |
| // Note, there needs to be a mapping of indices: |
| // 0 1 2 3 4 5 6 7 |
| // 3 2 1 0 4 5 6 7 |
| // |
| // To compute this, we first negate each byte, and then add three, which |
| // gives the mapping |
| // 3 2 1 0 -1 -2 -3 -4 |
| // |
| // Then we mask out the negative values, take their absolute value, and |
| // add three. |
| // |
| // Most of the voodoo in this function comes from Hacker's Delight, section 2-18 |
| static inline uint32_t convert_indices(uint32_t x) { |
| // Take the top three bits... |
| x = (x & 0xE0E0E0E0) >> 5; |
| |
| // Negate... |
| x = ~((0x80808080 - x) ^ 0x7F7F7F7F); |
| |
| // Add three |
| const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303; |
| x = ((x ^ 0x03030303) & 0x80808080) ^ s; |
| |
| // Absolute value |
| const uint32_t a = x & 0x80808080; |
| const uint32_t b = a >> 7; |
| |
| // Aside: mask negatives (m is three if the byte was negative) |
| const uint32_t m = (a >> 6) | b; |
| |
| // .. continue absolute value |
| x = (x ^ ((a - b) | a)) + b; |
| |
| // Add three |
| return x + m; |
| } |
| |
| // This function follows the same basic procedure as compress_heterogeneous_r11eac_block |
| // above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and |
| // tries to optimize where it can using SIMD. |
| static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) { |
| // Store each row of alpha values in an integer |
| const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src)); |
| const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes)); |
| const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes)); |
| const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes)); |
| |
| // Check for solid blocks. The explanations for these values |
| // can be found in the comments of compress_r11eac_block above |
| if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) { |
| if (0 == alphaRow1) { |
| // Fully transparent block |
| return 0x0020000000002000ULL; |
| } else if (0xFFFFFFFF == alphaRow1) { |
| // Fully opaque block |
| return 0xFFFFFFFFFFFFFFFFULL; |
| } |
| } |
| |
| // Convert each integer of alpha values into an integer of indices |
| const uint32_t indexRow1 = convert_indices(alphaRow1); |
| const uint32_t indexRow2 = convert_indices(alphaRow2); |
| const uint32_t indexRow3 = convert_indices(alphaRow3); |
| const uint32_t indexRow4 = convert_indices(alphaRow4); |
| |
| // Interleave the indices from the top two rows and bottom two rows |
| // prior to passing them to interleave6. Since each index is at most |
| // three bits, then each byte can hold two indices... The way that the |
| // compression scheme expects the packing allows us to efficiently pack |
| // the top two rows and bottom two rows. Interleaving each 6-bit sequence |
| // and tightly packing it into a uint64_t is a little trickier, which is |
| // taken care of in interleave6. |
| const uint32_t r1r2 = (indexRow1 << 3) | indexRow2; |
| const uint32_t r3r4 = (indexRow3 << 3) | indexRow4; |
| const uint64_t indices = interleave6(r1r2, r3r4); |
| |
| // Return the packed incdices in the least significant bits with the magic header |
| return SkEndian_SwapBE64(0x8490000000000000ULL | indices); |
| } |
| |
| static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src, |
| int width, int height, int rowBytes) { |
| // Make sure that our data is well-formed enough to be considered for compression |
| if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
| return false; |
| } |
| |
| const int blocksX = width >> 2; |
| const int blocksY = height >> 2; |
| |
| uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
| for (int y = 0; y < blocksY; ++y) { |
| for (int x = 0; x < blocksX; ++x) { |
| // Compress it |
| *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes); |
| ++encPtr; |
| } |
| src += 4 * rowBytes; |
| } |
| return true; |
| } |
| #endif // COMPRESS_R11_EAC_FASTEST |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // |
| // Utility functions used by the blitter |
| // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // The R11 EAC format expects that indices are given in column-major order. Since |
| // we receive alpha values in raster order, this usually means that we have to use |
| // pack6 above to properly pack our indices. However, if our indices come from the |
| // blitter, then each integer will be a column of indices, and hence can be efficiently |
| // packed. This function takes the bottom three bits of each byte and places them in |
| // the least significant 12 bits of the resulting integer. |
| static inline uint32_t pack_indices_vertical(uint32_t x) { |
| #if defined (SK_CPU_BENDIAN) |
| return |
| (x & 7) | |
| ((x >> 5) & (7 << 3)) | |
| ((x >> 10) & (7 << 6)) | |
| ((x >> 15) & (7 << 9)); |
| #else |
| return |
| ((x >> 24) & 7) | |
| ((x >> 13) & (7 << 3)) | |
| ((x >> 2) & (7 << 6)) | |
| ((x << 9) & (7 << 9)); |
| #endif |
| } |
| |
| // This function returns the compressed format of a block given as four columns of |
| // alpha values. Each column is assumed to be loaded from top to bottom, and hence |
| // must first be converted to indices and then packed into the resulting 64-bit |
| // integer. |
| static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0, |
| const uint32_t alphaColumn1, |
| const uint32_t alphaColumn2, |
| const uint32_t alphaColumn3) { |
| |
| if (alphaColumn0 == alphaColumn1 && |
| alphaColumn2 == alphaColumn3 && |
| alphaColumn0 == alphaColumn2) { |
| |
| if (0 == alphaColumn0) { |
| // Transparent |
| return 0x0020000000002000ULL; |
| } |
| else if (0xFFFFFFFF == alphaColumn0) { |
| // Opaque |
| return 0xFFFFFFFFFFFFFFFFULL; |
| } |
| } |
| |
| const uint32_t indexColumn0 = convert_indices(alphaColumn0); |
| const uint32_t indexColumn1 = convert_indices(alphaColumn1); |
| const uint32_t indexColumn2 = convert_indices(alphaColumn2); |
| const uint32_t indexColumn3 = convert_indices(alphaColumn3); |
| |
| const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0); |
| const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1); |
| const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2); |
| const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3); |
| |
| return SkEndian_SwapBE64(0x8490000000000000ULL | |
| (static_cast<uint64_t>(packedIndexColumn0) << 36) | |
| (static_cast<uint64_t>(packedIndexColumn1) << 24) | |
| static_cast<uint64_t>(packedIndexColumn2 << 12) | |
| static_cast<uint64_t>(packedIndexColumn3)); |
| |
| } |
| |
| // Updates the block whose columns are stored in blockColN. curAlphai is expected |
| // to store, as an integer, the four alpha values that will be placed within each |
| // of the columns in the range [col, col+colsLeft). |
| static inline void update_block_columns(uint32_t* block, const int col, |
| const int colsLeft, const uint32_t curAlphai) { |
| SkASSERT(NULL != block); |
| SkASSERT(col + colsLeft <= 4); |
| |
| for (int i = col; i < (col + colsLeft); ++i) { |
| block[i] = curAlphai; |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| namespace SkTextureCompressor { |
| |
| bool CompressA8ToR11EAC(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) { |
| |
| #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
| |
| return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block); |
| |
| #elif COMPRESS_R11_EAC_FASTEST |
| |
| return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes); |
| |
| #else |
| #error "Must choose R11 EAC algorithm" |
| #endif |
| } |
| |
| // This class implements a blitter that blits directly into a buffer that will |
| // be used as an R11 EAC compressed texture. We compute this buffer by |
| // buffering four scan lines and then outputting them all at once. This blitter |
| // is only expected to be used with alpha masks, i.e. kAlpha8_SkColorType. |
| class R11_EACBlitter : public SkBlitter { |
| public: |
| R11_EACBlitter(int width, int height, void *compressedBuffer); |
| virtual ~R11_EACBlitter() { this->flushRuns(); } |
| |
| // Blit a horizontal run of one or more pixels. |
| virtual void blitH(int x, int y, int width) SK_OVERRIDE { |
| // This function is intended to be called from any standard RGB |
| // buffer, so we should never encounter it. However, if some code |
| // path does end up here, then this needs to be investigated. |
| SkFAIL("Not implemented!"); |
| } |
| |
| // Blit a horizontal run of antialiased pixels; runs[] is a *sparse* |
| // zero-terminated run-length encoding of spans of constant alpha values. |
| virtual void blitAntiH(int x, int y, |
| const SkAlpha antialias[], |
| const int16_t runs[]) SK_OVERRIDE; |
| |
| // Blit a vertical run of pixels with a constant alpha value. |
| virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE { |
| // This function is currently not implemented. It is not explicitly |
| // required by the contract, but if at some time a code path runs into |
| // this function (which is entirely possible), it needs to be implemented. |
| // |
| // TODO (krajcevski): |
| // This function will be most easily implemented in one of two ways: |
| // 1. Buffer each vertical column value and then construct a list |
| // of alpha values and output all of the blocks at once. This only |
| // requires a write to the compressed buffer |
| // 2. Replace the indices of each block with the proper indices based |
| // on the alpha value. This requires a read and write of the compressed |
| // buffer, but much less overhead. |
| SkFAIL("Not implemented!"); |
| } |
| |
| // Blit a solid rectangle one or more pixels wide. |
| virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE { |
| // Analogous to blitRow, this function is intended for RGB targets |
| // and should never be called by this blitter. Any calls to this function |
| // are probably a bug and should be investigated. |
| SkFAIL("Not implemented!"); |
| } |
| |
| // Blit a rectangle with one alpha-blended column on the left, |
| // width (zero or more) opaque pixels, and one alpha-blended column |
| // on the right. The result will always be at least two pixels wide. |
| virtual void blitAntiRect(int x, int y, int width, int height, |
| SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE { |
| // This function is currently not implemented. It is not explicitly |
| // required by the contract, but if at some time a code path runs into |
| // this function (which is entirely possible), it needs to be implemented. |
| // |
| // TODO (krajcevski): |
| // This function will be most easily implemented as follows: |
| // 1. If width/height are smaller than a block, then update the |
| // indices of the affected blocks. |
| // 2. If width/height are larger than a block, then construct a 9-patch |
| // of block encodings that represent the rectangle, and write them |
| // to the compressed buffer as necessary. Whether or not the blocks |
| // are overwritten by zeros or just their indices are updated is up |
| // to debate. |
| SkFAIL("Not implemented!"); |
| } |
| |
| // Blit a pattern of pixels defined by a rectangle-clipped mask; |
| // typically used for text. |
| virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE { |
| // This function is currently not implemented. It is not explicitly |
| // required by the contract, but if at some time a code path runs into |
| // this function (which is entirely possible), it needs to be implemented. |
| // |
| // TODO (krajcevski): |
| // This function will be most easily implemented in the same way as |
| // blitAntiRect above. |
| SkFAIL("Not implemented!"); |
| } |
| |
| // If the blitter just sets a single value for each pixel, return the |
| // bitmap it draws into, and assign value. If not, return NULL and ignore |
| // the value parameter. |
| virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE { |
| return NULL; |
| } |
| |
| /** |
| * Compressed texture blitters only really work correctly if they get |
| * four blocks at a time. That being said, this blitter tries it's best |
| * to preserve semantics if blitAntiH doesn't get called in too many |
| * weird ways... |
| */ |
| virtual int requestRowsPreserved() const { return kR11_EACBlockSz; } |
| |
| protected: |
| virtual void onNotifyFinished() { this->flushRuns(); } |
| |
| private: |
| static const int kR11_EACBlockSz = 4; |
| static const int kPixelsPerBlock = kR11_EACBlockSz * kR11_EACBlockSz; |
| |
| // The longest possible run of pixels that this blitter will receive. |
| // This is initialized in the constructor to 0x7FFE, which is one less |
| // than the largest positive 16-bit integer. We make sure that it's one |
| // less for debugging purposes. We also don't make this variable static |
| // in order to make sure that we can construct a valid pointer to it. |
| const int16_t kLongestRun; |
| |
| // Usually used in conjunction with kLongestRun. This is initialized to |
| // zero. |
| const SkAlpha kZeroAlpha; |
| |
| // This is the information that we buffer whenever we're asked to blit |
| // a row with this blitter. |
| struct BufferedRun { |
| const SkAlpha* fAlphas; |
| const int16_t* fRuns; |
| int fX, fY; |
| } fBufferedRuns[kR11_EACBlockSz]; |
| |
| // The next row (0-3) that we need to blit. This value should never exceed |
| // the number of rows that we have (kR11_EACBlockSz) |
| int fNextRun; |
| |
| // The width and height of the image that we're blitting |
| const int fWidth; |
| const int fHeight; |
| |
| // The R11 EAC buffer that we're blitting into. It is assumed that the buffer |
| // is large enough to store a compressed image of size fWidth*fHeight. |
| uint64_t* const fBuffer; |
| |
| // Various utility functions |
| int blocksWide() const { return fWidth / kR11_EACBlockSz; } |
| int blocksTall() const { return fHeight / kR11_EACBlockSz; } |
| int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; } |
| |
| // Returns the block index for the block containing pixel (x, y). Block |
| // indices start at zero and proceed in raster order. |
| int getBlockOffset(int x, int y) const { |
| SkASSERT(x < fWidth); |
| SkASSERT(y < fHeight); |
| const int blockCol = x / kR11_EACBlockSz; |
| const int blockRow = y / kR11_EACBlockSz; |
| return blockRow * this->blocksWide() + blockCol; |
| } |
| |
| // Returns a pointer to the block containing pixel (x, y) |
| uint64_t *getBlock(int x, int y) const { |
| return fBuffer + this->getBlockOffset(x, y); |
| } |
| |
| // The following function writes the buffered runs to compressed blocks. |
| // If fNextRun < 4, then we fill the runs that we haven't buffered with |
| // the constant zero buffer. |
| void flushRuns(); |
| }; |
| |
| |
| R11_EACBlitter::R11_EACBlitter(int width, int height, void *latcBuffer) |
| // 0x7FFE is one minus the largest positive 16-bit int. We use it for |
| // debugging to make sure that we're properly setting the nextX distance |
| // in flushRuns(). |
| : kLongestRun(0x7FFE), kZeroAlpha(0) |
| , fNextRun(0) |
| , fWidth(width) |
| , fHeight(height) |
| , fBuffer(reinterpret_cast<uint64_t*const>(latcBuffer)) |
| { |
| SkASSERT((width % kR11_EACBlockSz) == 0); |
| SkASSERT((height % kR11_EACBlockSz) == 0); |
| } |
| |
| void R11_EACBlitter::blitAntiH(int x, int y, |
| const SkAlpha* antialias, |
| const int16_t* runs) { |
| // Make sure that the new row to blit is either the first |
| // row that we're blitting, or it's exactly the next scan row |
| // since the last row that we blit. This is to ensure that when |
| // we go to flush the runs, that they are all the same four |
| // runs. |
| if (fNextRun > 0 && |
| ((x != fBufferedRuns[fNextRun-1].fX) || |
| (y-1 != fBufferedRuns[fNextRun-1].fY))) { |
| this->flushRuns(); |
| } |
| |
| // Align the rows to a block boundary. If we receive rows that |
| // are not on a block boundary, then fill in the preceding runs |
| // with zeros. We do this by producing a single RLE that says |
| // that we have 0x7FFE pixels of zero (0x7FFE = 32766). |
| const int row = y & ~3; |
| while ((row + fNextRun) < y) { |
| fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha; |
| fBufferedRuns[fNextRun].fRuns = &kLongestRun; |
| fBufferedRuns[fNextRun].fX = 0; |
| fBufferedRuns[fNextRun].fY = row + fNextRun; |
| ++fNextRun; |
| } |
| |
| // Make sure that our assumptions aren't violated... |
| SkASSERT(fNextRun == (y & 3)); |
| SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y); |
| |
| // Set the values of the next run |
| fBufferedRuns[fNextRun].fAlphas = antialias; |
| fBufferedRuns[fNextRun].fRuns = runs; |
| fBufferedRuns[fNextRun].fX = x; |
| fBufferedRuns[fNextRun].fY = y; |
| |
| // If we've output four scanlines in a row that don't violate our |
| // assumptions, then it's time to flush them... |
| if (4 == ++fNextRun) { |
| this->flushRuns(); |
| } |
| } |
| |
| void R11_EACBlitter::flushRuns() { |
| |
| // If we don't have any runs, then just return. |
| if (0 == fNextRun) { |
| return; |
| } |
| |
| #ifndef NDEBUG |
| // Make sure that if we have any runs, they all match |
| for (int i = 1; i < fNextRun; ++i) { |
| SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1); |
| SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX); |
| } |
| #endif |
| |
| // If we dont have as many runs as we have rows, fill in the remaining |
| // runs with constant zeros. |
| for (int i = fNextRun; i < kR11_EACBlockSz; ++i) { |
| fBufferedRuns[i].fY = fBufferedRuns[0].fY + i; |
| fBufferedRuns[i].fX = fBufferedRuns[0].fX; |
| fBufferedRuns[i].fAlphas = &kZeroAlpha; |
| fBufferedRuns[i].fRuns = &kLongestRun; |
| } |
| |
| // Make sure that our assumptions aren't violated. |
| SkASSERT(fNextRun > 0 && fNextRun <= 4); |
| SkASSERT((fBufferedRuns[0].fY & 3) == 0); |
| |
| // The following logic walks four rows at a time and outputs compressed |
| // blocks to the buffer passed into the constructor. |
| // We do the following: |
| // |
| // c1 c2 c3 c4 |
| // ----------------------------------------------------------------------- |
| // ... | | | | | ----> fBufferedRuns[0] |
| // ----------------------------------------------------------------------- |
| // ... | | | | | ----> fBufferedRuns[1] |
| // ----------------------------------------------------------------------- |
| // ... | | | | | ----> fBufferedRuns[2] |
| // ----------------------------------------------------------------------- |
| // ... | | | | | ----> fBufferedRuns[3] |
| // ----------------------------------------------------------------------- |
| // |
| // curX -- the macro X value that we've gotten to. |
| // c1, c2, c3, c4 -- the integers that represent the columns of the current block |
| // that we're operating on |
| // curAlphaColumn -- integer containing the column of alpha values from fBufferedRuns. |
| // nextX -- for each run, the next point at which we need to update curAlphaColumn |
| // after the value of curX. |
| // finalX -- the minimum of all the nextX values. |
| // |
| // curX advances to finalX outputting any blocks that it passes along |
| // the way. Since finalX will not change when we reach the end of a |
| // run, the termination criteria will be whenever curX == finalX at the |
| // end of a loop. |
| |
| // Setup: |
| uint32_t c[4] = { 0, 0, 0, 0 }; |
| uint32_t curAlphaColumn = 0; |
| SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn); |
| |
| int nextX[kR11_EACBlockSz]; |
| for (int i = 0; i < kR11_EACBlockSz; ++i) { |
| nextX[i] = 0x7FFFFF; |
| } |
| |
| uint64_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY); |
| |
| // Populate the first set of runs and figure out how far we need to |
| // advance on the first step |
| int curX = 0; |
| int finalX = 0xFFFFF; |
| for (int i = 0; i < kR11_EACBlockSz; ++i) { |
| nextX[i] = *(fBufferedRuns[i].fRuns); |
| curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
| |
| finalX = SkMin32(nextX[i], finalX); |
| } |
| |
| // Make sure that we have a valid right-bound X value |
| SkASSERT(finalX < 0xFFFFF); |
| |
| // Run the blitter... |
| while (curX != finalX) { |
| SkASSERT(finalX >= curX); |
| |
| // Do we need to populate the rest of the block? |
| if ((finalX - (curX & ~3)) >= kR11_EACBlockSz) { |
| const int col = curX & 3; |
| const int colsLeft = 4 - col; |
| SkASSERT(curX + colsLeft <= finalX); |
| |
| update_block_columns(c, col, colsLeft, curAlphaColumn); |
| |
| // Write this block |
| *outPtr = compress_block_vertical(c[0], c[1], c[2], c[3]); |
| ++outPtr; |
| curX += colsLeft; |
| } |
| |
| // If we can advance even further, then just keep memsetting the block |
| if ((finalX - curX) >= kR11_EACBlockSz) { |
| SkASSERT((curX & 3) == 0); |
| |
| const int col = 0; |
| const int colsLeft = kR11_EACBlockSz; |
| |
| update_block_columns(c, col, colsLeft, curAlphaColumn); |
| |
| // While we can keep advancing, just keep writing the block. |
| uint64_t lastBlock = compress_block_vertical(c[0], c[1], c[2], c[3]); |
| while((finalX - curX) >= kR11_EACBlockSz) { |
| *outPtr = lastBlock; |
| ++outPtr; |
| curX += kR11_EACBlockSz; |
| } |
| } |
| |
| // If we haven't advanced within the block then do so. |
| if (curX < finalX) { |
| const int col = curX & 3; |
| const int colsLeft = finalX - curX; |
| |
| update_block_columns(c, col, colsLeft, curAlphaColumn); |
| |
| curX += colsLeft; |
| } |
| |
| SkASSERT(curX == finalX); |
| |
| // Figure out what the next advancement is... |
| for (int i = 0; i < kR11_EACBlockSz; ++i) { |
| if (nextX[i] == finalX) { |
| const int16_t run = *(fBufferedRuns[i].fRuns); |
| fBufferedRuns[i].fRuns += run; |
| fBufferedRuns[i].fAlphas += run; |
| curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
| nextX[i] += *(fBufferedRuns[i].fRuns); |
| } |
| } |
| |
| finalX = 0xFFFFF; |
| for (int i = 0; i < kR11_EACBlockSz; ++i) { |
| finalX = SkMin32(nextX[i], finalX); |
| } |
| } |
| |
| // If we didn't land on a block boundary, output the block... |
| if ((curX & 3) > 1) { |
| *outPtr = compress_block_vertical(c[0], c[1], c[2], c[3]); |
| } |
| |
| fNextRun = 0; |
| } |
| |
| SkBlitter* CreateR11EACBlitter(int width, int height, void* outputBuffer) { |
| return new R11_EACBlitter(width, height, outputBuffer); |
| } |
| |
| } // namespace SkTextureCompressor |