|  | /* | 
|  | * Copyright 2008 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "include/core/SkShader.h" | 
|  | #include "include/private/SkTo.h" | 
|  | #include "src/core/SkBitmapProcState.h" | 
|  | #include "src/core/SkUtils.h" | 
|  |  | 
|  | /* | 
|  | *  The decal_ functions require that | 
|  | *  1. dx > 0 | 
|  | *  2. [fx, fx+dx, fx+2dx, fx+3dx, ... fx+(count-1)dx] are all <= maxX | 
|  | * | 
|  | *  In addition, we use SkFractionalInt to keep more fractional precision than | 
|  | *  just SkFixed, so we will abort the decal_ call if dx is very small, since | 
|  | *  the decal_ function just operates on SkFixed. If that were changed, we could | 
|  | *  skip the very_small test here. | 
|  | */ | 
|  | static inline bool can_truncate_to_fixed_for_decal(SkFixed fx, | 
|  | SkFixed dx, | 
|  | int count, unsigned max) { | 
|  | SkASSERT(count > 0); | 
|  |  | 
|  | // if decal_ kept SkFractionalInt precision, this would just be dx <= 0 | 
|  | // I just made up the 1/256. Just don't want to perceive accumulated error | 
|  | // if we truncate frDx and lose its low bits. | 
|  | if (dx <= SK_Fixed1 / 256) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Note: it seems the test should be (fx <= max && lastFx <= max); but | 
|  | // historically it's been a strict inequality check, and changing produces | 
|  | // unexpected diffs.  Further investigation is needed. | 
|  |  | 
|  | // We cast to unsigned so we don't have to check for negative values, which | 
|  | // will now appear as very large positive values, and thus fail our test! | 
|  | if ((unsigned)SkFixedFloorToInt(fx) >= max) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Promote to 64bit (48.16) to avoid overflow. | 
|  | const uint64_t lastFx = fx + sk_64_mul(dx, count - 1); | 
|  |  | 
|  | return SkTFitsIn<int32_t>(lastFx) && (unsigned)SkFixedFloorToInt(SkTo<int32_t>(lastFx)) < max; | 
|  | } | 
|  |  | 
|  | // When not filtering, we store 32-bit y, 16-bit x, 16-bit x, 16-bit x, ... | 
|  | // When filtering we write out 32-bit encodings, pairing 14.4 x0 with 14-bit x1. | 
|  |  | 
|  | // The clamp routines may try to fall into one of these unclamped decal fast-paths. | 
|  | // (Only clamp works in the right coordinate space to check for decal.) | 
|  | static void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) { | 
|  | // can_truncate_to_fixed_for_decal() checked only that stepping fx+=dx count-1 | 
|  | // times doesn't overflow fx, so we take unusual care not to step count times. | 
|  | for (; count > 2; count -= 2) { | 
|  | *dst++ = pack_two_shorts( (fx +  0) >> 16, | 
|  | (fx + dx) >> 16); | 
|  | fx += dx+dx; | 
|  | } | 
|  |  | 
|  | SkASSERT(count <= 2); | 
|  | switch (count) { | 
|  | case 2: ((uint16_t*)dst)[1] = SkToU16((fx + dx) >> 16); | 
|  | case 1: ((uint16_t*)dst)[0] = SkToU16((fx +  0) >> 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | // A generic implementation for unfiltered scale+translate, templated on tiling method. | 
|  | template <unsigned (*tile)(SkFixed, int), bool tryDecal> | 
|  | static void nofilter_scale(const SkBitmapProcState& s, | 
|  | uint32_t xy[], int count, int x, int y) { | 
|  | SkASSERT(s.fInvMatrix.isScaleTranslate()); | 
|  |  | 
|  | // Write out our 32-bit y, and get our intial fx. | 
|  | SkFractionalInt fx; | 
|  | { | 
|  | const SkBitmapProcStateAutoMapper mapper(s, x, y); | 
|  | *xy++ = tile(mapper.fixedY(), s.fPixmap.height() - 1); | 
|  | fx = mapper.fractionalIntX(); | 
|  | } | 
|  |  | 
|  | const unsigned maxX = s.fPixmap.width() - 1; | 
|  | if (0 == maxX) { | 
|  | // If width == 1, all the x-values must refer to that pixel, and must be zero. | 
|  | memset(xy, 0, count * sizeof(uint16_t)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const SkFractionalInt dx = s.fInvSxFractionalInt; | 
|  |  | 
|  | if (tryDecal) { | 
|  | const SkFixed fixedFx = SkFractionalIntToFixed(fx); | 
|  | const SkFixed fixedDx = SkFractionalIntToFixed(dx); | 
|  |  | 
|  | if (can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) { | 
|  | decal_nofilter_scale(xy, fixedFx, fixedDx, count); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remember, each x-coordinate is 16-bit. | 
|  | for (; count >= 2; count -= 2) { | 
|  | *xy++ = pack_two_shorts(tile(SkFractionalIntToFixed(fx     ), maxX), | 
|  | tile(SkFractionalIntToFixed(fx + dx), maxX)); | 
|  | fx += dx+dx; | 
|  | } | 
|  |  | 
|  | auto xx = (uint16_t*)xy; | 
|  | while (count --> 0) { | 
|  | *xx++ = tile(SkFractionalIntToFixed(fx), maxX); | 
|  | fx += dx; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <unsigned (*tile)(SkFixed, int)> | 
|  | static void nofilter_affine(const SkBitmapProcState& s, | 
|  | uint32_t xy[], int count, int x, int y) { | 
|  | SkASSERT(!s.fInvMatrix.hasPerspective()); | 
|  |  | 
|  | const SkBitmapProcStateAutoMapper mapper(s, x, y); | 
|  |  | 
|  | SkFractionalInt fx = mapper.fractionalIntX(), | 
|  | fy = mapper.fractionalIntY(), | 
|  | dx = s.fInvSxFractionalInt, | 
|  | dy = s.fInvKyFractionalInt; | 
|  | int maxX = s.fPixmap.width () - 1, | 
|  | maxY = s.fPixmap.height() - 1; | 
|  |  | 
|  | while (count --> 0) { | 
|  | *xy++ = (tile(SkFractionalIntToFixed(fy), maxY) << 16) | 
|  | | (tile(SkFractionalIntToFixed(fx), maxX)      ); | 
|  | fx += dx; | 
|  | fy += dy; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Extract the high four fractional bits from fx, the lerp parameter when filtering. | 
|  | static unsigned extract_low_bits_clamp(SkFixed fx, int /*max*/) { | 
|  | // If we're already scaled up to by max like clamp/decal, | 
|  | // just grab the high four fractional bits. | 
|  | return (fx >> 12) & 0xf; | 
|  | } | 
|  | static unsigned extract_low_bits_repeat_mirror(SkFixed fx, int max) { | 
|  | // In repeat or mirror fx is in [0,1], so scale up by max first. | 
|  | // TODO: remove the +1 here and the -1 at the call sites... | 
|  | return extract_low_bits_clamp((fx & 0xffff) * (max+1), max); | 
|  | } | 
|  |  | 
|  | template <unsigned (*tile)(SkFixed, int), unsigned (*extract_low_bits)(SkFixed, int)> | 
|  | static uint32_t pack(SkFixed f, unsigned max, SkFixed one) { | 
|  | uint32_t packed = tile(f, max);                      // low coordinate in high bits | 
|  | packed = (packed <<  4) | extract_low_bits(f, max);  // (lerp weight _is_ coord fractional part) | 
|  | packed = (packed << 14) | tile((f + one), max);      // high coordinate in low bits | 
|  | return packed; | 
|  | } | 
|  |  | 
|  | template <unsigned (*tile)(SkFixed, int), unsigned (*extract_low_bits)(SkFixed, int), bool tryDecal> | 
|  | static void filter_scale(const SkBitmapProcState& s, | 
|  | uint32_t xy[], int count, int x, int y) { | 
|  | SkASSERT(s.fInvMatrix.isScaleTranslate()); | 
|  |  | 
|  | const unsigned maxX = s.fPixmap.width() - 1; | 
|  | const SkFractionalInt dx = s.fInvSxFractionalInt; | 
|  | SkFractionalInt fx; | 
|  | { | 
|  | const SkBitmapProcStateAutoMapper mapper(s, x, y); | 
|  | const unsigned maxY = s.fPixmap.height() - 1; | 
|  | // compute our two Y values up front | 
|  | *xy++ = pack<tile, extract_low_bits>(mapper.fixedY(), maxY, s.fFilterOneY); | 
|  | // now initialize fx | 
|  | fx = mapper.fractionalIntX(); | 
|  | } | 
|  |  | 
|  | // For historical reasons we check both ends are < maxX rather than <= maxX. | 
|  | // TODO: try changing this?  See also can_truncate_to_fixed_for_decal(). | 
|  | if (tryDecal && | 
|  | (unsigned)SkFractionalIntToInt(fx               ) < maxX && | 
|  | (unsigned)SkFractionalIntToInt(fx + dx*(count-1)) < maxX) { | 
|  | while (count --> 0) { | 
|  | SkFixed fixedFx = SkFractionalIntToFixed(fx); | 
|  | SkASSERT((fixedFx >> (16 + 14)) == 0); | 
|  | *xy++ = (fixedFx >> 12 << 14) | ((fixedFx >> 16) + 1); | 
|  | fx += dx; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (count --> 0) { | 
|  | *xy++ = pack<tile, extract_low_bits>(SkFractionalIntToFixed(fx), maxX, s.fFilterOneX); | 
|  | fx += dx; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <unsigned (*tile)(SkFixed, int), unsigned (*extract_low_bits)(SkFixed, int)> | 
|  | static void filter_affine(const SkBitmapProcState& s, | 
|  | uint32_t xy[], int count, int x, int y) { | 
|  | SkASSERT(!s.fInvMatrix.hasPerspective()); | 
|  |  | 
|  | const SkBitmapProcStateAutoMapper mapper(s, x, y); | 
|  |  | 
|  | SkFixed oneX = s.fFilterOneX, | 
|  | oneY = s.fFilterOneY; | 
|  |  | 
|  | SkFractionalInt fx = mapper.fractionalIntX(), | 
|  | fy = mapper.fractionalIntY(), | 
|  | dx = s.fInvSxFractionalInt, | 
|  | dy = s.fInvKyFractionalInt; | 
|  | unsigned maxX = s.fPixmap.width () - 1, | 
|  | maxY = s.fPixmap.height() - 1; | 
|  | while (count --> 0) { | 
|  | *xy++ = pack<tile, extract_low_bits>(SkFractionalIntToFixed(fy), maxY, oneY); | 
|  | *xy++ = pack<tile, extract_low_bits>(SkFractionalIntToFixed(fx), maxX, oneX); | 
|  |  | 
|  | fy += dy; | 
|  | fx += dx; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Helper to ensure that when we shift down, we do it w/o sign-extension | 
|  | // so the caller doesn't have to manually mask off the top 16 bits. | 
|  | static inline unsigned SK_USHIFT16(unsigned x) { | 
|  | return x >> 16; | 
|  | } | 
|  |  | 
|  | static unsigned clamp(SkFixed fx, int max) { | 
|  | return SkClampMax(fx >> 16, max); | 
|  | } | 
|  | static unsigned repeat(SkFixed fx, int max) { | 
|  | SkASSERT(max < 65535); | 
|  | return SK_USHIFT16((unsigned)(fx & 0xFFFF) * (max + 1)); | 
|  | } | 
|  | static unsigned mirror(SkFixed fx, int max) { | 
|  | SkASSERT(max < 65535); | 
|  | // s is 0xFFFFFFFF if we're on an odd interval, or 0 if an even interval | 
|  | SkFixed s = SkLeftShift(fx, 15) >> 31; | 
|  |  | 
|  | // This should be exactly the same as repeat(fx ^ s, max) from here on. | 
|  | return SK_USHIFT16( ((fx ^ s) & 0xFFFF) * (max + 1) ); | 
|  | } | 
|  |  | 
|  | static const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = { | 
|  | nofilter_scale <clamp, true>, filter_scale <clamp, extract_low_bits_clamp, true>, | 
|  | nofilter_affine<clamp>,       filter_affine<clamp, extract_low_bits_clamp>, | 
|  | }; | 
|  | static const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = { | 
|  | nofilter_scale <repeat, false>, filter_scale <repeat, extract_low_bits_repeat_mirror,false>, | 
|  | nofilter_affine<repeat>,        filter_affine<repeat, extract_low_bits_repeat_mirror>, | 
|  | }; | 
|  | static const SkBitmapProcState::MatrixProc MirrorX_MirrorY_Procs[] = { | 
|  | nofilter_scale <mirror, false>, filter_scale <mirror, extract_low_bits_repeat_mirror, false>, | 
|  | nofilter_affine<mirror>,        filter_affine<mirror, extract_low_bits_repeat_mirror>, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  | // This next chunk has some specializations for unfiltered translate-only matrices. | 
|  |  | 
|  | static inline U16CPU int_clamp(int x, int n) { | 
|  | if (x <  0) { x = 0; } | 
|  | if (x >= n) { x = n - 1; } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /*  returns 0...(n-1) given any x (positive or negative). | 
|  |  | 
|  | As an example, if n (which is always positive) is 5... | 
|  |  | 
|  | x: -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8 | 
|  | returns:  2  3  4  0  1  2  3  4  0  1  2  3  4  0  1  2  3 | 
|  | */ | 
|  | static inline int sk_int_mod(int x, int n) { | 
|  | SkASSERT(n > 0); | 
|  | if ((unsigned)x >= (unsigned)n) { | 
|  | if (x < 0) { | 
|  | x = n + ~(~x % n); | 
|  | } else { | 
|  | x = x % n; | 
|  | } | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | static inline U16CPU int_repeat(int x, int n) { | 
|  | return sk_int_mod(x, n); | 
|  | } | 
|  |  | 
|  | static inline U16CPU int_mirror(int x, int n) { | 
|  | x = sk_int_mod(x, 2 * n); | 
|  | if (x >= n) { | 
|  | x = n + ~(x - n); | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | static void fill_sequential(uint16_t xptr[], int pos, int count) { | 
|  | while (count --> 0) { | 
|  | *xptr++ = pos++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fill_backwards(uint16_t xptr[], int pos, int count) { | 
|  | while (count --> 0) { | 
|  | SkASSERT(pos >= 0); | 
|  | *xptr++ = pos--; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void clampx_nofilter_trans(const SkBitmapProcState& s, | 
|  | uint32_t xy[], int count, int x, int y) { | 
|  | SkASSERT(s.fInvMatrix.isTranslate()); | 
|  |  | 
|  | const SkBitmapProcStateAutoMapper mapper(s, x, y); | 
|  | *xy++ = int_clamp(mapper.intY(), s.fPixmap.height()); | 
|  | int xpos = mapper.intX(); | 
|  |  | 
|  | const int width = s.fPixmap.width(); | 
|  | if (1 == width) { | 
|  | // all of the following X values must be 0 | 
|  | memset(xy, 0, count * sizeof(uint16_t)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | uint16_t* xptr = reinterpret_cast<uint16_t*>(xy); | 
|  | int n; | 
|  |  | 
|  | // fill before 0 as needed | 
|  | if (xpos < 0) { | 
|  | n = -xpos; | 
|  | if (n > count) { | 
|  | n = count; | 
|  | } | 
|  | memset(xptr, 0, n * sizeof(uint16_t)); | 
|  | count -= n; | 
|  | if (0 == count) { | 
|  | return; | 
|  | } | 
|  | xptr += n; | 
|  | xpos = 0; | 
|  | } | 
|  |  | 
|  | // fill in 0..width-1 if needed | 
|  | if (xpos < width) { | 
|  | n = width - xpos; | 
|  | if (n > count) { | 
|  | n = count; | 
|  | } | 
|  | fill_sequential(xptr, xpos, n); | 
|  | count -= n; | 
|  | if (0 == count) { | 
|  | return; | 
|  | } | 
|  | xptr += n; | 
|  | } | 
|  |  | 
|  | // fill the remaining with the max value | 
|  | sk_memset16(xptr, width - 1, count); | 
|  | } | 
|  |  | 
|  | static void repeatx_nofilter_trans(const SkBitmapProcState& s, | 
|  | uint32_t xy[], int count, int x, int y) { | 
|  | SkASSERT(s.fInvMatrix.isTranslate()); | 
|  |  | 
|  | const SkBitmapProcStateAutoMapper mapper(s, x, y); | 
|  | *xy++ = int_repeat(mapper.intY(), s.fPixmap.height()); | 
|  | int xpos = mapper.intX(); | 
|  |  | 
|  | const int width = s.fPixmap.width(); | 
|  | if (1 == width) { | 
|  | // all of the following X values must be 0 | 
|  | memset(xy, 0, count * sizeof(uint16_t)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | uint16_t* xptr = reinterpret_cast<uint16_t*>(xy); | 
|  | int start = sk_int_mod(xpos, width); | 
|  | int n = width - start; | 
|  | if (n > count) { | 
|  | n = count; | 
|  | } | 
|  | fill_sequential(xptr, start, n); | 
|  | xptr += n; | 
|  | count -= n; | 
|  |  | 
|  | while (count >= width) { | 
|  | fill_sequential(xptr, 0, width); | 
|  | xptr += width; | 
|  | count -= width; | 
|  | } | 
|  |  | 
|  | if (count > 0) { | 
|  | fill_sequential(xptr, 0, count); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mirrorx_nofilter_trans(const SkBitmapProcState& s, | 
|  | uint32_t xy[], int count, int x, int y) { | 
|  | SkASSERT(s.fInvMatrix.isTranslate()); | 
|  |  | 
|  | const SkBitmapProcStateAutoMapper mapper(s, x, y); | 
|  | *xy++ = int_mirror(mapper.intY(), s.fPixmap.height()); | 
|  | int xpos = mapper.intX(); | 
|  |  | 
|  | const int width = s.fPixmap.width(); | 
|  | if (1 == width) { | 
|  | // all of the following X values must be 0 | 
|  | memset(xy, 0, count * sizeof(uint16_t)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | uint16_t* xptr = reinterpret_cast<uint16_t*>(xy); | 
|  | // need to know our start, and our initial phase (forward or backward) | 
|  | bool forward; | 
|  | int n; | 
|  | int start = sk_int_mod(xpos, 2 * width); | 
|  | if (start >= width) { | 
|  | start = width + ~(start - width); | 
|  | forward = false; | 
|  | n = start + 1;  // [start .. 0] | 
|  | } else { | 
|  | forward = true; | 
|  | n = width - start;  // [start .. width) | 
|  | } | 
|  | if (n > count) { | 
|  | n = count; | 
|  | } | 
|  | if (forward) { | 
|  | fill_sequential(xptr, start, n); | 
|  | } else { | 
|  | fill_backwards(xptr, start, n); | 
|  | } | 
|  | forward = !forward; | 
|  | xptr += n; | 
|  | count -= n; | 
|  |  | 
|  | while (count >= width) { | 
|  | if (forward) { | 
|  | fill_sequential(xptr, 0, width); | 
|  | } else { | 
|  | fill_backwards(xptr, width - 1, width); | 
|  | } | 
|  | forward = !forward; | 
|  | xptr += width; | 
|  | count -= width; | 
|  | } | 
|  |  | 
|  | if (count > 0) { | 
|  | if (forward) { | 
|  | fill_sequential(xptr, 0, count); | 
|  | } else { | 
|  | fill_backwards(xptr, width - 1, count); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  | // The main entry point to the file, choosing between everything above. | 
|  |  | 
|  | SkBitmapProcState::MatrixProc SkBitmapProcState::chooseMatrixProc(bool translate_only_matrix) { | 
|  | SkASSERT(!fInvMatrix.hasPerspective()); | 
|  | SkASSERT(fTileModeX == fTileModeY); | 
|  | SkASSERT(fTileModeX != SkTileMode::kDecal); | 
|  |  | 
|  | // Check for our special case translate methods when there is no scale/affine/perspective. | 
|  | if (translate_only_matrix && kNone_SkFilterQuality == fFilterQuality) { | 
|  | switch (fTileModeX) { | 
|  | default: SkASSERT(false); | 
|  | case SkTileMode::kClamp:  return  clampx_nofilter_trans; | 
|  | case SkTileMode::kRepeat: return repeatx_nofilter_trans; | 
|  | case SkTileMode::kMirror: return mirrorx_nofilter_trans; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The arrays are all [ nofilter, filter ]. | 
|  | int index = fFilterQuality > kNone_SkFilterQuality ? 1 : 0; | 
|  | if (!fInvMatrix.isScaleTranslate()) { | 
|  | index |= 2; | 
|  | } | 
|  |  | 
|  | if (fTileModeX == SkTileMode::kClamp) { | 
|  | // clamp gets special version of filterOne, working in non-normalized space (allowing decal) | 
|  | fFilterOneX = SK_Fixed1; | 
|  | fFilterOneY = SK_Fixed1; | 
|  | return ClampX_ClampY_Procs[index]; | 
|  | } | 
|  |  | 
|  | // all remaining procs use this form for filterOne, putting them into normalized space. | 
|  | fFilterOneX = SK_Fixed1 / fPixmap.width(); | 
|  | fFilterOneY = SK_Fixed1 / fPixmap.height(); | 
|  |  | 
|  | if (fTileModeX == SkTileMode::kRepeat) { | 
|  | return RepeatX_RepeatY_Procs[index]; | 
|  | } | 
|  |  | 
|  | return MirrorX_MirrorY_Procs[index]; | 
|  | } |