| /* | 
 |  * Copyright 2014 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #include "SkDashPathPriv.h" | 
 | #include "SkPathMeasure.h" | 
 | #include "SkStrokeRec.h" | 
 |  | 
 | static inline int is_even(int x) { | 
 |     return !(x & 1); | 
 | } | 
 |  | 
 | static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase, | 
 |                                     int32_t* index, int count) { | 
 |     for (int i = 0; i < count; ++i) { | 
 |         if (phase > intervals[i]) { | 
 |             phase -= intervals[i]; | 
 |         } else { | 
 |             *index = i; | 
 |             return intervals[i] - phase; | 
 |         } | 
 |     } | 
 |     // If we get here, phase "appears" to be larger than our length. This | 
 |     // shouldn't happen with perfect precision, but we can accumulate errors | 
 |     // during the initial length computation (rounding can make our sum be too | 
 |     // big or too small. In that event, we just have to eat the error here. | 
 |     *index = 0; | 
 |     return intervals[0]; | 
 | } | 
 |  | 
 | void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count, | 
 |                                     SkScalar* initialDashLength, int32_t* initialDashIndex, | 
 |                                     SkScalar* intervalLength, SkScalar* adjustedPhase) { | 
 |     SkScalar len = 0; | 
 |     for (int i = 0; i < count; i++) { | 
 |         len += intervals[i]; | 
 |     } | 
 |     *intervalLength = len; | 
 |  | 
 |     // watch out for values that might make us go out of bounds | 
 |     if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) { | 
 |  | 
 |         // Adjust phase to be between 0 and len, "flipping" phase if negative. | 
 |         // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80 | 
 |         if (adjustedPhase) { | 
 |             if (phase < 0) { | 
 |                 phase = -phase; | 
 |                 if (phase > len) { | 
 |                     phase = SkScalarMod(phase, len); | 
 |                 } | 
 |                 phase = len - phase; | 
 |  | 
 |                 // Due to finite precision, it's possible that phase == len, | 
 |                 // even after the subtract (if len >>> phase), so fix that here. | 
 |                 // This fixes http://crbug.com/124652 . | 
 |                 SkASSERT(phase <= len); | 
 |                 if (phase == len) { | 
 |                     phase = 0; | 
 |                 } | 
 |             } else if (phase >= len) { | 
 |                 phase = SkScalarMod(phase, len); | 
 |             } | 
 |             *adjustedPhase = phase; | 
 |         } | 
 |         SkASSERT(phase >= 0 && phase < len); | 
 |  | 
 |         *initialDashLength = find_first_interval(intervals, phase, | 
 |                                                 initialDashIndex, count); | 
 |  | 
 |         SkASSERT(*initialDashLength >= 0); | 
 |         SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count); | 
 |     } else { | 
 |         *initialDashLength = -1;    // signal bad dash intervals | 
 |     } | 
 | } | 
 |  | 
 | static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) { | 
 |     SkScalar radius = SkScalarHalf(rec.getWidth()); | 
 |     if (0 == radius) { | 
 |         radius = SK_Scalar1;    // hairlines | 
 |     } | 
 |     if (SkPaint::kMiter_Join == rec.getJoin()) { | 
 |         radius = SkScalarMul(radius, rec.getMiter()); | 
 |     } | 
 |     rect->outset(radius, radius); | 
 | } | 
 |  | 
 | // Only handles lines for now. If returns true, dstPath is the new (smaller) | 
 | // path. If returns false, then dstPath parameter is ignored. | 
 | static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec, | 
 |                       const SkRect* cullRect, SkScalar intervalLength, | 
 |                       SkPath* dstPath) { | 
 |     if (nullptr == cullRect) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     SkPoint pts[2]; | 
 |     if (!srcPath.isLine(pts)) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     SkRect bounds = *cullRect; | 
 |     outset_for_stroke(&bounds, rec); | 
 |  | 
 |     SkScalar dx = pts[1].x() - pts[0].x(); | 
 |     SkScalar dy = pts[1].y() - pts[0].y(); | 
 |  | 
 |     // just do horizontal lines for now (lazy) | 
 |     if (dy) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     SkScalar minX = pts[0].fX; | 
 |     SkScalar maxX = pts[1].fX; | 
 |  | 
 |     if (dx < 0) { | 
 |         SkTSwap(minX, maxX); | 
 |     } | 
 |  | 
 |     SkASSERT(minX <= maxX); | 
 |     if (maxX < bounds.fLeft || minX > bounds.fRight) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     // Now we actually perform the chop, removing the excess to the left and | 
 |     // right of the bounds (keeping our new line "in phase" with the dash, | 
 |     // hence the (mod intervalLength). | 
 |  | 
 |     if (minX < bounds.fLeft) { | 
 |         minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX, | 
 |                                           intervalLength); | 
 |     } | 
 |     if (maxX > bounds.fRight) { | 
 |         maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight, | 
 |                                            intervalLength); | 
 |     } | 
 |  | 
 |     SkASSERT(maxX >= minX); | 
 |     if (dx < 0) { | 
 |         SkTSwap(minX, maxX); | 
 |     } | 
 |     pts[0].fX = minX; | 
 |     pts[1].fX = maxX; | 
 |  | 
 |     dstPath->moveTo(pts[0]); | 
 |     dstPath->lineTo(pts[1]); | 
 |     return true; | 
 | } | 
 |  | 
 | class SpecialLineRec { | 
 | public: | 
 |     bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec, | 
 |               int intervalCount, SkScalar intervalLength) { | 
 |         if (rec->isHairlineStyle() || !src.isLine(fPts)) { | 
 |             return false; | 
 |         } | 
 |  | 
 |         // can relax this in the future, if we handle square and round caps | 
 |         if (SkPaint::kButt_Cap != rec->getCap()) { | 
 |             return false; | 
 |         } | 
 |  | 
 |         SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]); | 
 |  | 
 |         fTangent = fPts[1] - fPts[0]; | 
 |         if (fTangent.isZero()) { | 
 |             return false; | 
 |         } | 
 |  | 
 |         fPathLength = pathLength; | 
 |         fTangent.scale(SkScalarInvert(pathLength)); | 
 |         fTangent.rotateCCW(&fNormal); | 
 |         fNormal.scale(SkScalarHalf(rec->getWidth())); | 
 |  | 
 |         // now estimate how many quads will be added to the path | 
 |         //     resulting segments = pathLen * intervalCount / intervalLen | 
 |         //     resulting points = 4 * segments | 
 |  | 
 |         SkScalar ptCount = SkScalarMulDiv(pathLength, | 
 |                                           SkIntToScalar(intervalCount), | 
 |                                           intervalLength); | 
 |         int n = SkScalarCeilToInt(ptCount) << 2; | 
 |         dst->incReserve(n); | 
 |  | 
 |         // we will take care of the stroking | 
 |         rec->setFillStyle(); | 
 |         return true; | 
 |     } | 
 |  | 
 |     void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const { | 
 |         SkASSERT(d0 < fPathLength); | 
 |         // clamp the segment to our length | 
 |         if (d1 > fPathLength) { | 
 |             d1 = fPathLength; | 
 |         } | 
 |  | 
 |         SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0); | 
 |         SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1); | 
 |         SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0); | 
 |         SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1); | 
 |  | 
 |         SkPoint pts[4]; | 
 |         pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY);   // moveTo | 
 |         pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY);   // lineTo | 
 |         pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY);   // lineTo | 
 |         pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY);   // lineTo | 
 |  | 
 |         path->addPoly(pts, SK_ARRAY_COUNT(pts), false); | 
 |     } | 
 |  | 
 | private: | 
 |     SkPoint fPts[2]; | 
 |     SkVector fTangent; | 
 |     SkVector fNormal; | 
 |     SkScalar fPathLength; | 
 | }; | 
 |  | 
 |  | 
 | bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec, | 
 |                                 const SkRect* cullRect, const SkScalar aIntervals[], | 
 |                                 int32_t count, SkScalar initialDashLength, int32_t initialDashIndex, | 
 |                                 SkScalar intervalLength) { | 
 |  | 
 |     // we do nothing if the src wants to be filled, or if our dashlength is 0 | 
 |     if (rec->isFillStyle() || initialDashLength < 0) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     const SkScalar* intervals = aIntervals; | 
 |     SkScalar        dashCount = 0; | 
 |     int             segCount = 0; | 
 |  | 
 |     SkPath cullPathStorage; | 
 |     const SkPath* srcPtr = &src; | 
 |     if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) { | 
 |         srcPtr = &cullPathStorage; | 
 |     } | 
 |  | 
 |     SpecialLineRec lineRec; | 
 |     bool specialLine = lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength); | 
 |  | 
 |     SkPathMeasure   meas(*srcPtr, false, rec->getResScale()); | 
 |  | 
 |     do { | 
 |         bool        skipFirstSegment = meas.isClosed(); | 
 |         bool        addedSegment = false; | 
 |         SkScalar    length = meas.getLength(); | 
 |         int         index = initialDashIndex; | 
 |  | 
 |         // Since the path length / dash length ratio may be arbitrarily large, we can exert | 
 |         // significant memory pressure while attempting to build the filtered path. To avoid this, | 
 |         // we simply give up dashing beyond a certain threshold. | 
 |         // | 
 |         // The original bug report (http://crbug.com/165432) is based on a path yielding more than | 
 |         // 90 million dash segments and crashing the memory allocator. A limit of 1 million | 
 |         // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the | 
 |         // maximum dash memory overhead at roughly 17MB per path. | 
 |         static const SkScalar kMaxDashCount = 1000000; | 
 |         dashCount += length * (count >> 1) / intervalLength; | 
 |         if (dashCount > kMaxDashCount) { | 
 |             dst->reset(); | 
 |             return false; | 
 |         } | 
 |  | 
 |         // Using double precision to avoid looping indefinitely due to single precision rounding | 
 |         // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest. | 
 |         double  distance = 0; | 
 |         double  dlen = initialDashLength; | 
 |  | 
 |         while (distance < length) { | 
 |             SkASSERT(dlen >= 0); | 
 |             addedSegment = false; | 
 |             if (is_even(index) && !skipFirstSegment) { | 
 |                 addedSegment = true; | 
 |                 ++segCount; | 
 |  | 
 |                 if (specialLine) { | 
 |                     lineRec.addSegment(SkDoubleToScalar(distance), | 
 |                                        SkDoubleToScalar(distance + dlen), | 
 |                                        dst); | 
 |                 } else { | 
 |                     meas.getSegment(SkDoubleToScalar(distance), | 
 |                                     SkDoubleToScalar(distance + dlen), | 
 |                                     dst, true); | 
 |                 } | 
 |             } | 
 |             distance += dlen; | 
 |  | 
 |             // clear this so we only respect it the first time around | 
 |             skipFirstSegment = false; | 
 |  | 
 |             // wrap around our intervals array if necessary | 
 |             index += 1; | 
 |             SkASSERT(index <= count); | 
 |             if (index == count) { | 
 |                 index = 0; | 
 |             } | 
 |  | 
 |             // fetch our next dlen | 
 |             dlen = intervals[index]; | 
 |         } | 
 |  | 
 |         // extend if we ended on a segment and we need to join up with the (skipped) initial segment | 
 |         if (meas.isClosed() && is_even(initialDashIndex) && | 
 |             initialDashLength > 0) { | 
 |             meas.getSegment(0, initialDashLength, dst, !addedSegment); | 
 |             ++segCount; | 
 |         } | 
 |     } while (meas.nextContour()); | 
 |  | 
 |     if (segCount > 1) { | 
 |         dst->setConvexity(SkPath::kConcave_Convexity); | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec, | 
 |                                 const SkRect* cullRect, const SkPathEffect::DashInfo& info) { | 
 |     SkScalar initialDashLength = 0; | 
 |     int32_t initialDashIndex = 0; | 
 |     SkScalar intervalLength = 0; | 
 |     CalcDashParameters(info.fPhase, info.fIntervals, info.fCount, | 
 |                        &initialDashLength, &initialDashIndex, &intervalLength); | 
 |     return FilterDashPath(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength, | 
 |                           initialDashIndex, intervalLength); | 
 | } |