| /* |
| * Copyright 2012 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkAlphaType.h" |
| #include "include/core/SkBitmap.h" |
| #include "include/core/SkColor.h" |
| #include "include/core/SkColorPriv.h" |
| #include "include/core/SkColorType.h" |
| #include "include/core/SkFlattenable.h" |
| #include "include/core/SkImageFilter.h" |
| #include "include/core/SkImageInfo.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkRefCnt.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkSize.h" |
| #include "include/core/SkTileMode.h" |
| #include "include/core/SkTypes.h" |
| #include "include/effects/SkImageFilters.h" |
| #include "include/private/base/SkMath.h" |
| #include "include/private/base/SkTPin.h" |
| #include "include/private/base/SkTemplates.h" |
| #include "src/core/SkImageFilter_Base.h" |
| #include "src/core/SkReadBuffer.h" |
| #include "src/core/SkSpecialImage.h" |
| #include "src/core/SkWriteBuffer.h" |
| |
| #include <cstdint> |
| #include <cstring> |
| #include <memory> |
| #include <utility> |
| class SkMatrix; |
| |
| #if defined(SK_GANESH) |
| #include "include/gpu/GrRecordingContext.h" |
| #include "src/gpu/ganesh/GrFragmentProcessor.h" |
| #include "src/gpu/ganesh/GrRecordingContextPriv.h" |
| #include "src/gpu/ganesh/GrSurfaceProxy.h" |
| #include "src/gpu/ganesh/GrSurfaceProxyView.h" |
| #include "src/gpu/ganesh/SkGr.h" |
| #include "src/gpu/ganesh/effects/GrMatrixConvolutionEffect.h" |
| #endif |
| |
| using namespace skia_private; |
| |
| namespace { |
| |
| class SkMatrixConvolutionImageFilter final : public SkImageFilter_Base { |
| public: |
| SkMatrixConvolutionImageFilter(const SkISize& kernelSize, const SkScalar* kernel, |
| SkScalar gain, SkScalar bias, const SkIPoint& kernelOffset, |
| SkTileMode tileMode, bool convolveAlpha, |
| sk_sp<SkImageFilter> input, const SkRect* cropRect) |
| : INHERITED(&input, 1, cropRect) |
| , fKernelSize(kernelSize) |
| , fGain(gain) |
| , fBias(bias) |
| , fKernelOffset(kernelOffset) |
| , fTileMode(tileMode) |
| , fConvolveAlpha(convolveAlpha) { |
| size_t size = (size_t) sk_64_mul(fKernelSize.width(), fKernelSize.height()); |
| fKernel = new SkScalar[size]; |
| memcpy(fKernel, kernel, size * sizeof(SkScalar)); |
| SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1); |
| SkASSERT(kernelOffset.fX >= 0 && kernelOffset.fX < kernelSize.fWidth); |
| SkASSERT(kernelOffset.fY >= 0 && kernelOffset.fY < kernelSize.fHeight); |
| } |
| |
| ~SkMatrixConvolutionImageFilter() override { |
| delete[] fKernel; |
| } |
| |
| protected: |
| |
| void flatten(SkWriteBuffer&) const override; |
| |
| sk_sp<SkSpecialImage> onFilterImage(const Context&, SkIPoint* offset) const override; |
| SkIRect onFilterNodeBounds(const SkIRect&, const SkMatrix& ctm, |
| MapDirection, const SkIRect* inputRect) const override; |
| bool onAffectsTransparentBlack() const override; |
| |
| private: |
| friend void ::SkRegisterMatrixConvolutionImageFilterFlattenable(); |
| SK_FLATTENABLE_HOOKS(SkMatrixConvolutionImageFilter) |
| |
| SkISize fKernelSize; |
| SkScalar* fKernel; |
| SkScalar fGain; |
| SkScalar fBias; |
| SkIPoint fKernelOffset; |
| SkTileMode fTileMode; |
| bool fConvolveAlpha; |
| |
| template <class PixelFetcher, bool convolveAlpha> |
| void filterPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| SkIRect rect, |
| const SkIRect& bounds) const; |
| template <class PixelFetcher> |
| void filterPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| const SkIRect& rect, |
| const SkIRect& bounds) const; |
| void filterInteriorPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| const SkIRect& rect, |
| const SkIRect& bounds) const; |
| void filterBorderPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| const SkIRect& rect, |
| const SkIRect& bounds) const; |
| |
| using INHERITED = SkImageFilter_Base; |
| }; |
| |
| class UncheckedPixelFetcher { |
| public: |
| static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { |
| return *src.getAddr32(x, y); |
| } |
| }; |
| |
| class ClampPixelFetcher { |
| public: |
| static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { |
| x = SkTPin(x, bounds.fLeft, bounds.fRight - 1); |
| y = SkTPin(y, bounds.fTop, bounds.fBottom - 1); |
| return *src.getAddr32(x, y); |
| } |
| }; |
| |
| class RepeatPixelFetcher { |
| public: |
| static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { |
| x = (x - bounds.left()) % bounds.width() + bounds.left(); |
| y = (y - bounds.top()) % bounds.height() + bounds.top(); |
| if (x < bounds.left()) { |
| x += bounds.width(); |
| } |
| if (y < bounds.top()) { |
| y += bounds.height(); |
| } |
| return *src.getAddr32(x, y); |
| } |
| }; |
| |
| class ClampToBlackPixelFetcher { |
| public: |
| static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { |
| if (x < bounds.fLeft || x >= bounds.fRight || y < bounds.fTop || y >= bounds.fBottom) { |
| return 0; |
| } else { |
| return *src.getAddr32(x, y); |
| } |
| } |
| }; |
| |
| } // end namespace |
| |
| sk_sp<SkImageFilter> SkImageFilters::MatrixConvolution(const SkISize& kernelSize, |
| const SkScalar kernel[], |
| SkScalar gain, |
| SkScalar bias, |
| const SkIPoint& kernelOffset, |
| SkTileMode tileMode, |
| bool convolveAlpha, |
| sk_sp<SkImageFilter> input, |
| const CropRect& cropRect) { |
| // We need to be able to read at most SK_MaxS32 bytes, so divide that |
| // by the size of a scalar to know how many scalars we can read. |
| static constexpr int32_t kMaxKernelSize = SK_MaxS32 / sizeof(SkScalar); |
| |
| if (kernelSize.width() < 1 || kernelSize.height() < 1) { |
| return nullptr; |
| } |
| if (kMaxKernelSize / kernelSize.fWidth < kernelSize.fHeight) { |
| return nullptr; |
| } |
| if (!kernel) { |
| return nullptr; |
| } |
| if ((kernelOffset.fX < 0) || (kernelOffset.fX >= kernelSize.fWidth) || |
| (kernelOffset.fY < 0) || (kernelOffset.fY >= kernelSize.fHeight)) { |
| return nullptr; |
| } |
| return sk_sp<SkImageFilter>(new SkMatrixConvolutionImageFilter( |
| kernelSize, kernel, gain, bias, kernelOffset, tileMode, convolveAlpha, |
| std::move(input), cropRect)); |
| } |
| |
| void SkRegisterMatrixConvolutionImageFilterFlattenable() { |
| SK_REGISTER_FLATTENABLE(SkMatrixConvolutionImageFilter); |
| // TODO (michaelludwig) - Remove after grace period for SKPs to stop using old name |
| SkFlattenable::Register("SkMatrixConvolutionImageFilterImpl", |
| SkMatrixConvolutionImageFilter::CreateProc); |
| } |
| |
| sk_sp<SkFlattenable> SkMatrixConvolutionImageFilter::CreateProc(SkReadBuffer& buffer) { |
| SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1); |
| |
| SkISize kernelSize; |
| kernelSize.fWidth = buffer.readInt(); |
| kernelSize.fHeight = buffer.readInt(); |
| const int count = buffer.getArrayCount(); |
| |
| const int64_t kernelArea = sk_64_mul(kernelSize.width(), kernelSize.height()); |
| if (!buffer.validate(kernelArea == count)) { |
| return nullptr; |
| } |
| if (!buffer.validateCanReadN<SkScalar>(count)) { |
| return nullptr; |
| } |
| AutoSTArray<16, SkScalar> kernel(count); |
| if (!buffer.readScalarArray(kernel.get(), count)) { |
| return nullptr; |
| } |
| SkScalar gain = buffer.readScalar(); |
| SkScalar bias = buffer.readScalar(); |
| SkIPoint kernelOffset; |
| kernelOffset.fX = buffer.readInt(); |
| kernelOffset.fY = buffer.readInt(); |
| |
| SkTileMode tileMode = buffer.read32LE(SkTileMode::kLastTileMode); |
| bool convolveAlpha = buffer.readBool(); |
| |
| if (!buffer.isValid()) { |
| return nullptr; |
| } |
| return SkImageFilters::MatrixConvolution( |
| kernelSize, kernel.get(), gain, bias, kernelOffset, tileMode, |
| convolveAlpha, common.getInput(0), common.cropRect()); |
| } |
| |
| void SkMatrixConvolutionImageFilter::flatten(SkWriteBuffer& buffer) const { |
| this->INHERITED::flatten(buffer); |
| buffer.writeInt(fKernelSize.fWidth); |
| buffer.writeInt(fKernelSize.fHeight); |
| buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight); |
| buffer.writeScalar(fGain); |
| buffer.writeScalar(fBias); |
| buffer.writeInt(fKernelOffset.fX); |
| buffer.writeInt(fKernelOffset.fY); |
| buffer.writeInt((int) fTileMode); |
| buffer.writeBool(fConvolveAlpha); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| template<class PixelFetcher, bool convolveAlpha> |
| void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| SkIRect rect, |
| const SkIRect& bounds) const { |
| if (!rect.intersect(bounds)) { |
| return; |
| } |
| for (int y = rect.fTop; y < rect.fBottom; ++y) { |
| SkPMColor* dptr = result->getAddr32(rect.fLeft - offset.fX, y - offset.fY); |
| for (int x = rect.fLeft; x < rect.fRight; ++x) { |
| SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0; |
| for (int cy = 0; cy < fKernelSize.fHeight; cy++) { |
| for (int cx = 0; cx < fKernelSize.fWidth; cx++) { |
| SkPMColor s = PixelFetcher::fetch(src, |
| x + cx - fKernelOffset.fX, |
| y + cy - fKernelOffset.fY, |
| bounds); |
| SkScalar k = fKernel[cy * fKernelSize.fWidth + cx]; |
| if (convolveAlpha) { |
| sumA += SkGetPackedA32(s) * k; |
| } |
| sumR += SkGetPackedR32(s) * k; |
| sumG += SkGetPackedG32(s) * k; |
| sumB += SkGetPackedB32(s) * k; |
| } |
| } |
| int a = convolveAlpha |
| ? SkTPin(SkScalarFloorToInt(sumA * fGain + fBias), 0, 255) |
| : 255; |
| int r = SkTPin(SkScalarFloorToInt(sumR * fGain + fBias), 0, a); |
| int g = SkTPin(SkScalarFloorToInt(sumG * fGain + fBias), 0, a); |
| int b = SkTPin(SkScalarFloorToInt(sumB * fGain + fBias), 0, a); |
| if (!convolveAlpha) { |
| a = SkGetPackedA32(PixelFetcher::fetch(src, x, y, bounds)); |
| *dptr++ = SkPreMultiplyARGB(a, r, g, b); |
| } else { |
| *dptr++ = SkPackARGB32(a, r, g, b); |
| } |
| } |
| } |
| } |
| |
| template<class PixelFetcher> |
| void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| const SkIRect& rect, |
| const SkIRect& bounds) const { |
| if (fConvolveAlpha) { |
| filterPixels<PixelFetcher, true>(src, result, offset, rect, bounds); |
| } else { |
| filterPixels<PixelFetcher, false>(src, result, offset, rect, bounds); |
| } |
| } |
| |
| void SkMatrixConvolutionImageFilter::filterInteriorPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| const SkIRect& rect, |
| const SkIRect& bounds) const { |
| switch (fTileMode) { |
| case SkTileMode::kMirror: |
| // TODO (michaelludwig) - Implement mirror tiling, treat as repeat for now. |
| case SkTileMode::kRepeat: |
| // In repeat mode, we still need to wrap the samples around the src |
| filterPixels<RepeatPixelFetcher>(src, result, offset, rect, bounds); |
| break; |
| case SkTileMode::kClamp: |
| // Fall through |
| case SkTileMode::kDecal: |
| filterPixels<UncheckedPixelFetcher>(src, result, offset, rect, bounds); |
| break; |
| } |
| } |
| |
| void SkMatrixConvolutionImageFilter::filterBorderPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| const SkIRect& rect, |
| const SkIRect& srcBounds) const { |
| switch (fTileMode) { |
| case SkTileMode::kClamp: |
| filterPixels<ClampPixelFetcher>(src, result, offset, rect, srcBounds); |
| break; |
| case SkTileMode::kMirror: |
| // TODO (michaelludwig) - Implement mirror tiling, treat as repeat for now. |
| case SkTileMode::kRepeat: |
| filterPixels<RepeatPixelFetcher>(src, result, offset, rect, srcBounds); |
| break; |
| case SkTileMode::kDecal: |
| filterPixels<ClampToBlackPixelFetcher>(src, result, offset, rect, srcBounds); |
| break; |
| } |
| } |
| |
| sk_sp<SkSpecialImage> SkMatrixConvolutionImageFilter::onFilterImage(const Context& ctx, |
| SkIPoint* offset) const { |
| SkIPoint inputOffset = SkIPoint::Make(0, 0); |
| sk_sp<SkSpecialImage> input(this->filterInput(0, ctx, &inputOffset)); |
| if (!input) { |
| return nullptr; |
| } |
| |
| SkIRect dstBounds; |
| input = this->applyCropRectAndPad(this->mapContext(ctx), input.get(), &inputOffset, &dstBounds); |
| if (!input) { |
| return nullptr; |
| } |
| |
| const SkIRect originalSrcBounds = SkIRect::MakeXYWH(inputOffset.fX, inputOffset.fY, |
| input->width(), input->height()); |
| |
| SkIRect srcBounds = this->onFilterNodeBounds(dstBounds, ctx.ctm(), kReverse_MapDirection, |
| &originalSrcBounds); |
| |
| if (SkTileMode::kRepeat == fTileMode || SkTileMode::kMirror == fTileMode) { |
| srcBounds = DetermineRepeatedSrcBound(srcBounds, fKernelOffset, |
| fKernelSize, originalSrcBounds); |
| } else { |
| if (!srcBounds.intersect(dstBounds)) { |
| return nullptr; |
| } |
| } |
| |
| #if defined(SK_GANESH) |
| if (ctx.gpuBacked()) { |
| auto context = ctx.getContext(); |
| |
| // Ensure the input is in the destination color space. Typically applyCropRect will have |
| // called pad_image to account for our dilation of bounds, so the result will already be |
| // moved to the destination color space. If a filter DAG avoids that, then we use this |
| // fall-back, which saves us from having to do the xform during the filter itself. |
| input = ImageToColorSpace(input.get(), ctx.colorType(), ctx.colorSpace(), |
| ctx.surfaceProps()); |
| |
| GrSurfaceProxyView inputView = input->view(context); |
| SkASSERT(inputView.asTextureProxy()); |
| |
| const auto isProtected = inputView.proxy()->isProtected(); |
| const auto origin = inputView.origin(); |
| |
| offset->fX = dstBounds.left(); |
| offset->fY = dstBounds.top(); |
| dstBounds.offset(-inputOffset); |
| srcBounds.offset(-inputOffset); |
| // Map srcBounds from input's logical image domain to that of the proxy |
| srcBounds.offset(input->subset().x(), input->subset().y()); |
| |
| auto fp = GrMatrixConvolutionEffect::Make(context, |
| std::move(inputView), |
| srcBounds, |
| fKernelSize, |
| fKernel, |
| fGain, |
| fBias, |
| fKernelOffset, |
| SkTileModeToWrapMode(fTileMode), |
| fConvolveAlpha, |
| *ctx.getContext()->priv().caps()); |
| if (!fp) { |
| return nullptr; |
| } |
| |
| // FIXME (michaelludwig) - Clean this up as part of the imagefilter refactor, some filters |
| // instead require a coord transform on the FP. At very least, be consistent, at best make |
| // it so that filter impls don't need to worry about the subset origin. |
| |
| // Must also map the dstBounds since it is used as the src rect in DrawWithFP when |
| // evaluating the FP, and the dst rect just uses the size of dstBounds. |
| dstBounds.offset(input->subset().x(), input->subset().y()); |
| return DrawWithFP(context, std::move(fp), dstBounds, ctx.colorType(), ctx.colorSpace(), |
| ctx.surfaceProps(), origin, isProtected); |
| } |
| #endif |
| |
| SkBitmap inputBM; |
| if (!input->getROPixels(&inputBM)) { |
| return nullptr; |
| } |
| |
| if (inputBM.colorType() != kN32_SkColorType) { |
| return nullptr; |
| } |
| |
| if (!fConvolveAlpha && !inputBM.isOpaque()) { |
| // This leaves the bitmap tagged as premul, which seems weird to me, |
| // but is consistent with old behavior. |
| inputBM.readPixels(inputBM.info().makeAlphaType(kUnpremul_SkAlphaType), |
| inputBM.getPixels(), inputBM.rowBytes(), 0,0); |
| } |
| |
| if (!inputBM.getPixels()) { |
| return nullptr; |
| } |
| |
| const SkImageInfo info = SkImageInfo::MakeN32(dstBounds.width(), dstBounds.height(), |
| inputBM.alphaType()); |
| |
| SkBitmap dst; |
| if (!dst.tryAllocPixels(info)) { |
| return nullptr; |
| } |
| |
| offset->fX = dstBounds.fLeft; |
| offset->fY = dstBounds.fTop; |
| dstBounds.offset(-inputOffset); |
| srcBounds.offset(-inputOffset); |
| |
| SkIRect interior; |
| if (SkTileMode::kRepeat == fTileMode || SkTileMode::kMirror == fTileMode) { |
| // In repeat mode, the filterPixels calls will wrap around |
| // so we just need to render 'dstBounds' |
| interior = dstBounds; |
| } else { |
| interior = SkIRect::MakeXYWH(dstBounds.left() + fKernelOffset.fX, |
| dstBounds.top() + fKernelOffset.fY, |
| dstBounds.width() - fKernelSize.fWidth + 1, |
| dstBounds.height() - fKernelSize.fHeight + 1); |
| } |
| |
| SkIRect top = SkIRect::MakeLTRB(dstBounds.left(), dstBounds.top(), |
| dstBounds.right(), interior.top()); |
| SkIRect bottom = SkIRect::MakeLTRB(dstBounds.left(), interior.bottom(), |
| dstBounds.right(), dstBounds.bottom()); |
| SkIRect left = SkIRect::MakeLTRB(dstBounds.left(), interior.top(), |
| interior.left(), interior.bottom()); |
| SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(), |
| dstBounds.right(), interior.bottom()); |
| |
| SkIVector dstContentOffset = { offset->fX - inputOffset.fX, offset->fY - inputOffset.fY }; |
| |
| this->filterBorderPixels(inputBM, &dst, dstContentOffset, top, srcBounds); |
| this->filterBorderPixels(inputBM, &dst, dstContentOffset, left, srcBounds); |
| this->filterInteriorPixels(inputBM, &dst, dstContentOffset, interior, srcBounds); |
| this->filterBorderPixels(inputBM, &dst, dstContentOffset, right, srcBounds); |
| this->filterBorderPixels(inputBM, &dst, dstContentOffset, bottom, srcBounds); |
| |
| return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(dstBounds.width(), dstBounds.height()), |
| dst, ctx.surfaceProps()); |
| } |
| |
| SkIRect SkMatrixConvolutionImageFilter::onFilterNodeBounds( |
| const SkIRect& src, const SkMatrix& ctm, MapDirection dir, const SkIRect* inputRect) const { |
| if (kReverse_MapDirection == dir && inputRect && |
| (SkTileMode::kRepeat == fTileMode || SkTileMode::kMirror == fTileMode)) { |
| SkASSERT(inputRect); |
| return DetermineRepeatedSrcBound(src, fKernelOffset, fKernelSize, *inputRect); |
| } |
| |
| SkIRect dst = src; |
| int w = fKernelSize.width() - 1, h = fKernelSize.height() - 1; |
| |
| if (kReverse_MapDirection == dir) { |
| dst.adjust(-fKernelOffset.fX, -fKernelOffset.fY, |
| w - fKernelOffset.fX, h - fKernelOffset.fY); |
| } else { |
| dst.adjust(fKernelOffset.fX - w, fKernelOffset.fY - h, fKernelOffset.fX, fKernelOffset.fY); |
| } |
| return dst; |
| } |
| |
| bool SkMatrixConvolutionImageFilter::onAffectsTransparentBlack() const { |
| // It seems that the only rational way for repeat sample mode to work is if the caller |
| // explicitly restricts the input in which case the input range is explicitly known and |
| // specified. |
| // TODO: is seems that this should be true for clamp mode too. |
| |
| // For the other modes, because the kernel is applied in device-space, we have no idea what |
| // pixels it will affect in object-space. |
| return SkTileMode::kRepeat != fTileMode && SkTileMode::kMirror != fTileMode; |
| } |