blob: 7a30adec0b433cc6e0f8efab33224da4eb68a360 [file] [log] [blame]
/*
* Copyright 2022 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkSpan.h"
#include "include/core/SkTypes.h"
#include "include/private/base/SkTArray.h"
#include "src/base/SkUtils.h"
#include "src/core/SkRasterPipelineOpList.h"
#include "src/core/SkTHash.h"
#include <cstdint>
#include <initializer_list>
#include <memory>
class SkArenaAlloc;
class SkRasterPipeline;
class SkWStream;
namespace SkSL {
class SkRPDebugTrace;
namespace RP {
// A single scalar in our program consumes one slot.
using Slot = int;
constexpr Slot NA = -1;
// Scalars, vectors, and matrices can be represented as a range of slot indices.
struct SlotRange {
Slot index = 0;
int count = 0;
};
// An RP::Program will consist entirely of ProgramOps. The ProgramOps list is a superset of the
// native SkRasterPipelineOps op-list. It also has a few extra ops to indicate child-effect
// invocation, and a `label` op to indicate branch targets.
enum class ProgramOp {
// A finished program can contain any native Raster Pipeline op...
#define M(stage) stage,
SK_RASTER_PIPELINE_OPS_ALL(M)
#undef M
// ... has branch targets...
label,
// ... can invoke child programs ...
invoke_shader,
invoke_color_filter,
invoke_blender,
// ... and can invoke color space transforms.
invoke_to_linear_srgb,
invoke_from_linear_srgb,
};
// BuilderOps are a superset of ProgramOps. They are used by the RP::Builder, which works in terms
// of Instructions; Instructions are slightly more expressive than raw SkRasterPipelineOps. In
// particular, the Builder supports stacks for pushing and popping scratch values.
// RP::Program::makeStages is responsible for rewriting Instructions/BuilderOps into an array of
// RP::Program::Stages, which will contain only native SkRasterPipelineOps and (optionally)
// child-effect invocations.
enum class BuilderOp {
// An in-flight program can contain all the native Raster Pipeline ops...
#define M(stage) stage,
SK_RASTER_PIPELINE_OPS_ALL(M)
#undef M
// ... has branch targets...
label,
// ... can invoke child programs...
invoke_shader,
invoke_color_filter,
invoke_blender,
// ... can invoke color space transforms ...
invoke_to_linear_srgb,
invoke_from_linear_srgb,
// ... and also has Builder-specific ops. These ops generally interface with the stack, and are
// converted into ProgramOps during `makeStages`.
push_literal,
push_slots,
push_slots_indirect,
push_uniform,
push_uniform_indirect,
push_zeros,
push_clone,
push_clone_from_stack,
push_clone_indirect_from_stack,
copy_stack_to_slots,
copy_stack_to_slots_unmasked,
copy_stack_to_slots_indirect,
swizzle_copy_stack_to_slots,
swizzle_copy_stack_to_slots_indirect,
discard_stack,
select,
push_condition_mask,
pop_condition_mask,
push_loop_mask,
pop_loop_mask,
pop_and_reenable_loop_mask,
push_return_mask,
pop_return_mask,
push_src_rgba,
push_dst_rgba,
pop_src_rg,
pop_src_rgba,
pop_dst_rgba,
set_current_stack,
branch_if_no_active_lanes_on_stack_top_equal,
unsupported
};
// If the child-invocation enums are not in sync between enums, program creation will not work.
static_assert((int)ProgramOp::label == (int)BuilderOp::label);
static_assert((int)ProgramOp::invoke_shader == (int)BuilderOp::invoke_shader);
static_assert((int)ProgramOp::invoke_color_filter == (int)BuilderOp::invoke_color_filter);
static_assert((int)ProgramOp::invoke_blender == (int)BuilderOp::invoke_blender);
static_assert((int)ProgramOp::invoke_to_linear_srgb == (int)BuilderOp::invoke_to_linear_srgb);
static_assert((int)ProgramOp::invoke_from_linear_srgb == (int)BuilderOp::invoke_from_linear_srgb);
// Represents a single raster-pipeline SkSL instruction.
struct Instruction {
Instruction(BuilderOp op, std::initializer_list<Slot> slots,
int a = 0, int b = 0, int c = 0, int d = 0)
: fOp(op), fImmA(a), fImmB(b), fImmC(c), fImmD(d) {
auto iter = slots.begin();
if (iter != slots.end()) { fSlotA = *iter++; }
if (iter != slots.end()) { fSlotB = *iter++; }
SkASSERT(iter == slots.end());
}
BuilderOp fOp;
Slot fSlotA = NA;
Slot fSlotB = NA;
int fImmA = 0;
int fImmB = 0;
int fImmC = 0;
int fImmD = 0;
};
class Callbacks {
public:
virtual ~Callbacks() = default;
virtual bool appendShader(int index) = 0;
virtual bool appendColorFilter(int index) = 0;
virtual bool appendBlender(int index) = 0;
virtual void toLinearSrgb() = 0;
virtual void fromLinearSrgb() = 0;
};
class Program {
public:
Program(SkTArray<Instruction> instrs,
int numValueSlots,
int numUniformSlots,
int numLabels,
SkRPDebugTrace* debugTrace);
#if !defined(SKSL_STANDALONE)
bool appendStages(SkRasterPipeline* pipeline,
SkArenaAlloc* alloc,
Callbacks* callbacks,
SkSpan<const float> uniforms) const;
#endif
void dump(SkWStream* out) const;
private:
using StackDepthMap = SkTHashMap<int, int>; // <stack index, depth of stack>
struct SlotData {
SkSpan<float> values;
SkSpan<float> stack;
};
SlotData allocateSlotData(SkArenaAlloc* alloc) const;
struct Stage {
ProgramOp op;
void* ctx;
};
void makeStages(SkTArray<Stage>* pipeline,
SkArenaAlloc* alloc,
SkSpan<const float> uniforms,
const SlotData& slots) const;
void optimize();
StackDepthMap tempStackMaxDepths() const;
// These methods are used to split up large multi-slot operations into multiple ops as needed.
void appendCopy(SkTArray<Stage>* pipeline, SkArenaAlloc* alloc,
ProgramOp baseStage,
float* dst, int dstStride, const float* src, int srcStride, int numSlots) const;
void appendCopySlotsUnmasked(SkTArray<Stage>* pipeline, SkArenaAlloc* alloc,
float* dst, const float* src, int numSlots) const;
void appendCopySlotsMasked(SkTArray<Stage>* pipeline, SkArenaAlloc* alloc,
float* dst, const float* src, int numSlots) const;
void appendCopyConstants(SkTArray<Stage>* pipeline, SkArenaAlloc* alloc,
float* dst, const float* src, int numSlots) const;
// Appends a single-slot single-input math operation to the pipeline. The op `stage` will
// appended `numSlots` times, starting at position `dst` and advancing one slot for each
// subsequent invocation.
void appendSingleSlotUnaryOp(SkTArray<Stage>* pipeline, ProgramOp stage,
float* dst, int numSlots) const;
// Appends a multi-slot single-input math operation to the pipeline. `baseStage` must refer to
// an single-slot "apply_op" stage, which must be immediately followed by specializations for
// 2-4 slots. For instance, {`zero_slot`, `zero_2_slots`, `zero_3_slots`, `zero_4_slots`}
// must be contiguous ops in the stage list, listed in that order; pass `zero_slot` and we
// pick the appropriate op based on `numSlots`.
void appendMultiSlotUnaryOp(SkTArray<Stage>* pipeline, ProgramOp baseStage,
float* dst, int numSlots) const;
// Appends a two-input math operation to the pipeline. `src` must be _immediately_ after `dst`
// in memory. `baseStage` must refer to an unbounded "apply_to_n_slots" stage. A BinaryOpCtx
// will be used to pass pointers to the destination and source; the delta between the two
// pointers implicitly gives the number of slots.
void appendAdjacentNWayBinaryOp(SkTArray<Stage>* pipeline, SkArenaAlloc* alloc,
ProgramOp stage,
float* dst, const float* src, int numSlots) const;
// Appends a multi-slot two-input math operation to the pipeline. `src` must be _immediately_
// after `dst` in memory. `baseStage` must refer to an unbounded "apply_to_n_slots" stage, which
// must be immediately followed by specializations for 1-4 slots. For instance, {`add_n_floats`,
// `add_float`, `add_2_floats`, `add_3_floats`, `add_4_floats`} must be contiguous ops in the
// stage list, listed in that order; pass `add_n_floats` and we pick the appropriate op based on
// `numSlots`.
void appendAdjacentMultiSlotBinaryOp(SkTArray<Stage>* pipeline, SkArenaAlloc* alloc,
ProgramOp baseStage,
float* dst, const float* src, int numSlots) const;
// Appends a multi-slot math operation having three inputs (dst, src0, src1) and one output
// (dst) to the pipeline. The three inputs must be _immediately_ adjacent in memory. `baseStage`
// must refer to an unbounded "apply_to_n_slots" stage, which must be immediately followed by
// specializations for 1-4 slots.
void appendAdjacentMultiSlotTernaryOp(SkTArray<Stage>* pipeline, SkArenaAlloc* alloc,
ProgramOp stage, float* dst,
const float* src0, const float* src1, int numSlots) const;
// Appends a stack_rewind op on platforms where it is needed (when SK_HAS_MUSTTAIL is not set).
void appendStackRewind(SkTArray<Stage>* pipeline) const;
SkTArray<Instruction> fInstructions;
int fNumValueSlots = 0;
int fNumUniformSlots = 0;
int fNumTempStackSlots = 0;
int fNumLabels = 0;
SkTHashMap<int, int> fTempStackMaxDepths;
SkRPDebugTrace* fDebugTrace = nullptr;
};
class Builder {
public:
/** Finalizes and optimizes the program. */
std::unique_ptr<Program> finish(int numValueSlots,
int numUniformSlots,
SkRPDebugTrace* debugTrace = nullptr);
/**
* Peels off a label ID for use in the program. Set the label's position in the program with
* the `label` instruction. Actually branch to the target with an instruction like
* `branch_if_any_lanes_active` or `jump`.
*/
int nextLabelID() {
return fNumLabels++;
}
/**
* The builder keeps track of the state of execution masks; when we know that the execution
* mask is unaltered, we can generate simpler code. Code which alters the execution mask is
* required to enable this flag.
*/
void enableExecutionMaskWrites() {
++fExecutionMaskWritesEnabled;
}
void disableExecutionMaskWrites() {
SkASSERT(this->executionMaskWritesAreEnabled());
--fExecutionMaskWritesEnabled;
}
bool executionMaskWritesAreEnabled() {
return fExecutionMaskWritesEnabled > 0;
}
/** Assemble a program from the Raster Pipeline instructions below. */
void init_lane_masks() {
fInstructions.push_back({BuilderOp::init_lane_masks, {}});
}
void store_src_rg(SlotRange slots) {
SkASSERT(slots.count == 2);
fInstructions.push_back({BuilderOp::store_src_rg, {slots.index}});
}
void store_src(SlotRange slots) {
SkASSERT(slots.count == 4);
fInstructions.push_back({BuilderOp::store_src, {slots.index}});
}
void store_dst(SlotRange slots) {
SkASSERT(slots.count == 4);
fInstructions.push_back({BuilderOp::store_dst, {slots.index}});
}
void store_device_xy01(SlotRange slots) {
SkASSERT(slots.count == 4);
fInstructions.push_back({BuilderOp::store_device_xy01, {slots.index}});
}
void load_src(SlotRange slots) {
SkASSERT(slots.count == 4);
fInstructions.push_back({BuilderOp::load_src, {slots.index}});
}
void load_dst(SlotRange slots) {
SkASSERT(slots.count == 4);
fInstructions.push_back({BuilderOp::load_dst, {slots.index}});
}
void set_current_stack(int stackIdx) {
fInstructions.push_back({BuilderOp::set_current_stack, {}, stackIdx});
}
// Inserts a label into the instruction stream.
void label(int labelID);
// Unconditionally branches to a label.
void jump(int labelID);
// Branches to a label if the execution mask is active in every lane.
void branch_if_all_lanes_active(int labelID);
// Branches to a label if the execution mask is active in any lane.
void branch_if_any_lanes_active(int labelID);
// Branches to a label if the execution mask is inactive across all lanes.
void branch_if_no_lanes_active(int labelID);
// Branches to a label if the top value on the stack is _not_ equal to `value` in any lane.
void branch_if_no_active_lanes_on_stack_top_equal(int value, int labelID);
// We use the same SkRasterPipeline op regardless of the literal type, and bitcast the value.
void push_literal_f(float val) {
this->push_literal_i(sk_bit_cast<int32_t>(val));
}
void push_literal_i(int32_t val) {
if (val == 0) {
this->push_zeros(1);
} else {
fInstructions.push_back({BuilderOp::push_literal, {}, val});
}
}
void push_literal_u(uint32_t val) {
this->push_literal_i(sk_bit_cast<int32_t>(val));
}
// Translates into copy_constants (from uniforms into temp stack) in Raster Pipeline.
void push_uniform(SlotRange src);
// Translates into copy_from_indirect_uniform_unmasked (from values into temp stack) in Raster
// Pipeline. `fixedRange` denotes a fixed set of slots; this range is pushed forward by the
// value at the top of stack `dynamicStack`. Pass the range of the uniform being indexed as
// `limitRange`; this is used as a hard cap, to avoid indexing outside of bounds.
void push_uniform_indirect(SlotRange fixedRange, int dynamicStack, SlotRange limitRange);
void push_zeros(int count) {
// Translates into zero_slot_unmasked in Raster Pipeline.
if (!fInstructions.empty() && fInstructions.back().fOp == BuilderOp::push_zeros) {
// Coalesce adjacent push_zero ops into a single op.
fInstructions.back().fImmA += count;
} else {
fInstructions.push_back({BuilderOp::push_zeros, {}, count});
}
}
// Translates into copy_slots_unmasked (from values into temp stack) in Raster Pipeline.
void push_slots(SlotRange src);
// Translates into copy_from_indirect_unmasked (from values into temp stack) in Raster Pipeline.
// `fixedRange` denotes a fixed set of slots; this range is pushed forward by the value at the
// top of stack `dynamicStack`. Pass the slot range of the variable being indexed as
// `limitRange`; this is used as a hard cap, to avoid indexing outside of bounds.
void push_slots_indirect(SlotRange fixedRange, int dynamicStack, SlotRange limitRange);
// Translates into copy_slots_masked (from temp stack to values) in Raster Pipeline.
// Does not discard any values on the temp stack.
void copy_stack_to_slots(SlotRange dst) {
this->copy_stack_to_slots(dst, /*offsetFromStackTop=*/dst.count);
}
void copy_stack_to_slots(SlotRange dst, int offsetFromStackTop);
// Translates into swizzle_copy_slots_masked (from temp stack to values) in Raster Pipeline.
// Does not discard any values on the temp stack.
void swizzle_copy_stack_to_slots(SlotRange dst,
SkSpan<const int8_t> components,
int offsetFromStackTop);
// Translates into swizzle_copy_to_indirect_masked (from temp stack to values) in Raster
// Pipeline. Does not discard any values on the temp stack.
void swizzle_copy_stack_to_slots_indirect(SlotRange fixedRange,
int dynamicStackID,
SlotRange limitRange,
SkSpan<const int8_t> components,
int offsetFromStackTop);
// Translates into copy_slots_unmasked (from temp stack to values) in Raster Pipeline.
// Does not discard any values on the temp stack.
void copy_stack_to_slots_unmasked(SlotRange dst) {
this->copy_stack_to_slots_unmasked(dst, /*offsetFromStackTop=*/dst.count);
}
void copy_stack_to_slots_unmasked(SlotRange dst, int offsetFromStackTop);
// Translates into copy_to_indirect_masked (from temp stack into values) in Raster Pipeline.
// `fixedRange` denotes a fixed set of slots; this range is pushed forward by the value at the
// top of stack `dynamicStack`. Pass the slot range of the variable being indexed as
// `limitRange`; this is used as a hard cap, to avoid indexing outside of bounds.
void copy_stack_to_slots_indirect(SlotRange fixedRange,
int dynamicStackID,
SlotRange limitRange);
// Copies from temp stack to slots, including an indirect offset, then shrinks the temp stack.
void pop_slots_indirect(SlotRange fixedRange, int dynamicStackID, SlotRange limitRange) {
this->copy_stack_to_slots_indirect(fixedRange, dynamicStackID, limitRange);
this->discard_stack(fixedRange.count);
}
// Performs a unary op (like `bitwise_not`), given a slot count of `slots`. The stack top is
// replaced with the result.
void unary_op(BuilderOp op, int32_t slots);
// Performs a binary op (like `add_n_floats` or `cmpeq_n_ints`), given a slot count of
// `slots`. Two n-slot input values are consumed, and the result is pushed onto the stack.
void binary_op(BuilderOp op, int32_t slots);
// Performs a ternary op (like `mix` or `smoothstep`), given a slot count of
// `slots`. Three n-slot input values are consumed, and the result is pushed onto the stack.
void ternary_op(BuilderOp op, int32_t slots);
// Computes a dot product on the stack. The slots consumed (`slots`) must be between 1 and 4.
// Two n-slot input vectors are consumed, and a scalar result is pushed onto the stack.
void dot_floats(int32_t slots);
// Shrinks the temp stack, discarding values on top.
void discard_stack(int32_t count = 1);
// Copies vales from the temp stack into slots, and then shrinks the temp stack.
void pop_slots(SlotRange dst);
// Creates many clones of the top single-slot item on the temp stack.
void push_duplicates(int count);
// Creates a single clone of an item on the current temp stack. The cloned item can consist of
// any number of slots, and can be copied from an earlier position on the stack.
void push_clone(int numSlots, int offsetFromStackTop = 0) {
fInstructions.push_back({BuilderOp::push_clone, {}, numSlots,
numSlots + offsetFromStackTop});
}
// Clones a range of slots from another stack onto this stack.
void push_clone_from_stack(SlotRange range, int otherStackID, int offsetFromStackTop);
// Translates into copy_from_indirect_unmasked (from one temp stack to another) in Raster
// Pipeline. `fixedOffset` denotes a range of slots within the top `offsetFromStackTop` slots of
// `otherStackID`. This range is pushed forward by the value at the top of `dynamicStackID`.
void push_clone_indirect_from_stack(SlotRange fixedOffset,
int dynamicStackID,
int otherStackID,
int offsetFromStackTop);
// Compares the stack top with the passed-in value; if it matches, enables the loop mask.
void case_op(int value) {
fInstructions.push_back({BuilderOp::case_op, {}, value});
}
void select(int slots) {
// Overlays the top two entries on the stack, making one hybrid entry. The execution mask
// is used to select which lanes are preserved.
SkASSERT(slots > 0);
fInstructions.push_back({BuilderOp::select, {}, slots});
}
// The opposite of push_slots; copies values from the temp stack into value slots, then
// shrinks the temp stack.
void pop_slots_unmasked(SlotRange dst);
void copy_slots_masked(SlotRange dst, SlotRange src) {
SkASSERT(dst.count == src.count);
fInstructions.push_back({BuilderOp::copy_slot_masked, {dst.index, src.index}, dst.count});
}
void copy_slots_unmasked(SlotRange dst, SlotRange src);
void copy_constant(Slot slot, int constantValue) {
fInstructions.push_back({BuilderOp::copy_constant, {slot}, constantValue});
}
// Stores zeros across the entire slot range.
void zero_slots_unmasked(SlotRange dst);
// Consumes `consumedSlots` elements on the stack, then generates `components.size()` elements.
void swizzle(int consumedSlots, SkSpan<const int8_t> components);
// Transposes a matrix of size CxR on the stack (into a matrix of size RxC).
void transpose(int columns, int rows);
// Generates a CxR diagonal matrix from the top two scalars on the stack. The second scalar is
// used as the diagonal value; the first scalar (usually zero) fills in the rest of the slots.
void diagonal_matrix(int columns, int rows);
// Resizes a CxR matrix at the top of the stack to C'xR'.
void matrix_resize(int origColumns, int origRows, int newColumns, int newRows);
void push_condition_mask() {
SkASSERT(this->executionMaskWritesAreEnabled());
fInstructions.push_back({BuilderOp::push_condition_mask, {}});
}
void pop_condition_mask() {
SkASSERT(this->executionMaskWritesAreEnabled());
fInstructions.push_back({BuilderOp::pop_condition_mask, {}});
}
void merge_condition_mask() {
SkASSERT(this->executionMaskWritesAreEnabled());
fInstructions.push_back({BuilderOp::merge_condition_mask, {}});
}
void push_loop_mask() {
SkASSERT(this->executionMaskWritesAreEnabled());
fInstructions.push_back({BuilderOp::push_loop_mask, {}});
}
void pop_loop_mask() {
SkASSERT(this->executionMaskWritesAreEnabled());
fInstructions.push_back({BuilderOp::pop_loop_mask, {}});
}
void push_src_rgba() {
fInstructions.push_back({BuilderOp::push_src_rgba, {}});
}
void push_dst_rgba() {
fInstructions.push_back({BuilderOp::push_dst_rgba, {}});
}
void pop_src_rg() {
fInstructions.push_back({BuilderOp::pop_src_rg, {}});
}
void pop_src_rgba() {
fInstructions.push_back({BuilderOp::pop_src_rgba, {}});
}
void pop_dst_rgba() {
fInstructions.push_back({BuilderOp::pop_dst_rgba, {}});
}
void mask_off_loop_mask() {
SkASSERT(this->executionMaskWritesAreEnabled());
fInstructions.push_back({BuilderOp::mask_off_loop_mask, {}});
}
void reenable_loop_mask(SlotRange src) {
SkASSERT(this->executionMaskWritesAreEnabled());
SkASSERT(src.count == 1);
fInstructions.push_back({BuilderOp::reenable_loop_mask, {src.index}});
}
void pop_and_reenable_loop_mask() {
SkASSERT(this->executionMaskWritesAreEnabled());
fInstructions.push_back({BuilderOp::pop_and_reenable_loop_mask, {}});
}
void merge_loop_mask() {
SkASSERT(this->executionMaskWritesAreEnabled());
fInstructions.push_back({BuilderOp::merge_loop_mask, {}});
}
void push_return_mask() {
SkASSERT(this->executionMaskWritesAreEnabled());
fInstructions.push_back({BuilderOp::push_return_mask, {}});
}
void pop_return_mask();
void mask_off_return_mask() {
SkASSERT(this->executionMaskWritesAreEnabled());
fInstructions.push_back({BuilderOp::mask_off_return_mask, {}});
}
void invoke_shader(int childIdx) {
fInstructions.push_back({BuilderOp::invoke_shader, {}, childIdx});
}
void invoke_color_filter(int childIdx) {
fInstructions.push_back({BuilderOp::invoke_color_filter, {}, childIdx});
}
void invoke_blender(int childIdx) {
fInstructions.push_back({BuilderOp::invoke_blender, {}, childIdx});
}
void invoke_to_linear_srgb() {
fInstructions.push_back({BuilderOp::invoke_to_linear_srgb, {}});
}
void invoke_from_linear_srgb() {
fInstructions.push_back({BuilderOp::invoke_from_linear_srgb, {}});
}
private:
void simplifyPopSlotsUnmasked(SlotRange* dst);
SkTArray<Instruction> fInstructions;
int fNumLabels = 0;
int fExecutionMaskWritesEnabled = 0;
};
} // namespace RP
} // namespace SkSL