| /* |
| * Copyright 2019 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkStream.h" |
| #include "include/core/SkString.h" |
| #include "include/private/base/SkTFitsIn.h" |
| #include "include/private/base/SkThreadID.h" |
| #include "src/base/SkHalf.h" |
| #include "src/core/SkColorSpacePriv.h" |
| #include "src/core/SkColorSpaceXformSteps.h" |
| #include "src/core/SkCpu.h" |
| #include "src/core/SkEnumerate.h" |
| #include "src/core/SkOpts.h" |
| #include "src/core/SkStreamPriv.h" |
| #include "src/core/SkVM.h" |
| #include "src/utils/SkVMVisualizer.h" |
| #include <algorithm> |
| #include <atomic> |
| #include <queue> |
| |
| #if !defined(SK_BUILD_FOR_WIN) |
| #include <unistd.h> |
| #endif |
| |
| bool gSkVMAllowJIT{false}; |
| bool gSkVMJITViaDylib{false}; |
| |
| #if defined(SKVM_JIT) |
| #if defined(SK_BUILD_FOR_WIN) |
| #include "src/base/SkLeanWindows.h" |
| #include <memoryapi.h> |
| |
| static void* alloc_jit_buffer(size_t* len) { |
| return VirtualAlloc(NULL, *len, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); |
| } |
| static void remap_as_executable(void* ptr, size_t len) { |
| DWORD old; |
| VirtualProtect(ptr, len, PAGE_EXECUTE_READ, &old); |
| SkASSERT(old == PAGE_READWRITE); |
| } |
| static void unmap_jit_buffer(void* ptr, size_t len) { |
| VirtualFree(ptr, 0, MEM_RELEASE); |
| } |
| static void close_dylib(void* dylib) { |
| SkASSERT(false); // TODO? For now just assert we never make one. |
| } |
| #else |
| #include <dlfcn.h> |
| #include <sys/mman.h> |
| |
| static void* alloc_jit_buffer(size_t* len) { |
| // While mprotect and VirtualAlloc both work at page granularity, |
| // mprotect doesn't round up for you, and instead requires *len is at page granularity. |
| const size_t page = sysconf(_SC_PAGESIZE); |
| *len = ((*len + page - 1) / page) * page; |
| return mmap(nullptr,*len, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1,0); |
| } |
| static void remap_as_executable(void* ptr, size_t len) { |
| mprotect(ptr, len, PROT_READ|PROT_EXEC); |
| __builtin___clear_cache((char*)ptr, |
| (char*)ptr + len); |
| } |
| static void unmap_jit_buffer(void* ptr, size_t len) { |
| munmap(ptr, len); |
| } |
| static void close_dylib(void* dylib) { |
| dlclose(dylib); |
| } |
| #endif |
| #endif |
| |
| // JIT code isn't MSAN-instrumented, so we won't see when it uses |
| // uninitialized memory, and we'll not see the writes it makes as properly |
| // initializing memory. Instead force the interpreter, which should let |
| // MSAN see everything our programs do properly. |
| // |
| // Similarly, we can't get ASAN's checks unless we let it instrument our interpreter. |
| #if defined(__has_feature) |
| #if __has_feature(memory_sanitizer) || __has_feature(address_sanitizer) |
| #define SKVM_JIT_BUT_IGNORE_IT |
| #endif |
| #endif |
| |
| #if defined(SKSL_STANDALONE) |
| // skslc needs to link against this module (for the VM code generator). This module pulls in |
| // color-space code, but attempting to add those transitive dependencies to skslc gets out of |
| // hand. So we terminate the chain here with stub functions. Note that skslc's usage of SkVM |
| // never cares about color management. |
| skvm::F32 sk_program_transfer_fn( |
| skvm::F32 v, skcms_TFType tf_type, |
| skvm::F32 G, skvm::F32 A, skvm::F32 B, skvm::F32 C, skvm::F32 D, skvm::F32 E, skvm::F32 F) { |
| return v; |
| } |
| |
| const skcms_TransferFunction* skcms_sRGB_TransferFunction() { return nullptr; } |
| const skcms_TransferFunction* skcms_sRGB_Inverse_TransferFunction() { return nullptr; } |
| #endif |
| |
| namespace skvm { |
| |
| static Features detect_features() { |
| static const bool fma = |
| #if defined(SK_CPU_X86) |
| SkCpu::Supports(SkCpu::HSW); |
| #elif defined(SK_CPU_ARM64) |
| true; |
| #else |
| false; |
| #endif |
| |
| static const bool fp16 = false; // TODO |
| |
| return { fma, fp16 }; |
| } |
| |
| Builder::Builder(bool createDuplicates) |
| : fFeatures(detect_features()), fCreateDuplicates(createDuplicates) {} |
| Builder::Builder(Features features, bool createDuplicates) |
| : fFeatures(features ), fCreateDuplicates(createDuplicates) {} |
| |
| struct Program::Impl { |
| std::vector<InterpreterInstruction> instructions; |
| int regs = 0; |
| int loop = 0; |
| std::vector<int> strides; |
| std::vector<TraceHook*> traceHooks; |
| std::unique_ptr<viz::Visualizer> visualizer; |
| |
| std::atomic<void*> jit_entry{nullptr}; // TODO: minimal std::memory_orders |
| size_t jit_size = 0; |
| void* dylib = nullptr; |
| }; |
| |
| // Debugging tools, mostly for printing various data structures out to a stream. |
| |
| namespace { |
| struct V { Val id; }; |
| struct R { Reg id; }; |
| struct Shift { int bits; }; |
| struct Splat { int bits; }; |
| struct Hex { int bits; }; |
| struct TraceHookID { int bits; }; |
| // For op `trace_line` |
| struct Line { int bits; }; |
| // For op `trace_var` |
| struct VarSlot { int bits; }; |
| // For op `trace_enter`/`trace_exit` |
| struct FnIdx { int bits; }; |
| |
| static void write(SkWStream* o, const char* s) { |
| o->writeText(s); |
| } |
| |
| static const char* name(Op op) { |
| switch (op) { |
| #define M(x) case Op::x: return #x; |
| SKVM_OPS(M) |
| #undef M |
| } |
| return "unknown op"; |
| } |
| |
| static void write(SkWStream* o, Op op) { |
| o->writeText(name(op)); |
| } |
| static void write(SkWStream* o, Ptr p) { |
| write(o, "ptr"); |
| o->writeDecAsText(p.ix); |
| } |
| static void write(SkWStream* o, V v) { |
| write(o, "v"); |
| o->writeDecAsText(v.id); |
| } |
| static void write(SkWStream* o, R r) { |
| write(o, "r"); |
| o->writeDecAsText(r.id); |
| } |
| static void write(SkWStream* o, Shift s) { |
| o->writeDecAsText(s.bits); |
| } |
| static void write(SkWStream* o, Splat s) { |
| float f; |
| memcpy(&f, &s.bits, 4); |
| o->writeHexAsText(s.bits); |
| write(o, " ("); |
| o->writeScalarAsText(f); |
| write(o, ")"); |
| } |
| static void write(SkWStream* o, Hex h) { |
| o->writeHexAsText(h.bits); |
| } |
| static void write(SkWStream* o, TraceHookID h) { |
| o->writeDecAsText(h.bits); |
| } |
| static void write(SkWStream* o, Line d) { |
| write(o, "L"); |
| o->writeDecAsText(d.bits); |
| } |
| static void write(SkWStream* o, VarSlot s) { |
| write(o, "$"); |
| o->writeDecAsText(s.bits); |
| } |
| static void write(SkWStream* o, FnIdx s) { |
| write(o, "F"); |
| o->writeDecAsText(s.bits); |
| } |
| template <typename T, typename... Ts> |
| static void write(SkWStream* o, T first, Ts... rest) { |
| write(o, first); |
| write(o, " "); |
| write(o, rest...); |
| } |
| } // namespace |
| |
| static void write_one_instruction(Val id, const OptimizedInstruction& inst, SkWStream* o) { |
| Op op = inst.op; |
| Val x = inst.x, |
| y = inst.y, |
| z = inst.z, |
| w = inst.w; |
| int immA = inst.immA, |
| immB = inst.immB, |
| immC = inst.immC; |
| switch (op) { |
| case Op::assert_true: write(o, op, V{x}, V{y}); break; |
| |
| case Op::trace_line: write(o, op, TraceHookID{immA}, V{x}, V{y}, Line{immB}); break; |
| case Op::trace_var: write(o, op, TraceHookID{immA}, V{x}, V{y}, |
| VarSlot{immB}, "=", V{z}); break; |
| case Op::trace_enter: write(o, op, TraceHookID{immA}, V{x}, V{y}, FnIdx{immB}); break; |
| case Op::trace_exit: write(o, op, TraceHookID{immA}, V{x}, V{y}, FnIdx{immB}); break; |
| case Op::trace_scope: write(o, op, TraceHookID{immA}, V{x}, V{y}, Shift{immB}); break; |
| |
| case Op::store8: write(o, op, Ptr{immA}, V{x} ); break; |
| case Op::store16: write(o, op, Ptr{immA}, V{x} ); break; |
| case Op::store32: write(o, op, Ptr{immA}, V{x} ); break; |
| case Op::store64: write(o, op, Ptr{immA}, V{x},V{y} ); break; |
| case Op::store128: write(o, op, Ptr{immA}, V{x},V{y},V{z},V{w}); break; |
| |
| case Op::index: write(o, V{id}, "=", op); break; |
| |
| case Op::load8: write(o, V{id}, "=", op, Ptr{immA}); break; |
| case Op::load16: write(o, V{id}, "=", op, Ptr{immA}); break; |
| case Op::load32: write(o, V{id}, "=", op, Ptr{immA}); break; |
| case Op::load64: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}); break; |
| case Op::load128: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}); break; |
| |
| case Op::gather8: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}, V{x}); break; |
| case Op::gather16: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}, V{x}); break; |
| case Op::gather32: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}, V{x}); break; |
| |
| case Op::uniform32: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}); break; |
| case Op::array32: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}, Hex{immC}); break; |
| |
| case Op::splat: write(o, V{id}, "=", op, Splat{immA}); break; |
| |
| case Op:: add_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; |
| case Op:: sub_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; |
| case Op:: mul_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; |
| case Op:: div_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; |
| case Op:: min_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; |
| case Op:: max_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; |
| case Op:: fma_f32: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; |
| case Op:: fms_f32: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; |
| case Op::fnma_f32: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; |
| |
| |
| case Op::sqrt_f32: write(o, V{id}, "=", op, V{x}); break; |
| |
| case Op:: eq_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::neq_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op:: gt_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::gte_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| |
| |
| case Op::add_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::sub_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::mul_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| |
| case Op::shl_i32: write(o, V{id}, "=", op, V{x}, Shift{immA}); break; |
| case Op::shr_i32: write(o, V{id}, "=", op, V{x}, Shift{immA}); break; |
| case Op::sra_i32: write(o, V{id}, "=", op, V{x}, Shift{immA}); break; |
| |
| case Op::eq_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::gt_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| |
| |
| case Op::bit_and : write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::bit_or : write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::bit_xor : write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::bit_clear: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| |
| case Op::select: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; |
| |
| case Op::ceil: write(o, V{id}, "=", op, V{x}); break; |
| case Op::floor: write(o, V{id}, "=", op, V{x}); break; |
| case Op::to_f32: write(o, V{id}, "=", op, V{x}); break; |
| case Op::to_fp16: write(o, V{id}, "=", op, V{x}); break; |
| case Op::from_fp16: write(o, V{id}, "=", op, V{x}); break; |
| case Op::trunc: write(o, V{id}, "=", op, V{x}); break; |
| case Op::round: write(o, V{id}, "=", op, V{x}); break; |
| |
| case Op::duplicate: write(o, V{id}, "=", op, Hex{immA}); break; |
| } |
| |
| write(o, "\n"); |
| } |
| |
| void Builder::dump(SkWStream* o) const { |
| SkDebugfStream debug; |
| if (!o) { o = &debug; } |
| |
| std::vector<OptimizedInstruction> optimized = this->optimize(); |
| o->writeDecAsText(optimized.size()); |
| o->writeText(" values (originally "); |
| o->writeDecAsText(fProgram.size()); |
| o->writeText("):\n"); |
| for (Val id = 0; id < (Val)optimized.size(); id++) { |
| const OptimizedInstruction& inst = optimized[id]; |
| write(o, inst.can_hoist ? "↑ " : " "); |
| write_one_instruction(id, inst, o); |
| } |
| } |
| |
| void Program::visualize(SkWStream* output) const { |
| if (fImpl->visualizer) { |
| fImpl->visualizer->dump(output); |
| } |
| } |
| |
| viz::Visualizer* Program::visualizer() { return fImpl->visualizer.get(); } |
| void Program::dump(SkWStream* o) const { |
| SkDebugfStream debug; |
| if (!o) { o = &debug; } |
| |
| o->writeDecAsText(fImpl->regs); |
| o->writeText(" registers, "); |
| o->writeDecAsText(fImpl->instructions.size()); |
| o->writeText(" instructions:\n"); |
| for (Val i = 0; i < (Val)fImpl->instructions.size(); i++) { |
| if (i == fImpl->loop) { write(o, "loop:\n"); } |
| o->writeDecAsText(i); |
| o->writeText("\t"); |
| if (i >= fImpl->loop) { write(o, " "); } |
| const InterpreterInstruction& inst = fImpl->instructions[i]; |
| Op op = inst.op; |
| Reg d = inst.d, |
| x = inst.x, |
| y = inst.y, |
| z = inst.z, |
| w = inst.w; |
| int immA = inst.immA, |
| immB = inst.immB, |
| immC = inst.immC; |
| switch (op) { |
| case Op::assert_true: write(o, op, R{x}, R{y}); break; |
| |
| case Op::trace_line: write(o, op, TraceHookID{immA}, |
| R{x}, R{y}, Line{immB}); break; |
| case Op::trace_var: write(o, op, TraceHookID{immA}, R{x}, R{y}, |
| VarSlot{immB}, "=", R{z}); break; |
| case Op::trace_enter: write(o, op, TraceHookID{immA}, |
| R{x}, R{y}, FnIdx{immB}); break; |
| case Op::trace_exit: write(o, op, TraceHookID{immA}, |
| R{x}, R{y}, FnIdx{immB}); break; |
| case Op::trace_scope: write(o, op, TraceHookID{immA}, |
| R{x}, R{y}, Shift{immB}); break; |
| |
| case Op::store8: write(o, op, Ptr{immA}, R{x} ); break; |
| case Op::store16: write(o, op, Ptr{immA}, R{x} ); break; |
| case Op::store32: write(o, op, Ptr{immA}, R{x} ); break; |
| case Op::store64: write(o, op, Ptr{immA}, R{x}, R{y} ); break; |
| case Op::store128: write(o, op, Ptr{immA}, R{x}, R{y}, R{z}, R{w}); break; |
| |
| case Op::index: write(o, R{d}, "=", op); break; |
| |
| case Op::load8: write(o, R{d}, "=", op, Ptr{immA}); break; |
| case Op::load16: write(o, R{d}, "=", op, Ptr{immA}); break; |
| case Op::load32: write(o, R{d}, "=", op, Ptr{immA}); break; |
| case Op::load64: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}); break; |
| case Op::load128: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}); break; |
| |
| case Op::gather8: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}, R{x}); break; |
| case Op::gather16: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}, R{x}); break; |
| case Op::gather32: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}, R{x}); break; |
| |
| case Op::uniform32: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}); break; |
| case Op::array32: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}, Hex{immC}); break; |
| |
| case Op::splat: write(o, R{d}, "=", op, Splat{immA}); break; |
| |
| case Op::add_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; |
| case Op::sub_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; |
| case Op::mul_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; |
| case Op::div_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; |
| case Op::min_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; |
| case Op::max_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; |
| case Op::fma_f32: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; |
| case Op::fms_f32: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; |
| case Op::fnma_f32: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; |
| |
| case Op::sqrt_f32: write(o, R{d}, "=", op, R{x}); break; |
| |
| case Op:: eq_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::neq_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op:: gt_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::gte_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| |
| |
| case Op::add_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::sub_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::mul_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| |
| case Op::shl_i32: write(o, R{d}, "=", op, R{x}, Shift{immA}); break; |
| case Op::shr_i32: write(o, R{d}, "=", op, R{x}, Shift{immA}); break; |
| case Op::sra_i32: write(o, R{d}, "=", op, R{x}, Shift{immA}); break; |
| |
| case Op::eq_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::gt_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| |
| case Op::bit_and : write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::bit_or : write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::bit_xor : write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::bit_clear: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| |
| case Op::select: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; |
| |
| case Op::ceil: write(o, R{d}, "=", op, R{x}); break; |
| case Op::floor: write(o, R{d}, "=", op, R{x}); break; |
| case Op::to_f32: write(o, R{d}, "=", op, R{x}); break; |
| case Op::to_fp16: write(o, R{d}, "=", op, R{x}); break; |
| case Op::from_fp16: write(o, R{d}, "=", op, R{x}); break; |
| case Op::trunc: write(o, R{d}, "=", op, R{x}); break; |
| case Op::round: write(o, R{d}, "=", op, R{x}); break; |
| |
| case Op::duplicate: write(o, R{d}, "=", op, Hex{immA}); break; |
| } |
| write(o, "\n"); |
| } |
| } |
| std::vector<Instruction> eliminate_dead_code(std::vector<Instruction> program, |
| viz::Visualizer* visualizer) { |
| // Determine which Instructions are live by working back from side effects. |
| std::vector<bool> live(program.size(), false); |
| for (Val id = program.size(); id--;) { |
| if (live[id] || has_side_effect(program[id].op)) { |
| live[id] = true; |
| const Instruction& inst = program[id]; |
| for (Val arg : {inst.x, inst.y, inst.z, inst.w}) { |
| if (arg != NA) { live[arg] = true; } |
| } |
| } |
| } |
| |
| // Rewrite the program with only live Instructions: |
| // - remap IDs in live Instructions to what they'll be once dead Instructions are removed; |
| // - then actually remove the dead Instructions. |
| std::vector<Val> new_id(program.size(), NA); |
| for (Val id = 0, next = 0; id < (Val)program.size(); id++) { |
| if (live[id]) { |
| Instruction& inst = program[id]; |
| for (Val* arg : {&inst.x, &inst.y, &inst.z, &inst.w}) { |
| if (*arg != NA) { |
| *arg = new_id[*arg]; |
| SkASSERT(*arg != NA); |
| } |
| } |
| new_id[id] = next++; |
| } |
| } |
| |
| if (visualizer) { |
| visualizer->addInstructions(program); |
| visualizer->markAsDeadCode(live, new_id); |
| } |
| |
| // Eliminate any non-live ops. |
| auto it = std::remove_if(program.begin(), program.end(), [&](const Instruction& inst) { |
| Val id = (Val)(&inst - program.data()); |
| return !live[id]; |
| }); |
| program.erase(it, program.end()); |
| |
| return program; |
| } |
| |
| std::vector<OptimizedInstruction> finalize(const std::vector<Instruction> program, |
| viz::Visualizer* visualizer) { |
| std::vector<OptimizedInstruction> optimized(program.size()); |
| for (Val id = 0; id < (Val)program.size(); id++) { |
| Instruction inst = program[id]; |
| optimized[id] = {inst.op, inst.x,inst.y,inst.z,inst.w, |
| inst.immA,inst.immB,inst.immC, |
| /*death=*/id, /*can_hoist=*/true}; |
| } |
| |
| // Each Instruction's inputs need to live at least until that Instruction issues. |
| for (Val id = 0; id < (Val)optimized.size(); id++) { |
| OptimizedInstruction& inst = optimized[id]; |
| for (Val arg : {inst.x, inst.y, inst.z, inst.w}) { |
| // (We're walking in order, so this is the same as max()ing with the existing Val.) |
| if (arg != NA) { optimized[arg].death = id; } |
| } |
| } |
| |
| // Mark which values don't depend on the loop and can be hoisted. |
| for (OptimizedInstruction& inst : optimized) { |
| // Varying loads (and gathers) and stores cannot be hoisted out of the loop. |
| if (is_always_varying(inst.op) || is_trace(inst.op)) { |
| inst.can_hoist = false; |
| } |
| |
| // If any of an instruction's inputs can't be hoisted, it can't be hoisted itself. |
| if (inst.can_hoist) { |
| for (Val arg : {inst.x, inst.y, inst.z, inst.w}) { |
| if (arg != NA) { inst.can_hoist &= optimized[arg].can_hoist; } |
| } |
| } |
| } |
| |
| // Extend the lifetime of any hoisted value that's used in the loop to infinity. |
| for (OptimizedInstruction& inst : optimized) { |
| if (!inst.can_hoist /*i.e. we're in the loop, so the arguments are used-in-loop*/) { |
| for (Val arg : {inst.x, inst.y, inst.z, inst.w}) { |
| if (arg != NA && optimized[arg].can_hoist) { |
| optimized[arg].death = (Val)program.size(); |
| } |
| } |
| } |
| } |
| |
| if (visualizer) { |
| visualizer->finalize(program, optimized); |
| } |
| |
| return optimized; |
| } |
| |
| std::vector<OptimizedInstruction> Builder::optimize(viz::Visualizer* visualizer) const { |
| std::vector<Instruction> program = this->program(); |
| program = eliminate_dead_code(std::move(program), visualizer); |
| return finalize (std::move(program), visualizer); |
| } |
| |
| Program Builder::done(const char* debug_name, |
| bool allow_jit) const { |
| return this->done(debug_name, allow_jit, /*visualizer=*/nullptr); |
| } |
| |
| Program Builder::done(const char* debug_name, |
| bool allow_jit, |
| std::unique_ptr<viz::Visualizer> visualizer) const { |
| char buf[64] = "skvm-jit-"; |
| if (!debug_name) { |
| *SkStrAppendU32(buf+9, this->hash()) = '\0'; |
| debug_name = buf; |
| } |
| |
| auto optimized = this->optimize(visualizer ? visualizer.get() : nullptr); |
| return {optimized, |
| std::move(visualizer), |
| fStrides, |
| fTraceHooks, debug_name, allow_jit}; |
| } |
| |
| uint64_t Builder::hash() const { |
| uint32_t lo = SkOpts::hash(fProgram.data(), fProgram.size() * sizeof(Instruction), 0), |
| hi = SkOpts::hash(fProgram.data(), fProgram.size() * sizeof(Instruction), 1); |
| return (uint64_t)lo | (uint64_t)hi << 32; |
| } |
| |
| bool operator!=(Ptr a, Ptr b) { return a.ix != b.ix; } |
| |
| bool operator==(const Instruction& a, const Instruction& b) { |
| return a.op == b.op |
| && a.x == b.x |
| && a.y == b.y |
| && a.z == b.z |
| && a.w == b.w |
| && a.immA == b.immA |
| && a.immB == b.immB |
| && a.immC == b.immC; |
| } |
| |
| uint32_t InstructionHash::operator()(const Instruction& inst, uint32_t seed) const { |
| return SkOpts::hash(&inst, sizeof(inst), seed); |
| } |
| |
| |
| // Most instructions produce a value and return it by ID, |
| // the value-producing instruction's own index in the program vector. |
| Val Builder::push(Instruction inst) { |
| // Basic common subexpression elimination: |
| // if we've already seen this exact Instruction, use it instead of creating a new one. |
| // |
| // But we never dedup loads or stores: an intervening store could change that memory. |
| // Uniforms and gathers touch only uniform memory, so they're fine to dedup, |
| // and index is varying but doesn't touch memory, so it's fine to dedup too. |
| if (!touches_varying_memory(inst.op) && !is_trace(inst.op)) { |
| if (Val* id = fIndex.find(inst)) { |
| if (fCreateDuplicates) { |
| inst.op = Op::duplicate; |
| inst.immA = *id; |
| fProgram.push_back(inst); |
| } |
| return *id; |
| } |
| } |
| |
| Val id = static_cast<Val>(fProgram.size()); |
| fProgram.push_back(inst); |
| fIndex.set(inst, id); |
| return id; |
| } |
| |
| Ptr Builder::arg(int stride) { |
| int ix = (int)fStrides.size(); |
| fStrides.push_back(stride); |
| return {ix}; |
| } |
| |
| void Builder::assert_true(I32 cond, I32 debug) { |
| #ifdef SK_DEBUG |
| int imm; |
| if (this->allImm(cond.id,&imm)) { SkASSERT(imm); return; } |
| (void)push(Op::assert_true, cond.id, debug.id); |
| #endif |
| } |
| |
| int Builder::attachTraceHook(TraceHook* hook) { |
| int traceHookID = (int)fTraceHooks.size(); |
| fTraceHooks.push_back(hook); |
| return traceHookID; |
| } |
| |
| bool Builder::mergeMasks(I32& mask, I32& traceMask) { |
| if (this->isImm(mask.id, 0)) { return false; } |
| if (this->isImm(traceMask.id, 0)) { return false; } |
| if (this->isImm(mask.id, ~0)) { mask = traceMask; } |
| if (this->isImm(traceMask.id,~0)) { traceMask = mask; } |
| return true; |
| } |
| |
| void Builder::trace_line(int traceHookID, I32 mask, I32 traceMask, int line) { |
| SkASSERT(traceHookID >= 0); |
| SkASSERT(traceHookID < (int)fTraceHooks.size()); |
| if (!this->mergeMasks(mask, traceMask)) { return; } |
| (void)push(Op::trace_line, mask.id,traceMask.id,NA,NA, traceHookID, line); |
| } |
| void Builder::trace_var(int traceHookID, I32 mask, I32 traceMask, int slot, I32 val) { |
| SkASSERT(traceHookID >= 0); |
| SkASSERT(traceHookID < (int)fTraceHooks.size()); |
| if (!this->mergeMasks(mask, traceMask)) { return; } |
| (void)push(Op::trace_var, mask.id,traceMask.id,val.id,NA, traceHookID, slot); |
| } |
| void Builder::trace_enter(int traceHookID, I32 mask, I32 traceMask, int fnIdx) { |
| SkASSERT(traceHookID >= 0); |
| SkASSERT(traceHookID < (int)fTraceHooks.size()); |
| if (!this->mergeMasks(mask, traceMask)) { return; } |
| (void)push(Op::trace_enter, mask.id,traceMask.id,NA,NA, traceHookID, fnIdx); |
| } |
| void Builder::trace_exit(int traceHookID, I32 mask, I32 traceMask, int fnIdx) { |
| SkASSERT(traceHookID >= 0); |
| SkASSERT(traceHookID < (int)fTraceHooks.size()); |
| if (!this->mergeMasks(mask, traceMask)) { return; } |
| (void)push(Op::trace_exit, mask.id,traceMask.id,NA,NA, traceHookID, fnIdx); |
| } |
| void Builder::trace_scope(int traceHookID, I32 mask, I32 traceMask, int delta) { |
| SkASSERT(traceHookID >= 0); |
| SkASSERT(traceHookID < (int)fTraceHooks.size()); |
| if (!this->mergeMasks(mask, traceMask)) { return; } |
| (void)push(Op::trace_scope, mask.id,traceMask.id,NA,NA, traceHookID, delta); |
| } |
| |
| void Builder::store8 (Ptr ptr, I32 val) { (void)push(Op::store8 , val.id,NA,NA,NA, ptr.ix); } |
| void Builder::store16(Ptr ptr, I32 val) { (void)push(Op::store16, val.id,NA,NA,NA, ptr.ix); } |
| void Builder::store32(Ptr ptr, I32 val) { (void)push(Op::store32, val.id,NA,NA,NA, ptr.ix); } |
| void Builder::store64(Ptr ptr, I32 lo, I32 hi) { |
| (void)push(Op::store64, lo.id,hi.id,NA,NA, ptr.ix); |
| } |
| void Builder::store128(Ptr ptr, I32 x, I32 y, I32 z, I32 w) { |
| (void)push(Op::store128, x.id,y.id,z.id,w.id, ptr.ix); |
| } |
| |
| I32 Builder::index() { return {this, push(Op::index)}; } |
| |
| I32 Builder::load8 (Ptr ptr) { return {this, push(Op::load8 , NA,NA,NA,NA, ptr.ix) }; } |
| I32 Builder::load16(Ptr ptr) { return {this, push(Op::load16, NA,NA,NA,NA, ptr.ix) }; } |
| I32 Builder::load32(Ptr ptr) { return {this, push(Op::load32, NA,NA,NA,NA, ptr.ix) }; } |
| I32 Builder::load64(Ptr ptr, int lane) { |
| return {this, push(Op::load64 , NA,NA,NA,NA, ptr.ix,lane) }; |
| } |
| I32 Builder::load128(Ptr ptr, int lane) { |
| return {this, push(Op::load128, NA,NA,NA,NA, ptr.ix,lane) }; |
| } |
| |
| I32 Builder::gather8 (UPtr ptr, int offset, I32 index) { |
| return {this, push(Op::gather8 , index.id,NA,NA,NA, ptr.ix,offset)}; |
| } |
| I32 Builder::gather16(UPtr ptr, int offset, I32 index) { |
| return {this, push(Op::gather16, index.id,NA,NA,NA, ptr.ix,offset)}; |
| } |
| I32 Builder::gather32(UPtr ptr, int offset, I32 index) { |
| return {this, push(Op::gather32, index.id,NA,NA,NA, ptr.ix,offset)}; |
| } |
| |
| I32 Builder::uniform32(UPtr ptr, int offset) { |
| return {this, push(Op::uniform32, NA,NA,NA,NA, ptr.ix, offset)}; |
| } |
| |
| // Note: this converts the array index into a byte offset for the op. |
| I32 Builder::array32 (UPtr ptr, int offset, int index) { |
| return {this, push(Op::array32, NA,NA,NA,NA, ptr.ix, offset, index * sizeof(int))}; |
| } |
| |
| I32 Builder::splat(int n) { return {this, push(Op::splat, NA,NA,NA,NA, n) }; } |
| |
| template <typename F32_or_I32> |
| void Builder::canonicalizeIdOrder(F32_or_I32& x, F32_or_I32& y) { |
| bool immX = fProgram[x.id].op == Op::splat; |
| bool immY = fProgram[y.id].op == Op::splat; |
| if (immX != immY) { |
| if (immX) { |
| // Prefer (val, imm) over (imm, val). |
| std::swap(x, y); |
| } |
| return; |
| } |
| if (x.id > y.id) { |
| // Prefer (lower-ID, higher-ID) over (higher-ID, lower-ID). |
| std::swap(x, y); |
| } |
| } |
| |
| // Be careful peepholing float math! Transformations you might expect to |
| // be legal can fail in the face of NaN/Inf, e.g. 0*x is not always 0. |
| // Float peepholes must pass this equivalence test for all ~4B floats: |
| // |
| // bool equiv(float x, float y) { return (x == y) || (isnanf(x) && isnanf(y)); } |
| // |
| // unsigned bits = 0; |
| // do { |
| // float f; |
| // memcpy(&f, &bits, 4); |
| // if (!equiv(f, ...)) { |
| // abort(); |
| // } |
| // } while (++bits != 0); |
| |
| F32 Builder::add(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X+Y); } |
| this->canonicalizeIdOrder(x, y); |
| if (this->isImm(y.id, 0.0f)) { return x; } // x+0 == x |
| |
| if (fFeatures.fma) { |
| if (fProgram[x.id].op == Op::mul_f32) { |
| return {this, this->push(Op::fma_f32, fProgram[x.id].x, fProgram[x.id].y, y.id)}; |
| } |
| if (fProgram[y.id].op == Op::mul_f32) { |
| return {this, this->push(Op::fma_f32, fProgram[y.id].x, fProgram[y.id].y, x.id)}; |
| } |
| } |
| return {this, this->push(Op::add_f32, x.id, y.id)}; |
| } |
| |
| F32 Builder::sub(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X-Y); } |
| if (this->isImm(y.id, 0.0f)) { return x; } // x-0 == x |
| if (fFeatures.fma) { |
| if (fProgram[x.id].op == Op::mul_f32) { |
| return {this, this->push(Op::fms_f32, fProgram[x.id].x, fProgram[x.id].y, y.id)}; |
| } |
| if (fProgram[y.id].op == Op::mul_f32) { |
| return {this, this->push(Op::fnma_f32, fProgram[y.id].x, fProgram[y.id].y, x.id)}; |
| } |
| } |
| return {this, this->push(Op::sub_f32, x.id, y.id)}; |
| } |
| |
| F32 Builder::mul(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X*Y); } |
| this->canonicalizeIdOrder(x, y); |
| if (this->isImm(y.id, 1.0f)) { return x; } // x*1 == x |
| return {this, this->push(Op::mul_f32, x.id, y.id)}; |
| } |
| |
| F32 Builder::fast_mul(F32 x, F32 y) { |
| if (this->isImm(x.id, 0.0f) || this->isImm(y.id, 0.0f)) { return splat(0.0f); } |
| return mul(x,y); |
| } |
| |
| F32 Builder::div(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(sk_ieee_float_divide(X,Y)); } |
| if (this->isImm(y.id, 1.0f)) { return x; } // x/1 == x |
| return {this, this->push(Op::div_f32, x.id, y.id)}; |
| } |
| |
| F32 Builder::sqrt(F32 x) { |
| if (float X; this->allImm(x.id,&X)) { return splat(std::sqrt(X)); } |
| return {this, this->push(Op::sqrt_f32, x.id)}; |
| } |
| |
| // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html. |
| F32 Builder::approx_log2(F32 x) { |
| // e - 127 is a fair approximation of log2(x) in its own right... |
| F32 e = mul(to_F32(pun_to_I32(x)), splat(1.0f / (1<<23))); |
| |
| // ... but using the mantissa to refine its error is _much_ better. |
| F32 m = pun_to_F32(bit_or(bit_and(pun_to_I32(x), 0x007fffff), |
| 0x3f000000)); |
| F32 approx = sub(e, 124.225514990f); |
| approx = sub(approx, mul(1.498030302f, m)); |
| approx = sub(approx, div(1.725879990f, add(0.3520887068f, m))); |
| |
| return approx; |
| } |
| |
| F32 Builder::approx_pow2(F32 x) { |
| constexpr float kInfinityBits = 0x7f800000; |
| |
| F32 f = fract(x); |
| F32 approx = add(x, 121.274057500f); |
| approx = sub(approx, mul( 1.490129070f, f)); |
| approx = add(approx, div(27.728023300f, sub(4.84252568f, f))); |
| approx = mul(1.0f * (1<<23), approx); |
| approx = clamp(approx, 0, kInfinityBits); // guard against underflow/overflow |
| |
| return pun_to_F32(round(approx)); |
| } |
| |
| F32 Builder::approx_powf(F32 x, F32 y) { |
| // TODO: assert this instead? Sometimes x is very slightly negative. See skia:10210. |
| x = max(0.0f, x); |
| |
| if (this->isImm(x.id, 1.0f)) { return x; } // 1^y is one |
| if (this->isImm(x.id, 2.0f)) { return this->approx_pow2(y); } // 2^y is pow2(y) |
| if (this->isImm(y.id, 0.5f)) { return this->sqrt(x); } // x^0.5 is sqrt(x) |
| if (this->isImm(y.id, 1.0f)) { return x; } // x^1 is x |
| if (this->isImm(y.id, 2.0f)) { return x * x; } // x^2 is x*x |
| |
| auto is_x = bit_or(eq(x, 0.0f), |
| eq(x, 1.0f)); |
| return select(is_x, x, approx_pow2(mul(approx_log2(x), y))); |
| } |
| |
| // Bhaskara I's sine approximation |
| // 16x(pi - x) / (5*pi^2 - 4x(pi - x) |
| // ... divide by 4 |
| // 4x(pi - x) / 5*pi^2/4 - x(pi - x) |
| // |
| // This is a good approximation only for 0 <= x <= pi, so we use symmetries to get |
| // radians into that range first. |
| // |
| F32 Builder::approx_sin(F32 radians) { |
| constexpr float Pi = SK_ScalarPI; |
| // x = radians mod 2pi |
| F32 x = fract(radians * (0.5f/Pi)) * (2*Pi); |
| I32 neg = x > Pi; // are we pi < x < 2pi --> need to negate result |
| x = select(neg, x - Pi, x); |
| |
| F32 pair = x * (Pi - x); |
| x = 4.0f * pair / ((5*Pi*Pi/4) - pair); |
| x = select(neg, -x, x); |
| return x; |
| } |
| |
| /* "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION" |
| https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf |
| |
| approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9 |
| |
| Some simplifications: |
| 1. tan(x) is periodic, -PI/2 < x < PI/2 |
| 2. tan(x) is odd, so tan(-x) = -tan(x) |
| 3. Our polynomial approximation is best near zero, so we use the following identity |
| tan(x) + tan(y) |
| tan(x + y) = ----------------- |
| 1 - tan(x)*tan(y) |
| tan(PI/4) = 1 |
| |
| So for x > PI/8, we do the following refactor: |
| x' = x - PI/4 |
| |
| 1 + tan(x') |
| tan(x) = ------------ |
| 1 - tan(x') |
| */ |
| F32 Builder::approx_tan(F32 x) { |
| constexpr float Pi = SK_ScalarPI; |
| // periodic between -pi/2 ... pi/2 |
| // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back |
| x = fract((1/Pi)*x + 0.5f) * Pi - (Pi/2); |
| |
| I32 neg = (x < 0.0f); |
| x = select(neg, -x, x); |
| |
| // minimize total error by shifting if x > pi/8 |
| I32 use_quotient = (x > (Pi/8)); |
| x = select(use_quotient, x - (Pi/4), x); |
| |
| // 9th order poly = 4th order(x^2) * x |
| x = poly(x*x, 62/2835.0f, 17/315.0f, 2/15.0f, 1/3.0f, 1.0f) * x; |
| x = select(use_quotient, (1+x)/(1-x), x); |
| x = select(neg, -x, x); |
| return x; |
| } |
| |
| // http://mathforum.org/library/drmath/view/54137.html |
| // referencing Handbook of Mathematical Functions, |
| // by Milton Abramowitz and Irene Stegun |
| F32 Builder::approx_asin(F32 x) { |
| I32 neg = (x < 0.0f); |
| x = select(neg, -x, x); |
| x = SK_ScalarPI/2 - sqrt(1-x) * poly(x, -0.0187293f, 0.0742610f, -0.2121144f, 1.5707288f); |
| x = select(neg, -x, x); |
| return x; |
| } |
| |
| /* Use 4th order polynomial approximation from https://arachnoid.com/polysolve/ |
| * with 129 values of x,atan(x) for x:[0...1] |
| * This only works for 0 <= x <= 1 |
| */ |
| static F32 approx_atan_unit(F32 x) { |
| // for now we might be given NaN... let that through |
| x->assert_true((x != x) | ((x >= 0) & (x <= 1))); |
| return poly(x, 0.14130025741326729f, |
| -0.34312835980675116f, |
| -0.016172900528248768f, |
| 1.0037696976200385f, |
| -0.00014758242182738969f); |
| } |
| |
| /* Use identity atan(x) = pi/2 - atan(1/x) for x > 1 |
| */ |
| F32 Builder::approx_atan(F32 x) { |
| I32 neg = (x < 0.0f); |
| x = select(neg, -x, x); |
| I32 flip = (x > 1.0f); |
| x = select(flip, 1/x, x); |
| x = approx_atan_unit(x); |
| x = select(flip, SK_ScalarPI/2 - x, x); |
| x = select(neg, -x, x); |
| return x; |
| } |
| |
| /* Use identity atan(x) = pi/2 - atan(1/x) for x > 1 |
| * By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit() |
| * which avoids a 2nd divide instruction if we had instead called atan(). |
| */ |
| F32 Builder::approx_atan2(F32 y0, F32 x0) { |
| |
| I32 flip = (abs(y0) > abs(x0)); |
| F32 y = select(flip, x0, y0); |
| F32 x = select(flip, y0, x0); |
| F32 arg = y/x; |
| |
| I32 neg = (arg < 0.0f); |
| arg = select(neg, -arg, arg); |
| |
| F32 r = approx_atan_unit(arg); |
| r = select(flip, SK_ScalarPI/2 - r, r); |
| r = select(neg, -r, r); |
| |
| // handle quadrant distinctions |
| r = select((y0 >= 0) & (x0 < 0), r + SK_ScalarPI, r); |
| r = select((y0 < 0) & (x0 <= 0), r - SK_ScalarPI, r); |
| // Note: we don't try to handle 0,0 or infinities |
| return r; |
| } |
| |
| F32 Builder::min(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(std::min(X,Y)); } |
| return {this, this->push(Op::min_f32, x.id, y.id)}; |
| } |
| F32 Builder::max(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(std::max(X,Y)); } |
| return {this, this->push(Op::max_f32, x.id, y.id)}; |
| } |
| |
| SK_NO_SANITIZE("signed-integer-overflow") |
| I32 Builder::add(I32 x, I32 y) { |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X+Y); } |
| this->canonicalizeIdOrder(x, y); |
| if (this->isImm(y.id, 0)) { return x; } // x+0 == x |
| return {this, this->push(Op::add_i32, x.id, y.id)}; |
| } |
| SK_NO_SANITIZE("signed-integer-overflow") |
| I32 Builder::sub(I32 x, I32 y) { |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X-Y); } |
| if (this->isImm(y.id, 0)) { return x; } |
| return {this, this->push(Op::sub_i32, x.id, y.id)}; |
| } |
| SK_NO_SANITIZE("signed-integer-overflow") |
| I32 Builder::mul(I32 x, I32 y) { |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X*Y); } |
| this->canonicalizeIdOrder(x, y); |
| if (this->isImm(y.id, 0)) { return splat(0); } // x*0 == 0 |
| if (this->isImm(y.id, 1)) { return x; } // x*1 == x |
| return {this, this->push(Op::mul_i32, x.id, y.id)}; |
| } |
| |
| SK_NO_SANITIZE("shift") |
| I32 Builder::shl(I32 x, int bits) { |
| if (bits == 0) { return x; } |
| if (int X; this->allImm(x.id,&X)) { return splat(X << bits); } |
| return {this, this->push(Op::shl_i32, x.id,NA,NA,NA, bits)}; |
| } |
| I32 Builder::shr(I32 x, int bits) { |
| if (bits == 0) { return x; } |
| if (int X; this->allImm(x.id,&X)) { return splat(unsigned(X) >> bits); } |
| return {this, this->push(Op::shr_i32, x.id,NA,NA,NA, bits)}; |
| } |
| I32 Builder::sra(I32 x, int bits) { |
| if (bits == 0) { return x; } |
| if (int X; this->allImm(x.id,&X)) { return splat(X >> bits); } |
| return {this, this->push(Op::sra_i32, x.id,NA,NA,NA, bits)}; |
| } |
| |
| I32 Builder:: eq(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X==Y ? ~0 : 0); } |
| this->canonicalizeIdOrder(x, y); |
| return {this, this->push(Op::eq_f32, x.id, y.id)}; |
| } |
| I32 Builder::neq(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X!=Y ? ~0 : 0); } |
| this->canonicalizeIdOrder(x, y); |
| return {this, this->push(Op::neq_f32, x.id, y.id)}; |
| } |
| I32 Builder::lt(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(Y> X ? ~0 : 0); } |
| return {this, this->push(Op::gt_f32, y.id, x.id)}; |
| } |
| I32 Builder::lte(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(Y>=X ? ~0 : 0); } |
| return {this, this->push(Op::gte_f32, y.id, x.id)}; |
| } |
| I32 Builder::gt(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X> Y ? ~0 : 0); } |
| return {this, this->push(Op::gt_f32, x.id, y.id)}; |
| } |
| I32 Builder::gte(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X>=Y ? ~0 : 0); } |
| return {this, this->push(Op::gte_f32, x.id, y.id)}; |
| } |
| |
| I32 Builder:: eq(I32 x, I32 y) { |
| if (x.id == y.id) { return splat(~0); } |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X==Y ? ~0 : 0); } |
| this->canonicalizeIdOrder(x, y); |
| return {this, this->push(Op:: eq_i32, x.id, y.id)}; |
| } |
| I32 Builder::neq(I32 x, I32 y) { |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X!=Y ? ~0 : 0); } |
| return ~(x == y); |
| } |
| I32 Builder:: gt(I32 x, I32 y) { |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X> Y ? ~0 : 0); } |
| return {this, this->push(Op:: gt_i32, x.id, y.id)}; |
| } |
| I32 Builder::gte(I32 x, I32 y) { |
| if (x.id == y.id) { return splat(~0); } |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X>=Y ? ~0 : 0); } |
| return ~(x < y); |
| } |
| I32 Builder:: lt(I32 x, I32 y) { return y>x; } |
| I32 Builder::lte(I32 x, I32 y) { return y>=x; } |
| |
| Val Builder::holdsBitNot(Val id) { |
| // We represent `~x` as `x ^ ~0`. |
| if (fProgram[id].op == Op::bit_xor && this->isImm(fProgram[id].y, ~0)) { |
| return fProgram[id].x; |
| } |
| return NA; |
| } |
| |
| I32 Builder::bit_and(I32 x, I32 y) { |
| if (x.id == y.id) { return x; } |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X&Y); } |
| this->canonicalizeIdOrder(x, y); |
| if (this->isImm(y.id, 0)) { return splat(0); } // (x & false) == false |
| if (this->isImm(y.id,~0)) { return x; } // (x & true) == x |
| if (Val notX = this->holdsBitNot(x.id); notX != NA) { // (~x & y) == bit_clear(y, ~x) |
| return bit_clear(y, {this, notX}); |
| } |
| if (Val notY = this->holdsBitNot(y.id); notY != NA) { // (x & ~y) == bit_clear(x, ~y) |
| return bit_clear(x, {this, notY}); |
| } |
| return {this, this->push(Op::bit_and, x.id, y.id)}; |
| } |
| I32 Builder::bit_or(I32 x, I32 y) { |
| if (x.id == y.id) { return x; } |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X|Y); } |
| this->canonicalizeIdOrder(x, y); |
| if (this->isImm(y.id, 0)) { return x; } // (x | false) == x |
| if (this->isImm(y.id,~0)) { return splat(~0); } // (x | true) == true |
| return {this, this->push(Op::bit_or, x.id, y.id)}; |
| } |
| I32 Builder::bit_xor(I32 x, I32 y) { |
| if (x.id == y.id) { return splat(0); } |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X^Y); } |
| this->canonicalizeIdOrder(x, y); |
| if (this->isImm(y.id, 0)) { return x; } // (x ^ false) == x |
| return {this, this->push(Op::bit_xor, x.id, y.id)}; |
| } |
| |
| I32 Builder::bit_clear(I32 x, I32 y) { |
| if (x.id == y.id) { return splat(0); } |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X&~Y); } |
| if (this->isImm(y.id, 0)) { return x; } // (x & ~false) == x |
| if (this->isImm(y.id,~0)) { return splat(0); } // (x & ~true) == false |
| if (this->isImm(x.id, 0)) { return splat(0); } // (false & ~y) == false |
| return {this, this->push(Op::bit_clear, x.id, y.id)}; |
| } |
| |
| I32 Builder::select(I32 x, I32 y, I32 z) { |
| if (y.id == z.id) { return y; } |
| if (int X,Y,Z; this->allImm(x.id,&X, y.id,&Y, z.id,&Z)) { return splat(X?Y:Z); } |
| if (this->isImm(x.id,~0)) { return y; } // (true ? y : z) == y |
| if (this->isImm(x.id, 0)) { return z; } // (false ? y : z) == z |
| if (this->isImm(y.id, 0)) { return bit_clear(z,x); } // (x ? 0 : z) == ~x&z |
| if (this->isImm(z.id, 0)) { return bit_and (y,x); } // (x ? y : 0) == x&y |
| if (Val notX = this->holdsBitNot(x.id); notX != NA) { // (!x ? y : z) == (x ? z : y) |
| x.id = notX; |
| std::swap(y, z); |
| } |
| return {this, this->push(Op::select, x.id, y.id, z.id)}; |
| } |
| |
| I32 Builder::extract(I32 x, int bits, I32 z) { |
| if (unsigned Z; this->allImm(z.id,&Z) && (~0u>>bits) == Z) { return shr(x, bits); } |
| return bit_and(z, shr(x, bits)); |
| } |
| |
| I32 Builder::pack(I32 x, I32 y, int bits) { |
| return bit_or(x, shl(y, bits)); |
| } |
| |
| F32 Builder::ceil(F32 x) { |
| if (float X; this->allImm(x.id,&X)) { return splat(ceilf(X)); } |
| return {this, this->push(Op::ceil, x.id)}; |
| } |
| F32 Builder::floor(F32 x) { |
| if (float X; this->allImm(x.id,&X)) { return splat(floorf(X)); } |
| return {this, this->push(Op::floor, x.id)}; |
| } |
| F32 Builder::to_F32(I32 x) { |
| if (int X; this->allImm(x.id,&X)) { return splat((float)X); } |
| return {this, this->push(Op::to_f32, x.id)}; |
| } |
| I32 Builder::trunc(F32 x) { |
| if (float X; this->allImm(x.id,&X)) { return splat((int)X); } |
| return {this, this->push(Op::trunc, x.id)}; |
| } |
| I32 Builder::round(F32 x) { |
| if (float X; this->allImm(x.id,&X)) { return splat((int)lrintf(X)); } |
| return {this, this->push(Op::round, x.id)}; |
| } |
| |
| I32 Builder::to_fp16(F32 x) { |
| if (float X; this->allImm(x.id,&X)) { return splat((int)SkFloatToHalf(X)); } |
| return {this, this->push(Op::to_fp16, x.id)}; |
| } |
| F32 Builder::from_fp16(I32 x) { |
| if (int X; this->allImm(x.id,&X)) { return splat(SkHalfToFloat(X)); } |
| return {this, this->push(Op::from_fp16, x.id)}; |
| } |
| |
| F32 Builder::from_unorm(int bits, I32 x) { |
| F32 limit = splat(1 / ((1<<bits)-1.0f)); |
| return mul(to_F32(x), limit); |
| } |
| I32 Builder::to_unorm(int bits, F32 x) { |
| F32 limit = splat((1<<bits)-1.0f); |
| return round(mul(x, limit)); |
| } |
| |
| PixelFormat SkColorType_to_PixelFormat(SkColorType ct) { |
| auto UNORM = PixelFormat::UNORM, |
| SRGB = PixelFormat::SRGB, |
| FLOAT = PixelFormat::FLOAT, |
| XRNG = PixelFormat::XRNG; |
| switch (ct) { |
| case kUnknown_SkColorType: break; |
| |
| case kRGBA_F32_SkColorType: return {FLOAT,32,32,32,32, 0,32,64,96}; |
| |
| case kRGBA_F16Norm_SkColorType: return {FLOAT,16,16,16,16, 0,16,32,48}; |
| case kRGBA_F16_SkColorType: return {FLOAT,16,16,16,16, 0,16,32,48}; |
| case kR16G16B16A16_unorm_SkColorType: return {UNORM,16,16,16,16, 0,16,32,48}; |
| |
| case kA16_float_SkColorType: return {FLOAT, 0, 0,0,16, 0, 0,0,0}; |
| case kR16G16_float_SkColorType: return {FLOAT, 16,16,0, 0, 0,16,0,0}; |
| |
| case kAlpha_8_SkColorType: return {UNORM, 0,0,0,8, 0,0,0,0}; |
| case kGray_8_SkColorType: return {UNORM, 8,8,8,0, 0,0,0,0}; // Subtle. |
| case kR8_unorm_SkColorType: return {UNORM, 8,0,0,0, 0,0,0,0}; |
| |
| case kRGB_565_SkColorType: return {UNORM, 5,6,5,0, 11,5,0,0}; // (BGR) |
| case kARGB_4444_SkColorType: return {UNORM, 4,4,4,4, 12,8,4,0}; // (ABGR) |
| |
| case kRGBA_8888_SkColorType: return {UNORM, 8,8,8,8, 0,8,16,24}; |
| case kRGB_888x_SkColorType: return {UNORM, 8,8,8,0, 0,8,16,32}; // 32-bit |
| case kBGRA_8888_SkColorType: return {UNORM, 8,8,8,8, 16,8, 0,24}; |
| case kSRGBA_8888_SkColorType: return { SRGB, 8,8,8,8, 0,8,16,24}; |
| |
| case kRGBA_1010102_SkColorType: return {UNORM, 10,10,10,2, 0,10,20,30}; |
| case kBGRA_1010102_SkColorType: return {UNORM, 10,10,10,2, 20,10, 0,30}; |
| case kRGB_101010x_SkColorType: return {UNORM, 10,10,10,0, 0,10,20, 0}; |
| case kBGR_101010x_SkColorType: return {UNORM, 10,10,10,0, 20,10, 0, 0}; |
| case kBGR_101010x_XR_SkColorType: return { XRNG, 10,10,10,0, 20,10, 0, 0}; |
| |
| case kR8G8_unorm_SkColorType: return {UNORM, 8, 8,0, 0, 0, 8,0,0}; |
| case kR16G16_unorm_SkColorType: return {UNORM, 16,16,0, 0, 0,16,0,0}; |
| case kA16_unorm_SkColorType: return {UNORM, 0, 0,0,16, 0, 0,0,0}; |
| } |
| SkASSERT(false); |
| return {UNORM, 0,0,0,0, 0,0,0,0}; |
| } |
| |
| static int byte_size(PixelFormat f) { |
| // What's the highest bit we read? |
| int bits = std::max(f.r_bits + f.r_shift, |
| std::max(f.g_bits + f.g_shift, |
| std::max(f.b_bits + f.b_shift, |
| f.a_bits + f.a_shift))); |
| // Round up to bytes. |
| return (bits + 7) / 8; |
| } |
| |
| static Color unpack(PixelFormat f, I32 x) { |
| SkASSERT(byte_size(f) <= 4); |
| |
| auto from_srgb = [](int bits, I32 channel) -> F32 { |
| const skcms_TransferFunction* tf = skcms_sRGB_TransferFunction(); |
| F32 v = from_unorm(bits, channel); |
| return sk_program_transfer_fn(v, skcms_TFType_sRGBish, |
| v->splat(tf->g), |
| v->splat(tf->a), |
| v->splat(tf->b), |
| v->splat(tf->c), |
| v->splat(tf->d), |
| v->splat(tf->e), |
| v->splat(tf->f)); |
| }; |
| auto from_xr = [](int bits, I32 channel) -> F32 { |
| static constexpr float min = -0.752941f; |
| static constexpr float max = 1.25098f; |
| static constexpr float range = max - min; |
| F32 v = from_unorm(bits, channel); |
| return v * range + min; |
| }; |
| |
| auto unpack_rgb = [=](int bits, int shift) -> F32 { |
| I32 channel = extract(x, shift, (1<<bits)-1); |
| switch (f.encoding) { |
| case PixelFormat::UNORM: return from_unorm(bits, channel); |
| case PixelFormat:: SRGB: return from_srgb (bits, channel); |
| case PixelFormat::FLOAT: return from_fp16 ( channel); |
| case PixelFormat:: XRNG: return from_xr (bits, channel); |
| } |
| SkUNREACHABLE; |
| }; |
| auto unpack_alpha = [=](int bits, int shift) -> F32 { |
| I32 channel = extract(x, shift, (1<<bits)-1); |
| switch (f.encoding) { |
| case PixelFormat::UNORM: |
| case PixelFormat:: SRGB: return from_unorm(bits, channel); |
| case PixelFormat::FLOAT: return from_fp16 ( channel); |
| case PixelFormat:: XRNG: return from_xr (bits, channel); |
| } |
| SkUNREACHABLE; |
| }; |
| return { |
| f.r_bits ? unpack_rgb (f.r_bits, f.r_shift) : x->splat(0.0f), |
| f.g_bits ? unpack_rgb (f.g_bits, f.g_shift) : x->splat(0.0f), |
| f.b_bits ? unpack_rgb (f.b_bits, f.b_shift) : x->splat(0.0f), |
| f.a_bits ? unpack_alpha(f.a_bits, f.a_shift) : x->splat(1.0f), |
| }; |
| } |
| |
| static void split_disjoint_8byte_format(PixelFormat f, PixelFormat* lo, PixelFormat* hi) { |
| SkASSERT(byte_size(f) == 8); |
| // We assume some of the channels are in the low 32 bits, some in the high 32 bits. |
| // The assert on byte_size(lo) will trigger if this assumption is violated. |
| *lo = f; |
| if (f.r_shift >= 32) { lo->r_bits = 0; lo->r_shift = 32; } |
| if (f.g_shift >= 32) { lo->g_bits = 0; lo->g_shift = 32; } |
| if (f.b_shift >= 32) { lo->b_bits = 0; lo->b_shift = 32; } |
| if (f.a_shift >= 32) { lo->a_bits = 0; lo->a_shift = 32; } |
| SkASSERT(byte_size(*lo) == 4); |
| |
| *hi = f; |
| if (f.r_shift < 32) { hi->r_bits = 0; hi->r_shift = 32; } else { hi->r_shift -= 32; } |
| if (f.g_shift < 32) { hi->g_bits = 0; hi->g_shift = 32; } else { hi->g_shift -= 32; } |
| if (f.b_shift < 32) { hi->b_bits = 0; hi->b_shift = 32; } else { hi->b_shift -= 32; } |
| if (f.a_shift < 32) { hi->a_bits = 0; hi->a_shift = 32; } else { hi->a_shift -= 32; } |
| SkASSERT(byte_size(*hi) == 4); |
| } |
| |
| // The only 16-byte format we support today is RGBA F32, |
| // though, TODO, we could generalize that to any swizzle, and to allow UNORM too. |
| static void assert_16byte_is_rgba_f32(PixelFormat f) { |
| #if defined(SK_DEBUG) |
| SkASSERT(byte_size(f) == 16); |
| PixelFormat rgba_f32 = SkColorType_to_PixelFormat(kRGBA_F32_SkColorType); |
| |
| SkASSERT(f.encoding == rgba_f32.encoding); |
| |
| SkASSERT(f.r_bits == rgba_f32.r_bits); |
| SkASSERT(f.g_bits == rgba_f32.g_bits); |
| SkASSERT(f.b_bits == rgba_f32.b_bits); |
| SkASSERT(f.a_bits == rgba_f32.a_bits); |
| |
| SkASSERT(f.r_shift == rgba_f32.r_shift); |
| SkASSERT(f.g_shift == rgba_f32.g_shift); |
| SkASSERT(f.b_shift == rgba_f32.b_shift); |
| SkASSERT(f.a_shift == rgba_f32.a_shift); |
| #endif |
| } |
| |
| Color Builder::load(PixelFormat f, Ptr ptr) { |
| switch (byte_size(f)) { |
| case 1: return unpack(f, load8 (ptr)); |
| case 2: return unpack(f, load16(ptr)); |
| case 4: return unpack(f, load32(ptr)); |
| case 8: { |
| PixelFormat lo,hi; |
| split_disjoint_8byte_format(f, &lo,&hi); |
| Color l = unpack(lo, load64(ptr, 0)), |
| h = unpack(hi, load64(ptr, 1)); |
| return { |
| lo.r_bits ? l.r : h.r, |
| lo.g_bits ? l.g : h.g, |
| lo.b_bits ? l.b : h.b, |
| lo.a_bits ? l.a : h.a, |
| }; |
| } |
| case 16: { |
| assert_16byte_is_rgba_f32(f); |
| return { |
| pun_to_F32(load128(ptr, 0)), |
| pun_to_F32(load128(ptr, 1)), |
| pun_to_F32(load128(ptr, 2)), |
| pun_to_F32(load128(ptr, 3)), |
| }; |
| } |
| default: SkUNREACHABLE; |
| } |
| } |
| |
| Color Builder::gather(PixelFormat f, UPtr ptr, int offset, I32 index) { |
| switch (byte_size(f)) { |
| case 1: return unpack(f, gather8 (ptr, offset, index)); |
| case 2: return unpack(f, gather16(ptr, offset, index)); |
| case 4: return unpack(f, gather32(ptr, offset, index)); |
| case 8: { |
| PixelFormat lo,hi; |
| split_disjoint_8byte_format(f, &lo,&hi); |
| Color l = unpack(lo, gather32(ptr, offset, (index<<1)+0)), |
| h = unpack(hi, gather32(ptr, offset, (index<<1)+1)); |
| return { |
| lo.r_bits ? l.r : h.r, |
| lo.g_bits ? l.g : h.g, |
| lo.b_bits ? l.b : h.b, |
| lo.a_bits ? l.a : h.a, |
| }; |
| } |
| case 16: { |
| assert_16byte_is_rgba_f32(f); |
| return { |
| gatherF(ptr, offset, (index<<2)+0), |
| gatherF(ptr, offset, (index<<2)+1), |
| gatherF(ptr, offset, (index<<2)+2), |
| gatherF(ptr, offset, (index<<2)+3), |
| }; |
| } |
| default: SkUNREACHABLE; |
| } |
| } |
| |
| static I32 pack32(PixelFormat f, Color c) { |
| SkASSERT(byte_size(f) <= 4); |
| |
| auto to_srgb = [](int bits, F32 v) { |
| const skcms_TransferFunction* tf = skcms_sRGB_Inverse_TransferFunction(); |
| return to_unorm(bits, sk_program_transfer_fn(v, skcms_TFType_sRGBish, |
| v->splat(tf->g), |
| v->splat(tf->a), |
| v->splat(tf->b), |
| v->splat(tf->c), |
| v->splat(tf->d), |
| v->splat(tf->e), |
| v->splat(tf->f))); |
| }; |
| auto to_xr = [](int bits, F32 v) { |
| static constexpr float min = -0.752941f; |
| static constexpr float max = 1.25098f; |
| static constexpr float range = max - min; |
| return to_unorm(bits, (v - min) * (1.0f / range)); |
| }; |
| |
| I32 packed = c->splat(0); |
| auto pack_rgb = [&](F32 channel, int bits, int shift) { |
| I32 encoded; |
| switch (f.encoding) { |
| case PixelFormat::UNORM: encoded = to_unorm(bits, channel); break; |
| case PixelFormat:: SRGB: encoded = to_srgb (bits, channel); break; |
| case PixelFormat::FLOAT: encoded = to_fp16 ( channel); break; |
| case PixelFormat:: XRNG: encoded = to_xr (bits, channel); break; |
| } |
| packed = pack(packed, encoded, shift); |
| }; |
| auto pack_alpha = [&](F32 channel, int bits, int shift) { |
| I32 encoded; |
| switch (f.encoding) { |
| case PixelFormat::UNORM: |
| case PixelFormat:: SRGB: encoded = to_unorm(bits, channel); break; |
| case PixelFormat::FLOAT: encoded = to_fp16 ( channel); break; |
| case PixelFormat:: XRNG: encoded = to_xr (bits, channel); break; |
| } |
| packed = pack(packed, encoded, shift); |
| }; |
| if (f.r_bits) { pack_rgb (c.r, f.r_bits, f.r_shift); } |
| if (f.g_bits) { pack_rgb (c.g, f.g_bits, f.g_shift); } |
| if (f.b_bits) { pack_rgb (c.b, f.b_bits, f.b_shift); } |
| if (f.a_bits) { pack_alpha(c.a, f.a_bits, f.a_shift); } |
| return packed; |
| } |
| |
| void Builder::store(PixelFormat f, Ptr ptr, Color c) { |
| // Detect a grayscale PixelFormat: r,g,b bit counts and shifts all equal. |
| if (f.r_bits == f.g_bits && f.g_bits == f.b_bits && |
| f.r_shift == f.g_shift && f.g_shift == f.b_shift) { |
| |
| // TODO: pull these coefficients from an SkColorSpace? This is sRGB luma/luminance. |
| c.r = c.r * 0.2126f |
| + c.g * 0.7152f |
| + c.b * 0.0722f; |
| f.g_bits = f.b_bits = 0; |
| } |
| |
| switch (byte_size(f)) { |
| case 1: store8 (ptr, pack32(f,c)); break; |
| case 2: store16(ptr, pack32(f,c)); break; |
| case 4: store32(ptr, pack32(f,c)); break; |
| case 8: { |
| PixelFormat lo,hi; |
| split_disjoint_8byte_format(f, &lo,&hi); |
| store64(ptr, pack32(lo,c) |
| , pack32(hi,c)); |
| break; |
| } |
| case 16: { |
| assert_16byte_is_rgba_f32(f); |
| store128(ptr, pun_to_I32(c.r), pun_to_I32(c.g), pun_to_I32(c.b), pun_to_I32(c.a)); |
| break; |
| } |
| default: SkUNREACHABLE; |
| } |
| } |
| |
| void Builder::unpremul(F32* r, F32* g, F32* b, F32 a) { |
| skvm::F32 invA = 1.0f / a, |
| inf = pun_to_F32(splat(0x7f800000)); |
| // If a is 0, so are *r,*g,*b, so set invA to 0 to avoid 0*inf=NaN (instead 0*0 = 0). |
| invA = select(invA < inf, invA |
| , 0.0f); |
| *r *= invA; |
| *g *= invA; |
| *b *= invA; |
| } |
| |
| void Builder::premul(F32* r, F32* g, F32* b, F32 a) { |
| *r *= a; |
| *g *= a; |
| *b *= a; |
| } |
| |
| Color Builder::uniformColor(SkColor4f color, Uniforms* uniforms) { |
| auto [r,g,b,a] = color; |
| return { |
| uniformF(uniforms->pushF(r)), |
| uniformF(uniforms->pushF(g)), |
| uniformF(uniforms->pushF(b)), |
| uniformF(uniforms->pushF(a)), |
| }; |
| } |
| |
| F32 Builder::lerp(F32 lo, F32 hi, F32 t) { |
| if (this->isImm(t.id, 0.0f)) { return lo; } |
| if (this->isImm(t.id, 1.0f)) { return hi; } |
| return mad(sub(hi, lo), t, lo); |
| } |
| |
| Color Builder::lerp(Color lo, Color hi, F32 t) { |
| return { |
| lerp(lo.r, hi.r, t), |
| lerp(lo.g, hi.g, t), |
| lerp(lo.b, hi.b, t), |
| lerp(lo.a, hi.a, t), |
| }; |
| } |
| |
| HSLA Builder::to_hsla(Color c) { |
| F32 mx = max(max(c.r,c.g),c.b), |
| mn = min(min(c.r,c.g),c.b), |
| d = mx - mn, |
| invd = 1.0f / d, |
| g_lt_b = select(c.g < c.b, splat(6.0f) |
| , splat(0.0f)); |
| |
| F32 h = (1/6.0f) * select(mx == mn, 0.0f, |
| select(mx == c.r, invd * (c.g - c.b) + g_lt_b, |
| select(mx == c.g, invd * (c.b - c.r) + 2.0f |
| , invd * (c.r - c.g) + 4.0f))); |
| |
| F32 sum = mx + mn, |
| l = sum * 0.5f, |
| s = select(mx == mn, 0.0f |
| , d / select(l > 0.5f, 2.0f - sum |
| , sum)); |
| return {h, s, l, c.a}; |
| } |
| |
| Color Builder::to_rgba(HSLA c) { |
| // See GrRGBToHSLFilterEffect.fp |
| |
| auto [h,s,l,a] = c; |
| F32 x = s * (1.0f - abs(l + l - 1.0f)); |
| |
| auto hue_to_rgb = [&,l=l](auto hue) { |
| auto q = abs(6.0f * fract(hue) - 3.0f) - 1.0f; |
| return x * (clamp01(q) - 0.5f) + l; |
| }; |
| |
| return { |
| hue_to_rgb(h + 0/3.0f), |
| hue_to_rgb(h + 2/3.0f), |
| hue_to_rgb(h + 1/3.0f), |
| c.a, |
| }; |
| } |
| |
| // We're basing our implementation of non-separable blend modes on |
| // https://www.w3.org/TR/compositing-1/#blendingnonseparable. |
| // and |
| // https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf |
| // They're equivalent, but ES' math has been better simplified. |
| // |
| // Anything extra we add beyond that is to make the math work with premul inputs. |
| |
| static skvm::F32 saturation(skvm::F32 r, skvm::F32 g, skvm::F32 b) { |
| return max(r, max(g, b)) |
| - min(r, min(g, b)); |
| } |
| |
| static skvm::F32 luminance(skvm::F32 r, skvm::F32 g, skvm::F32 b) { |
| return r*0.30f + g*0.59f + b*0.11f; |
| } |
| |
| static void set_sat(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 s) { |
| F32 mn = min(*r, min(*g, *b)), |
| mx = max(*r, max(*g, *b)), |
| sat = mx - mn; |
| |
| // Map min channel to 0, max channel to s, and scale the middle proportionally. |
| auto scale = [&](skvm::F32 c) { |
| auto scaled = ((c - mn) * s) / sat; |
| return select(is_finite(scaled), scaled, 0.0f); |
| }; |
| *r = scale(*r); |
| *g = scale(*g); |
| *b = scale(*b); |
| } |
| |
| static void set_lum(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 lu) { |
| auto diff = lu - luminance(*r, *g, *b); |
| *r += diff; |
| *g += diff; |
| *b += diff; |
| } |
| |
| static void clip_color(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 a) { |
| F32 mn = min(*r, min(*g, *b)), |
| mx = max(*r, max(*g, *b)), |
| lu = luminance(*r, *g, *b); |
| |
| auto clip = [&](auto c) { |
| c = select(mn < 0 & lu != mn, lu + ((c-lu)*( lu)) / (lu-mn), c); |
| c = select(mx > a & lu != mx, lu + ((c-lu)*(a-lu)) / (mx-lu), c); |
| return clamp01(c); // May be a little negative, or worse, NaN. |
| }; |
| *r = clip(*r); |
| *g = clip(*g); |
| *b = clip(*b); |
| } |
| |
| Color Builder::blend(SkBlendMode mode, Color src, Color dst) { |
| auto mma = [](skvm::F32 x, skvm::F32 y, skvm::F32 z, skvm::F32 w) { |
| return x*y + z*w; |
| }; |
| |
| auto two = [](skvm::F32 x) { return x+x; }; |
| |
| auto apply_rgba = [&](auto fn) { |
| return Color { |
| fn(src.r, dst.r), |
| fn(src.g, dst.g), |
| fn(src.b, dst.b), |
| fn(src.a, dst.a), |
| }; |
| }; |
| |
| auto apply_rgb_srcover_a = [&](auto fn) { |
| return Color { |
| fn(src.r, dst.r), |
| fn(src.g, dst.g), |
| fn(src.b, dst.b), |
| mad(dst.a, 1-src.a, src.a), // srcover for alpha |
| }; |
| }; |
| |
| auto non_sep = [&](auto R, auto G, auto B) { |
| return Color{ |
| R + mma(src.r, 1-dst.a, dst.r, 1-src.a), |
| G + mma(src.g, 1-dst.a, dst.g, 1-src.a), |
| B + mma(src.b, 1-dst.a, dst.b, 1-src.a), |
| mad(dst.a, 1-src.a, src.a), // srcover for alpha |
| }; |
| }; |
| |
| switch (mode) { |
| default: |
| SkASSERT(false); |
| [[fallthrough]]; /*but also, for safety, fallthrough*/ |
| |
| case SkBlendMode::kClear: return { splat(0.0f), splat(0.0f), splat(0.0f), splat(0.0f) }; |
| |
| case SkBlendMode::kSrc: return src; |
| case SkBlendMode::kDst: return dst; |
| |
| case SkBlendMode::kDstOver: std::swap(src, dst); [[fallthrough]]; |
| case SkBlendMode::kSrcOver: |
| return apply_rgba([&](auto s, auto d) { |
| return mad(d,1-src.a, s); |
| }); |
| |
| case SkBlendMode::kDstIn: std::swap(src, dst); [[fallthrough]]; |
| case SkBlendMode::kSrcIn: |
| return apply_rgba([&](auto s, auto d) { |
| return s * dst.a; |
| }); |
| |
| case SkBlendMode::kDstOut: std::swap(src, dst); [[fallthrough]]; |
| |
| case SkBlendMode::kSrcOut: |
| return apply_rgba([&](auto s, auto d) { |
| return s * (1-dst.a); |
| }); |
| |
| case SkBlendMode::kDstATop: std::swap(src, dst); [[fallthrough]]; |
| case SkBlendMode::kSrcATop: |
| return apply_rgba([&](auto s, auto d) { |
| return mma(s, dst.a, d, 1-src.a); |
| }); |
| |
| case SkBlendMode::kXor: |
| return apply_rgba([&](auto s, auto d) { |
| return mma(s, 1-dst.a, d, 1-src.a); |
| }); |
| |
| case SkBlendMode::kPlus: |
| return apply_rgba([&](auto s, auto d) { |
| return min(s+d, 1.0f); |
| }); |
| |
| case SkBlendMode::kModulate: |
| return apply_rgba([&](auto s, auto d) { |
| return s * d; |
| }); |
| |
| case SkBlendMode::kScreen: |
| // (s+d)-(s*d) gave us trouble with our "r,g,b <= after blending" asserts. |
| // It's kind of plausible that s + (d - sd) keeps more precision? |
| return apply_rgba([&](auto s, auto d) { |
| return s + (d - s*d); |
| }); |
| |
| case SkBlendMode::kDarken: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| return s + (d - max(s * dst.a, |
| d * src.a)); |
| }); |
| |
| case SkBlendMode::kLighten: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| return s + (d - min(s * dst.a, |
| d * src.a)); |
| }); |
| |
| case SkBlendMode::kDifference: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| return s + (d - two(min(s * dst.a, |
| d * src.a))); |
| }); |
| |
| case SkBlendMode::kExclusion: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| return s + (d - two(s * d)); |
| }); |
| |
| case SkBlendMode::kColorBurn: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| auto mn = min(dst.a, |
| src.a * (dst.a - d) / s), |
| burn = src.a * (dst.a - mn) + mma(s, 1-dst.a, d, 1-src.a); |
| return select(d == dst.a , s * (1-dst.a) + d, |
| select(is_finite(burn), burn |
| , d * (1-src.a) + s)); |
| }); |
| |
| case SkBlendMode::kColorDodge: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| auto dodge = src.a * min(dst.a, |
| d * src.a / (src.a - s)) |
| + mma(s, 1-dst.a, d, 1-src.a); |
| return select(d == 0.0f , s * (1-dst.a) + d, |
| select(is_finite(dodge), dodge |
| , d * (1-src.a) + s)); |
| }); |
| |
| case SkBlendMode::kHardLight: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| return mma(s, 1-dst.a, d, 1-src.a) + |
| select(two(s) <= src.a, |
| two(s * d), |
| src.a * dst.a - two((dst.a - d) * (src.a - s))); |
| }); |
| |
| case SkBlendMode::kOverlay: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| return mma(s, 1-dst.a, d, 1-src.a) + |
| select(two(d) <= dst.a, |
| two(s * d), |
| src.a * dst.a - two((dst.a - d) * (src.a - s))); |
| }); |
| |
| case SkBlendMode::kMultiply: |
| return apply_rgba([&](auto s, auto d) { |
| return mma(s, 1-dst.a, d, 1-src.a) + s * d; |
| }); |
| |
| case SkBlendMode::kSoftLight: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| auto m = select(dst.a > 0.0f, d / dst.a |
| , 0.0f), |
| s2 = two(s), |
| m4 = 4*m; |
| |
| // The logic forks three ways: |
| // 1. dark src? |
| // 2. light src, dark dst? |
| // 3. light src, light dst? |
| |
| // Used in case 1 |
| auto darkSrc = d * ((s2-src.a) * (1-m) + src.a), |
| // Used in case 2 |
| darkDst = (m4 * m4 + m4) * (m-1) + 7*m, |
| // Used in case 3. |
| liteDst = sqrt(m) - m, |
| // Used in 2 or 3? |
| liteSrc = dst.a * (s2 - src.a) * select(4*d <= dst.a, darkDst |
| , liteDst) |
| + d * src.a; |
| return s * (1-dst.a) + d * (1-src.a) + select(s2 <= src.a, darkSrc |
| , liteSrc); |
| }); |
| |
| case SkBlendMode::kHue: { |
| skvm::F32 R = src.r * src.a, |
| G = src.g * src.a, |
| B = src.b * src.a; |
| |
| set_sat (&R, &G, &B, src.a * saturation(dst.r, dst.g, dst.b)); |
| set_lum (&R, &G, &B, src.a * luminance (dst.r, dst.g, dst.b)); |
| clip_color(&R, &G, &B, src.a * dst.a); |
| |
| return non_sep(R, G, B); |
| } |
| |
| case SkBlendMode::kSaturation: { |
| skvm::F32 R = dst.r * src.a, |
| G = dst.g * src.a, |
| B = dst.b * src.a; |
| |
| set_sat (&R, &G, &B, dst.a * saturation(src.r, src.g, src.b)); |
| set_lum (&R, &G, &B, src.a * luminance (dst.r, dst.g, dst.b)); |
| clip_color(&R, &G, &B, src.a * dst.a); |
| |
| return non_sep(R, G, B); |
| } |
| |
| case SkBlendMode::kColor: { |
| skvm::F32 R = src.r * dst.a, |
| G = src.g * dst.a, |
| B = src.b * dst.a; |
| |
| set_lum (&R, &G, &B, src.a * luminance(dst.r, dst.g, dst.b)); |
| clip_color(&R, &G, &B, src.a * dst.a); |
| |
| return non_sep(R, G, B); |
| } |
| |
| case SkBlendMode::kLuminosity: { |
| skvm::F32 R = dst.r * src.a, |
| G = dst.g * src.a, |
| B = dst.b * src.a; |
| |
| set_lum (&R, &G, &B, dst.a * luminance(src.r, src.g, src.b)); |
| clip_color(&R, &G, &B, dst.a * src.a); |
| |
| return non_sep(R, G, B); |
| } |
| } |
| } |
| |
| // ~~~~ Program::eval() and co. ~~~~ // |
| |
| // Handy references for x86-64 instruction encoding: |
| // https://wiki.osdev.org/X86-64_Instruction_Encoding |
| // https://www-user.tu-chemnitz.de/~heha/viewchm.php/hs/x86.chm/x64.htm |
| // https://www-user.tu-chemnitz.de/~heha/viewchm.php/hs/x86.chm/x86.htm |
| // http://ref.x86asm.net/coder64.html |
| |
| // Used for ModRM / immediate instruction encoding. |
| static uint8_t _233(int a, int b, int c) { |
| return (a & 3) << 6 |
| | (b & 7) << 3 |
| | (c & 7) << 0; |
| } |
| |
| // ModRM byte encodes the arguments of an opcode. |
| enum class Mod { Indirect, OneByteImm, FourByteImm, Direct }; |
| static uint8_t mod_rm(Mod mod, int reg, int rm) { |
| return _233((int)mod, reg, rm); |
| } |
| |
| static Mod mod(int imm) { |
| if (imm == 0) { return Mod::Indirect; } |
| if (SkTFitsIn<int8_t>(imm)) { return Mod::OneByteImm; } |
| return Mod::FourByteImm; |
| } |
| |
| static int imm_bytes(Mod mod) { |
| switch (mod) { |
| case Mod::Indirect: return 0; |
| case Mod::OneByteImm: return 1; |
| case Mod::FourByteImm: return 4; |
| case Mod::Direct: SkUNREACHABLE; |
| } |
| SkUNREACHABLE; |
| } |
| |
| // SIB byte encodes a memory address, base + (index * scale). |
| static uint8_t sib(Assembler::Scale scale, int index, int base) { |
| return _233((int)scale, index, base); |
| } |
| |
| // The REX prefix is used to extend most old 32-bit instructions to 64-bit. |
| static uint8_t rex(bool W, // If set, operation is 64-bit, otherwise default, usually 32-bit. |
| bool R, // Extra top bit to select ModRM reg, registers 8-15. |
| bool X, // Extra top bit for SIB index register. |
| bool B) { // Extra top bit for SIB base or ModRM rm register. |
| return 0b01000000 // Fixed 0100 for top four bits. |
| | (W << 3) |
| | (R << 2) |
| | (X << 1) |
| | (B << 0); |
| } |
| |
| |
| // The VEX prefix extends SSE operations to AVX. Used generally, even with XMM. |
| struct VEX { |
| int len; |
| uint8_t bytes[3]; |
| }; |
| |
| static VEX vex(bool WE, // Like REX W for int operations, or opcode extension for float? |
| bool R, // Same as REX R. Pass high bit of dst register, dst>>3. |
| bool X, // Same as REX X. |
| bool B, // Same as REX B. Pass y>>3 for 3-arg ops, x>>3 for 2-arg. |
| int map, // SSE opcode map selector: 0x0f, 0x380f, 0x3a0f. |
| int vvvv, // 4-bit second operand register. Pass our x for 3-arg ops. |
| bool L, // Set for 256-bit ymm operations, off for 128-bit xmm. |
| int pp) { // SSE mandatory prefix: 0x66, 0xf3, 0xf2, else none. |
| |
| // Pack x86 opcode map selector to 5-bit VEX encoding. |
| map = [map]{ |
| switch (map) { |
| case 0x0f: return 0b00001; |
| case 0x380f: return 0b00010; |
| case 0x3a0f: return 0b00011; |
| // Several more cases only used by XOP / TBM. |
| } |
| SkUNREACHABLE; |
| }(); |
| |
| // Pack mandatory SSE opcode prefix byte to 2-bit VEX encoding. |
| pp = [pp]{ |
| switch (pp) { |
| case 0x66: return 0b01; |
| case 0xf3: return 0b10; |
| case 0xf2: return 0b11; |
| } |
| return 0b00; |
| }(); |
| |
| VEX vex = {0, {0,0,0}}; |
| if (X == 0 && B == 0 && WE == 0 && map == 0b00001) { |
| // With these conditions met, we can optionally compress VEX to 2-byte. |
| vex.len = 2; |
| vex.bytes[0] = 0xc5; |
| vex.bytes[1] = (pp & 3) << 0 |
| | (L & 1) << 2 |
| | (~vvvv & 15) << 3 |
| | (~(int)R & 1) << 7; |
| } else { |
| // We could use this 3-byte VEX prefix all the time if we like. |
| vex.len = 3; |
| vex.bytes[0] = 0xc4; |
| vex.bytes[1] = (map & 31) << 0 |
| | (~(int)B & 1) << 5 |
| | (~(int)X & 1) << 6 |
| | (~(int)R & 1) << 7; |
| vex.bytes[2] = (pp & 3) << 0 |
| | (L & 1) << 2 |
| | (~vvvv & 15) << 3 |
| | (WE & 1) << 7; |
| } |
| return vex; |
| } |
| |
| Assembler::Assembler(void* buf) : fCode((uint8_t*)buf), fSize(0) {} |
| |
| size_t Assembler::size() const { return fSize; } |
| |
| void Assembler::bytes(const void* p, int n) { |
| if (fCode) { |
| memcpy(fCode+fSize, p, n); |
| } |
| fSize += n; |
| } |
| |
| void Assembler::byte(uint8_t b) { this->bytes(&b, 1); } |
| void Assembler::word(uint32_t w) { this->bytes(&w, 4); } |
| |
| void Assembler::align(int mod) { |
| while (this->size() % mod) { |
| this->byte(0x00); |
| } |
| } |
| |
| void Assembler::int3() { |
| this->byte(0xcc); |
| } |
| |
| void Assembler::vzeroupper() { |
| this->byte(0xc5); |
| this->byte(0xf8); |
| this->byte(0x77); |
| } |
| void Assembler::ret() { this->byte(0xc3); } |
| |
| void Assembler::op(int opcode, Operand dst, GP64 x) { |
| if (dst.kind == Operand::REG) { |
| this->byte(rex(W1,x>>3,0,dst.reg>>3)); |
| this->bytes(&opcode, SkTFitsIn<uint8_t>(opcode) ? 1 : 2); |
| this->byte(mod_rm(Mod::Direct, x, dst.reg&7)); |
| } else { |
| SkASSERT(dst.kind == Operand::MEM); |
| const Mem& m = dst.mem; |
| const bool need_SIB = (m.base&7) == rsp |
| || m.index != rsp; |
| |
| this->byte(rex(W1,x>>3,m.index>>3,m.base>>3)); |
| this->bytes(&opcode, SkTFitsIn<uint8_t>(opcode) ? 1 : 2); |
| this->byte(mod_rm(mod(m.disp), x&7, (need_SIB ? rsp : m.base)&7)); |
| if (need_SIB) { |
| this->byte(sib(m.scale, m.index&7, m.base&7)); |
| } |
| this->bytes(&m.disp, imm_bytes(mod(m.disp))); |
| } |
| } |
| |
| void Assembler::op(int opcode, int opcode_ext, Operand dst, int imm) { |
| opcode |= 0b1000'0000; // top bit set for instructions with any immediate |
| |
| int imm_bytes = 4; |
| if (SkTFitsIn<int8_t>(imm)) { |
| imm_bytes = 1; |
| opcode |= 0b0000'0010; // second bit set for 8-bit immediate, else 32-bit. |
| } |
| |
| this->op(opcode, dst, (GP64)opcode_ext); |
| this->bytes(&imm, imm_bytes); |
| } |
| |
| void Assembler::add(Operand dst, int imm) { this->op(0x01,0b000, dst,imm); } |
| void Assembler::sub(Operand dst, int imm) { this->op(0x01,0b101, dst,imm); } |
| void Assembler::cmp(Operand dst, int imm) { this->op(0x01,0b111, dst,imm); } |
| |
| // These don't work quite like the other instructions with immediates: |
| // these immediates are always fixed size at 4 bytes or 1 byte. |
| void Assembler::mov(Operand dst, int imm) { |
| this->op(0xC7,dst,(GP64)0b000); |
| this->word(imm); |
| } |
| void Assembler::movb(Operand dst, int imm) { |
| this->op(0xC6,dst,(GP64)0b000); |
| this->byte(imm); |
| } |
| |
| void Assembler::add (Operand dst, GP64 x) { this->op(0x01, dst,x); } |
| void Assembler::sub (Operand dst, GP64 x) { this->op(0x29, dst,x); } |
| void Assembler::cmp (Operand dst, GP64 x) { this->op(0x39, dst,x); } |
| void Assembler::mov (Operand dst, GP64 x) { this->op(0x89, dst,x); } |
| void Assembler::movb(Operand dst, GP64 x) { this->op(0x88, dst,x); } |
| |
| void Assembler::add (GP64 dst, Operand x) { this->op(0x03, x,dst); } |
| void Assembler::sub (GP64 dst, Operand x) { this->op(0x2B, x,dst); } |
| void Assembler::cmp (GP64 dst, Operand x) { this->op(0x3B, x,dst); } |
| void Assembler::mov (GP64 dst, Operand x) { this->op(0x8B, x,dst); } |
| void Assembler::movb(GP64 dst, Operand x) { this->op(0x8A, x,dst); } |
| |
| void Assembler::movzbq(GP64 dst, Operand x) { this->op(0xB60F, x,dst); } |
| void Assembler::movzwq(GP64 dst, Operand x) { this->op(0xB70F, x,dst); } |
| |
| void Assembler::vpaddd (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xfe, dst,x,y); } |
| void Assembler::vpsubd (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xfa, dst,x,y); } |
| void Assembler::vpmulld(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x40, dst,x,y); } |
| |
| void Assembler::vpaddw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xfd, dst,x,y); } |
| void Assembler::vpsubw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xf9, dst,x,y); } |
| void Assembler::vpmullw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xd5, dst,x,y); } |
| void Assembler::vpavgw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xe3, dst,x,y); } |
| void Assembler::vpmulhrsw(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x0b, dst,x,y); } |
| void Assembler::vpminsw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xea, dst,x,y); } |
| void Assembler::vpmaxsw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xee, dst,x,y); } |
| void Assembler::vpminuw (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x3a, dst,x,y); } |
| void Assembler::vpmaxuw (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x3e, dst,x,y); } |
| |
| void Assembler::vpabsw(Ymm dst, Operand x) { this->op(0x66,0x380f,0x1d, dst,x); } |
| |
| |
| void Assembler::vpand (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0xdb, dst,x,y); } |
| void Assembler::vpor (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0xeb, dst,x,y); } |
| void Assembler::vpxor (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0xef, dst,x,y); } |
| void Assembler::vpandn(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0xdf, dst,x,y); } |
| |
| void Assembler::vaddps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x58, dst,x,y); } |
| void Assembler::vsubps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x5c, dst,x,y); } |
| void Assembler::vmulps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x59, dst,x,y); } |
|