blob: c38a7de57088b3085792bcfd5743d5e0c3f26f26 [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkPaint.h"
#include "include/core/SkRect.h"
#include "include/core/SkSurface.h"
#include "include/core/SkYUVAInfo.h"
#include "include/core/SkYUVAPixmaps.h"
#include "include/effects/SkGradientShader.h"
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/gpu/ganesh/SkImageGanesh.h"
#include "src/base/SkScopeExit.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "tools/DecodeUtils.h"
#include "tools/Resources.h"
#include "tools/ToolUtils.h"
#include "tools/gpu/YUVUtils.h"
#if defined(SK_GRAPHITE)
#include "include/gpu/graphite/Context.h"
#include "include/gpu/graphite/Image.h"
#include "src/gpu/graphite/RecorderPriv.h"
#include "tools/graphite/GraphiteTestContext.h"
#endif
#include <variant>
namespace {
/// We test reading from images and surfaces
enum class ReadSource {
kImage,
kSurface,
};
// We test reading to RGBA, YUV, and YUVA
enum class Type {
kRGBA,
kYUV,
kYUVA
};
template <ReadSource> struct SourceS;
template <> struct SourceS<ReadSource::kImage> { using Type = SkImage; };
template <> struct SourceS<ReadSource::kSurface> { using Type = SkSurface; };
template <ReadSource RS> using Source = typename SourceS<RS>::Type;
// Converts a source image to either an SkImage or SkSurface, backed by GPU if canvas is. Returns
// kSkip or kFail if the image cannot be converted.
template <ReadSource RS>
std::variant<sk_sp<Source<RS>>, skiagm::DrawResult> convert_image_to_source(SkCanvas* canvas,
sk_sp<SkImage> image,
SkString* errorMsg);
template <>
std::variant<sk_sp<SkImage>, skiagm::DrawResult> convert_image_to_source<ReadSource::kImage>(
SkCanvas* canvas,
sk_sp<SkImage> image,
SkString* errorMsg) {
#if defined(SK_GRAPHITE)
if (auto recorder = canvas->recorder()) {
image = SkImages::TextureFromImage(recorder, image);
if (image) {
return image;
}
*errorMsg = "Could not create Graphite image";
return skiagm::DrawResult::kFail;
}
#endif
auto dContext = GrAsDirectContext(canvas->recordingContext());
if (!dContext && canvas->recordingContext()) {
*errorMsg = "Not supported in DDL mode";
return skiagm::DrawResult::kSkip;
}
if (dContext) {
image = SkImages::TextureFromImage(dContext, image);
if (image) {
return image;
}
// When testing abandoned GrContext we expect surface creation to fail.
if (dContext && dContext->abandoned()) {
return skiagm::DrawResult::kSkip;
}
*errorMsg = "Could not create Ganesh image";
return skiagm::DrawResult::kFail;
}
return image;
}
template <>
std::variant<sk_sp<SkSurface>, skiagm::DrawResult> convert_image_to_source<ReadSource::kSurface>(
SkCanvas* canvas,
sk_sp<SkImage> image,
SkString* errorMsg) {
// Turn the image into a surface in order to call the read and rescale API
auto surfInfo = image->imageInfo().makeDimensions(image->dimensions());
auto surface = canvas->makeSurface(surfInfo);
if (!surface && surfInfo.colorType() == kBGRA_8888_SkColorType) {
surfInfo = surfInfo.makeColorType(kRGBA_8888_SkColorType);
surface = canvas->makeSurface(surfInfo);
}
if (!surface) {
*errorMsg = "Could not create surface for image.";
// When testing abandoned GrContext we expect surface creation to fail.
if (canvas->recordingContext() && canvas->recordingContext()->abandoned()) {
return skiagm::DrawResult::kSkip;
}
return skiagm::DrawResult::kFail;
}
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
surface->getCanvas()->drawImage(image, 0, 0, SkSamplingOptions(), &paint);
return surface;
}
class AsyncReadGMBase : public skiagm::GM {
public:
AsyncReadGMBase(const char* name) : fName(name) {}
SkString getName() const override { return fName; }
protected:
// Does a rescale and read using Graphite, Ganesh, or CPU and returns the result as a pixmap
// image.
template <ReadSource ReadSource>
sk_sp<SkImage> readAndScaleRGBA(Source<ReadSource>* src,
SkIRect srcRect,
GrDirectContext* direct,
skgpu::graphite::Recorder* recorder,
const SkImageInfo& ii,
SkImage::RescaleGamma rescaleGamma,
SkImage::RescaleMode rescaleMode) {
auto* asyncContext = new AsyncContext();
if (recorder) {
#if defined(SK_GRAPHITE)
skgpu::graphite::Context* graphiteContext = recorder->priv().context();
if (!graphiteContext) {
return nullptr;
}
// We need to flush the existing drawing commands before we try to read
std::unique_ptr<skgpu::graphite::Recording> recording = recorder->snap();
if (!recording) {
return nullptr;
}
skgpu::graphite::InsertRecordingInfo recordingInfo;
recordingInfo.fRecording = recording.get();
if (!graphiteContext->insertRecording(recordingInfo)) {
return nullptr;
}
graphiteContext->asyncRescaleAndReadPixels(src,
ii,
srcRect,
rescaleGamma,
rescaleMode,
AsyncCallback,
asyncContext);
graphiteContext->submit();
while (!asyncContext->fCalled) {
graphiteContext->checkAsyncWorkCompletion();
if (this->graphiteTestContext()) {
this->graphiteTestContext()->tick();
}
}
#endif
} else {
src->asyncRescaleAndReadPixels(ii,
srcRect,
rescaleGamma,
rescaleMode,
AsyncCallback,
asyncContext);
if (direct) {
direct->submit();
}
while (!asyncContext->fCalled) {
// Only GPU should actually be asynchronous.
SkASSERT(direct);
direct->checkAsyncWorkCompletion();
}
}
if (!asyncContext->fResult) {
return nullptr;
}
SkPixmap pixmap(ii, asyncContext->fResult->data(0), asyncContext->fResult->rowBytes(0));
auto releasePixels = [](const void*, void* c) { delete static_cast<AsyncContext*>(c); };
return SkImages::RasterFromPixmap(pixmap, releasePixels, asyncContext);
}
// Does a YUV[A] rescale and read using Graphite or Ganesh (no CPU support) and returns the
// result as a YUVA planar texture image.
template <ReadSource ReadSource>
sk_sp<SkImage> readAndScaleYUVA(Source<ReadSource>* src,
SkIRect srcRect,
SkISize resultSize,
bool readAlpha,
GrDirectContext* direct,
skgpu::graphite::Recorder* recorder,
SkYUVColorSpace yuvCS,
SkImage::RescaleGamma rescaleGamma,
SkImage::RescaleMode rescaleMode,
SkScopeExit* cleanup) {
SkASSERT(!(resultSize.width() & 0b1) && !(resultSize.height() & 0b1));
SkISize uvSize = {resultSize.width() / 2, resultSize.height() / 2};
SkImageInfo yaII = SkImageInfo::Make(resultSize, kGray_8_SkColorType, kPremul_SkAlphaType);
SkImageInfo uvII = SkImageInfo::Make(uvSize, kGray_8_SkColorType, kPremul_SkAlphaType);
AsyncContext asyncContext;
if (recorder) {
#if defined(SK_GRAPHITE)
skgpu::graphite::Context* graphiteContext = recorder->priv().context();
if (!graphiteContext) {
return nullptr;
}
// We need to flush the existing drawing commands before we try to read
std::unique_ptr<skgpu::graphite::Recording> recording = recorder->snap();
if (!recording) {
return nullptr;
}
skgpu::graphite::InsertRecordingInfo recordingInfo;
recordingInfo.fRecording = recording.get();
if (!graphiteContext->insertRecording(recordingInfo)) {
return nullptr;
}
if (readAlpha) {
graphiteContext->asyncRescaleAndReadPixelsYUVA420(src,
yuvCS,
SkColorSpace::MakeSRGB(),
srcRect,
resultSize,
rescaleGamma,
rescaleMode,
AsyncCallback,
&asyncContext);
} else {
graphiteContext->asyncRescaleAndReadPixelsYUV420(src,
yuvCS,
SkColorSpace::MakeSRGB(),
srcRect,
resultSize,
rescaleGamma,
rescaleMode,
AsyncCallback,
&asyncContext);
}
graphiteContext->submit();
while (!asyncContext.fCalled) {
graphiteContext->checkAsyncWorkCompletion();
if (this->graphiteTestContext()) {
this->graphiteTestContext()->tick();
}
}
#endif
} else {
if (readAlpha) {
src->asyncRescaleAndReadPixelsYUVA420(yuvCS,
SkColorSpace::MakeSRGB(),
srcRect,
resultSize,
rescaleGamma,
rescaleMode,
AsyncCallback,
&asyncContext);
} else {
src->asyncRescaleAndReadPixelsYUV420(yuvCS,
SkColorSpace::MakeSRGB(),
srcRect,
resultSize,
rescaleGamma,
rescaleMode,
AsyncCallback,
&asyncContext);
}
if (direct) {
direct->submit();
}
while (!asyncContext.fCalled) {
// Only GPU should actually be asynchronous.
SkASSERT(direct);
direct->checkAsyncWorkCompletion();
}
}
if (!asyncContext.fResult) {
return nullptr;
}
auto planeConfig = readAlpha ? SkYUVAInfo::PlaneConfig::kY_U_V_A :
SkYUVAInfo::PlaneConfig::kY_U_V;
SkYUVAInfo yuvaInfo(resultSize,
planeConfig,
SkYUVAInfo::Subsampling::k420,
yuvCS);
SkPixmap yuvPMs[4] = {
{yaII, asyncContext.fResult->data(0), asyncContext.fResult->rowBytes(0)},
{uvII, asyncContext.fResult->data(1), asyncContext.fResult->rowBytes(1)},
{uvII, asyncContext.fResult->data(2), asyncContext.fResult->rowBytes(2)},
{},
};
if (readAlpha) {
yuvPMs[3] = {yaII, asyncContext.fResult->data(3), asyncContext.fResult->rowBytes(3)};
}
auto pixmaps = SkYUVAPixmaps::FromExternalPixmaps(yuvaInfo, yuvPMs);
SkASSERT(pixmaps.isValid());
auto lazyYUVImage = sk_gpu_test::LazyYUVImage::Make(pixmaps);
SkASSERT(lazyYUVImage);
#if defined(SK_GRAPHITE)
if (recorder) {
return lazyYUVImage->refImage(recorder, sk_gpu_test::LazyYUVImage::Type::kFromTextures);
} else
#endif
{
return lazyYUVImage->refImage(direct, sk_gpu_test::LazyYUVImage::Type::kFromTextures);
}
}
// Draws a 3x2 grid of rescales. The columns are none, low, and high filter quality. The rows
// are rescale in src gamma and rescale in linear gamma.
template <ReadSource ReadSource>
skiagm::DrawResult drawRescaleGrid(SkCanvas* canvas,
Source<ReadSource>* src,
SkIRect srcRect,
SkISize readSize,
Type type,
SkString* errorMsg,
int pad = 0) {
SkASSERT(canvas->imageInfo().colorType() != kUnknown_SkColorType);
auto direct = GrAsDirectContext(canvas->recordingContext());
auto recorder = canvas->recorder();
SkASSERT(direct || !canvas->recordingContext());
SkYUVColorSpace yuvColorSpace = kRec601_SkYUVColorSpace;
canvas->save();
for (auto gamma : {SkImage::RescaleGamma::kSrc, SkImage::RescaleGamma::kLinear}) {
canvas->save();
for (auto mode : {SkImage::RescaleMode::kNearest,
SkImage::RescaleMode::kRepeatedLinear,
SkImage::RescaleMode::kRepeatedCubic}) {
SkScopeExit cleanup;
sk_sp<SkImage> result;
switch (type) {
case Type::kRGBA: {
const auto ii = canvas->imageInfo().makeDimensions(readSize);
result = readAndScaleRGBA<ReadSource>(src,
srcRect,
direct,
recorder,
ii,
gamma,
mode);
if (!result) {
errorMsg->printf("async read call failed.");
return skiagm::DrawResult::kFail;
}
break;
}
case Type::kYUV:
case Type::kYUVA:
result = readAndScaleYUVA<ReadSource>(src,
srcRect,
readSize,
/*readAlpha=*/type == Type::kYUVA,
direct,
recorder,
yuvColorSpace,
gamma,
mode,
&cleanup);
if (!result) {
errorMsg->printf("YUV[A]420 async call failed. Allowed for now.");
return skiagm::DrawResult::kSkip;
}
int nextCS = static_cast<int>(yuvColorSpace + 1) %
(kLastEnum_SkYUVColorSpace + 1);
yuvColorSpace = static_cast<SkYUVColorSpace>(nextCS);
break;
}
canvas->drawImage(result, 0, 0);
canvas->translate(readSize.width() + pad, 0);
}
canvas->restore();
canvas->translate(0, readSize.height() + pad);
}
canvas->restore();
return skiagm::DrawResult::kOk;
}
private:
struct AsyncContext {
bool fCalled = false;
std::unique_ptr<const SkImage::AsyncReadResult> fResult;
};
// Making this a lambda in the test functions caused:
// "error: cannot compile this forwarded non-trivially copyable parameter yet"
// on x86/Win/Clang bot, referring to 'result'.
static void AsyncCallback(void* c, std::unique_ptr<const SkImage::AsyncReadResult> result) {
auto context = static_cast<AsyncContext*>(c);
context->fResult = std::move(result);
context->fCalled = true;
}
SkString fName;
};
template <ReadSource ReadSource, Type Type>
class AsyncRescaleAndReadGridGM : public AsyncReadGMBase {
public:
AsyncRescaleAndReadGridGM(const char* name,
const char* imageFile,
SkIRect srcRect,
SkISize readSize)
: AsyncReadGMBase(name)
, fImageFile(imageFile)
, fSrcRect(srcRect)
, fReadSize(readSize) {}
DrawResult onDraw(SkCanvas* canvas, SkString* errorMsg) override {
ToolUtils::draw_checkerboard(canvas, SK_ColorDKGRAY, SK_ColorLTGRAY, 25);
auto image = ToolUtils::GetResourceAsImage(fImageFile.c_str());
if (!image) {
errorMsg->printf("Could not load image file %s.", fImageFile.c_str());
return skiagm::DrawResult::kFail;
}
if (canvas->imageInfo().colorType() == kUnknown_SkColorType) {
*errorMsg = "Not supported on recording/vector backends.";
return skiagm::DrawResult::kSkip;
}
auto sourceOrResult = convert_image_to_source<ReadSource>(canvas, image, errorMsg);
if (auto dr = std::get_if<skiagm::DrawResult>(&sourceOrResult)) {
return *dr;
}
using Src = sk_sp<Source<ReadSource>>;
return drawRescaleGrid<ReadSource>(canvas,
std::get<Src>(sourceOrResult).get(),
fSrcRect,
fReadSize,
Type,
errorMsg);
}
SkISize getISize() override { return {3 * fReadSize.width(), 2 * fReadSize.height()}; }
private:
SkString fImageFile;
SkIRect fSrcRect;
SkISize fReadSize;
};
} // anonymous namespace
#define DEF_RESCALE_AND_READ_GRID_GM(IMAGE_FILE, TAG, SRC_RECT, W, H, SOURCE, TYPE) \
DEF_GM(return new (AsyncRescaleAndReadGridGM<SOURCE, TYPE>)( \
"async_rescale_and_read_" #TAG, #IMAGE_FILE, SRC_RECT, SkISize{W, H});)
DEF_RESCALE_AND_READ_GRID_GM(images/yellow_rose.webp,
yuv420_rose,
SkIRect::MakeXYWH(50, 5, 200, 150),
410,
376,
ReadSource::kSurface,
Type::kYUVA)
DEF_RESCALE_AND_READ_GRID_GM(images/yellow_rose.webp,
yuv420_rose_down,
SkIRect::MakeXYWH(50, 5, 200, 150),
106,
60,
ReadSource::kImage,
Type::kYUV)
DEF_RESCALE_AND_READ_GRID_GM(images/yellow_rose.webp,
rose,
SkIRect::MakeXYWH(100, 20, 100, 100),
410,
410,
ReadSource::kSurface,
Type::kRGBA)
DEF_RESCALE_AND_READ_GRID_GM(images/dog.jpg,
dog_down,
SkIRect::MakeXYWH(0, 10, 180, 150),
45,
45,
ReadSource::kSurface,
Type::kRGBA)
DEF_RESCALE_AND_READ_GRID_GM(images/dog.jpg,
dog_up,
SkIRect::MakeWH(180, 180),
800,
400,
ReadSource::kImage,
Type::kRGBA)
DEF_RESCALE_AND_READ_GRID_GM(images/text.png,
text_down,
SkIRect::MakeWH(637, 105),
(int)(0.7 * 637),
(int)(0.7 * 105),
ReadSource::kImage,
Type::kRGBA)
DEF_RESCALE_AND_READ_GRID_GM(images/text.png,
text_up,
SkIRect::MakeWH(637, 105),
(int)(1.2 * 637),
(int)(1.2 * 105),
ReadSource::kSurface,
Type::kRGBA)
DEF_RESCALE_AND_READ_GRID_GM(images/text.png,
text_up_large,
SkIRect::MakeXYWH(300, 0, 300, 105),
(int)(2.4 * 300),
(int)(2.4 * 105),
ReadSource::kImage,
Type::kRGBA)
namespace {
class AyncYUVNoScaleGM : public AsyncReadGMBase {
public:
AyncYUVNoScaleGM() : AsyncReadGMBase("async_yuv_no_scale") {}
DrawResult onDraw(SkCanvas* canvas, SkString* errorMsg) override {
auto surface = canvas->getSurface();
if (!surface) {
*errorMsg = "Not supported on recording/vector backends.";
return skiagm::DrawResult::kSkip;
}
auto dContext = GrAsDirectContext(surface->recordingContext());
if (!dContext && surface->recordingContext()) {
*errorMsg = "Not supported in DDL mode";
return skiagm::DrawResult::kSkip;
}
auto image = ToolUtils::GetResourceAsImage("images/yellow_rose.webp");
if (!image) {
return skiagm::DrawResult::kFail;
}
SkPaint paint;
canvas->drawImage(image.get(), 0, 0);
skgpu::graphite::Recorder* recorder = canvas->recorder();
SkScopeExit scopeExit;
auto yuvImage = readAndScaleYUVA<ReadSource::kSurface>(surface,
SkIRect::MakeWH(400, 300),
SkISize{400, 300},
/*readAlpha=*/false,
dContext,
recorder,
kRec601_SkYUVColorSpace,
SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kNearest,
&scopeExit);
canvas->clear(SK_ColorWHITE);
canvas->drawImage(yuvImage.get(), 0, 0);
return skiagm::DrawResult::kOk;
}
SkISize getISize() override { return {400, 300}; }
};
} // namespace
DEF_GM(return new AyncYUVNoScaleGM();)
namespace {
class AsyncRescaleAndReadNoBleedGM : public AsyncReadGMBase {
public:
AsyncRescaleAndReadNoBleedGM() : AsyncReadGMBase("async_rescale_and_read_no_bleed") {}
SkISize getISize() override { return {60, 60}; }
DrawResult onDraw(SkCanvas* canvas, SkString* errorMsg) override {
if (canvas->imageInfo().colorType() == kUnknown_SkColorType) {
*errorMsg = "Not supported on recording/vector backends.";
return skiagm::DrawResult::kSkip;
}
auto dContext = GrAsDirectContext(canvas->recordingContext());
if (!dContext && canvas->recordingContext()) {
*errorMsg = "Not supported in DDL mode";
return skiagm::DrawResult::kSkip;
}
static constexpr int kBorder = 5;
static constexpr int kInner = 5;
const auto srcRect = SkIRect::MakeXYWH(kBorder, kBorder, kInner, kInner);
auto surfaceII = SkImageInfo::Make(kInner + 2 * kBorder,
kInner + 2 * kBorder,
kRGBA_8888_SkColorType,
kPremul_SkAlphaType,
SkColorSpace::MakeSRGB());
auto surface = canvas->makeSurface(surfaceII);
if (!surface) {
*errorMsg = "Could not create surface for image.";
// When testing abandoned GrContext we expect surface creation to fail.
if (canvas->recordingContext() && canvas->recordingContext()->abandoned()) {
return skiagm::DrawResult::kSkip;
}
return skiagm::DrawResult::kFail;
}
surface->getCanvas()->clear(SK_ColorRED);
surface->getCanvas()->save();
surface->getCanvas()->clipRect(SkRect::Make(srcRect), SkClipOp::kIntersect, false);
surface->getCanvas()->clear(SK_ColorBLUE);
surface->getCanvas()->restore();
static constexpr int kPad = 2;
canvas->translate(kPad, kPad);
skiagm::DrawResult result;
SkISize downSize = {static_cast<int>(kInner / 2), static_cast<int>(kInner / 2)};
result = drawRescaleGrid<ReadSource::kSurface>(canvas,
surface.get(),
srcRect,
downSize,
Type::kRGBA,
errorMsg,
kPad);
if (result != skiagm::DrawResult::kOk) {
return result;
}
canvas->translate(0, 4 * downSize.height());
SkISize upSize = {static_cast<int>(kInner * 3.5), static_cast<int>(kInner * 4.6)};
result = drawRescaleGrid<ReadSource::kSurface>(canvas,
surface.get(),
srcRect,
upSize,
Type::kRGBA,
errorMsg,
kPad);
if (result != skiagm::DrawResult::kOk) {
return result;
}
return skiagm::DrawResult::kOk;
}
};
} // namespace
DEF_GM(return new AsyncRescaleAndReadNoBleedGM();)
namespace {
class AsyncRescaleAndReadAlphaTypeGM : public AsyncReadGMBase {
public:
AsyncRescaleAndReadAlphaTypeGM() : AsyncReadGMBase("async_rescale_and_read_alpha_type") {}
SkISize getISize() override { return {512, 512}; }
DrawResult onDraw(SkCanvas* canvas, SkString* errorMsg) override {
auto dContext = GrAsDirectContext(canvas->recordingContext());
if (!dContext && canvas->recordingContext()) {
*errorMsg = "Not supported in DDL mode";
return skiagm::DrawResult::kSkip;
}
if (canvas->recorder()) {
*errorMsg = "Reading to unpremul not supported in Graphite.";
return skiagm::DrawResult::kSkip;
}
auto upmII = SkImageInfo::Make(200, 200, kRGBA_8888_SkColorType, kUnpremul_SkAlphaType);
auto pmII = upmII.makeAlphaType(kPremul_SkAlphaType);
auto upmSurf = SkSurfaces::Raster(upmII);
auto pmSurf = SkSurfaces::Raster(pmII);
SkColor4f colors[] = {
{.3f, .3f, .3f, .3f},
{1.f, .2f, .6f, .9f},
{0.f, .1f, 1.f, .1f},
{.7f, .8f, .2f, .7f},
};
auto shader = SkGradientShader::MakeRadial({100, 100},
230,
colors,
nullptr,
nullptr,
std::size(colors),
SkTileMode::kRepeat);
SkPaint paint;
paint.setShader(std::move(shader));
upmSurf->getCanvas()->drawPaint(paint);
pmSurf ->getCanvas()->drawPaint(paint);
auto pmImg = pmSurf->makeImageSnapshot();
auto upmImg = upmSurf->makeImageSnapshot();
auto imageOrResult = convert_image_to_source<ReadSource::kImage>(canvas,
std::move(pmImg),
errorMsg);
if (const auto* dr = std::get_if<skiagm::DrawResult>(&imageOrResult)) {
return *dr;
}
pmImg = std::move(std::get<sk_sp<SkImage>>(imageOrResult));
imageOrResult = convert_image_to_source<ReadSource::kImage>(canvas,
std::move(upmImg),
errorMsg);
if (const auto* dr = std::get_if<skiagm::DrawResult>(&imageOrResult)) {
return *dr;
}
upmImg = std::move(std::get<sk_sp<SkImage>>(imageOrResult));
int size = 256;
ToolUtils::draw_checkerboard(canvas, SK_ColorWHITE, SK_ColorBLACK, 32);
for (const auto& img : {pmImg, upmImg}) {
canvas->save();
for (auto readAT : {kPremul_SkAlphaType, kUnpremul_SkAlphaType}) {
auto readInfo = img->imageInfo().makeAlphaType(readAT).makeWH(size, size);
auto result =
readAndScaleRGBA<ReadSource::kImage>(img.get(),
SkIRect::MakeSize(img->dimensions()),
dContext,
canvas->recorder(),
readInfo,
SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kRepeatedCubic);
if (!result) {
*errorMsg = "async readback failed";
return skiagm::DrawResult::kFail;
}
canvas->drawImage(result, 0, 0);
canvas->translate(size, 0);
}
canvas->restore();
canvas->translate(0, size);
}
return skiagm::DrawResult::kOk;
}
};
} // namespace
DEF_GM(return new AsyncRescaleAndReadAlphaTypeGM();)