blob: 2cf5e99037eec249406f1aa9fa12862b9dfe04f2 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SKSL_IRNODE
#define SKSL_IRNODE
#include "src/sksl/SkSLASTNode.h"
#include "src/sksl/SkSLLexer.h"
#include "src/sksl/SkSLString.h"
#include <algorithm>
#include <vector>
namespace SkSL {
struct Expression;
class ExternalValue;
struct Statement;
class SymbolTable;
class Type;
/**
* Represents a node in the intermediate representation (IR) tree. The IR is a fully-resolved
* version of the program (all types determined, everything validated), ready for code generation.
*/
class IRNode {
public:
virtual ~IRNode();
IRNode& operator=(const IRNode& other) {
// Need to have a copy assignment operator because Type requires it, but can't use the
// default version until we finish migrating away from std::unique_ptr children. For now,
// just assert that there are no children (we could theoretically clone them, but we never
// actually copy nodes containing children).
SkASSERT(other.fExpressionChildren.empty());
fKind = other.fKind;
fOffset = other.fOffset;
fData = other.fData;
return *this;
}
virtual String description() const = 0;
// character offset of this element within the program being compiled, for error reporting
// purposes
int fOffset;
const Type& type() const {
switch (fData.fKind) {
case NodeData::Kind::kBoolLiteral:
return *this->boolLiteralData().fType;
case NodeData::Kind::kExternalValue:
return *this->externalValueData().fType;
case NodeData::Kind::kIntLiteral:
return *this->intLiteralData().fType;
case NodeData::Kind::kType:
return *this->typeData();
case NodeData::Kind::kTypeToken:
return *this->typeTokenData().fType;
default:
SkUNREACHABLE;
}
}
protected:
struct BlockData {
std::shared_ptr<SymbolTable> fSymbolTable;
// if isScope is false, this is just a group of statements rather than an actual
// language-level block. This allows us to pass around multiple statements as if they were a
// single unit, with no semantic impact.
bool fIsScope;
};
struct BoolLiteralData {
const Type* fType;
bool fValue;
};
struct EnumData {
StringFragment fTypeName;
std::shared_ptr<SymbolTable> fSymbols;
bool fIsBuiltin;
};
struct ExternalValueData {
const Type* fType;
const ExternalValue* fValue;
};
struct IntLiteralData {
const Type* fType;
int64_t fValue;
};
struct TypeTokenData {
const Type* fType;
Token::Kind fToken;
};
struct NodeData {
enum class Kind {
kBlock,
kBoolLiteral,
kEnum,
kExternalValue,
kIntLiteral,
kString,
kType,
kTypeToken,
} fKind = Kind::kType;
// it doesn't really matter what kind we default to, as long as it's a POD type
union Contents {
BlockData fBlock;
BoolLiteralData fBoolLiteral;
EnumData fEnum;
ExternalValueData fExternalValue;
IntLiteralData fIntLiteral;
String fString;
const Type* fType;
TypeTokenData fTypeToken;
Contents() {}
~Contents() {}
} fContents;
NodeData(const BlockData& data)
: fKind(Kind::kBlock) {
*(new(&fContents) BlockData) = data;
}
NodeData(const BoolLiteralData& data)
: fKind(Kind::kBoolLiteral) {
*(new(&fContents) BoolLiteralData) = data;
}
NodeData(const EnumData& data)
: fKind(Kind::kEnum) {
*(new(&fContents) EnumData) = data;
}
NodeData(const ExternalValueData& data)
: fKind(Kind::kExternalValue) {
*(new(&fContents) ExternalValueData) = data;
}
NodeData(IntLiteralData data)
: fKind(Kind::kIntLiteral) {
*(new(&fContents) IntLiteralData) = data;
}
NodeData(const String& data)
: fKind(Kind::kString) {
*(new(&fContents) String) = data;
}
NodeData(const Type* data)
: fKind(Kind::kType) {
*(new(&fContents) const Type*) = data;
}
NodeData(const TypeTokenData& data)
: fKind(Kind::kTypeToken) {
*(new(&fContents) TypeTokenData) = data;
}
NodeData(const NodeData& other) {
*this = other;
}
NodeData& operator=(const NodeData& other) {
this->cleanup();
fKind = other.fKind;
switch (fKind) {
case Kind::kBlock:
*(new(&fContents) BlockData) = other.fContents.fBlock;
break;
case Kind::kBoolLiteral:
*(new(&fContents) BoolLiteralData) = other.fContents.fBoolLiteral;
break;
case Kind::kEnum:
*(new(&fContents) EnumData) = other.fContents.fEnum;
break;
case Kind::kExternalValue:
*(new(&fContents) ExternalValueData) = other.fContents.fExternalValue;
break;
case Kind::kIntLiteral:
*(new(&fContents) IntLiteralData) = other.fContents.fIntLiteral;
break;
case Kind::kString:
*(new(&fContents) String) = other.fContents.fString;
break;
case Kind::kType:
*(new(&fContents) const Type*) = other.fContents.fType;
break;
case Kind::kTypeToken:
*(new(&fContents) TypeTokenData) = other.fContents.fTypeToken;
break;
}
return *this;
}
~NodeData() {
this->cleanup();
}
private:
void cleanup() {
switch (fKind) {
case Kind::kBlock:
fContents.fBlock.~BlockData();
break;
case Kind::kBoolLiteral:
fContents.fBoolLiteral.~BoolLiteralData();
break;
case Kind::kEnum:
fContents.fEnum.~EnumData();
break;
case Kind::kExternalValue:
fContents.fExternalValue.~ExternalValueData();
break;
case Kind::kIntLiteral:
fContents.fIntLiteral.~IntLiteralData();
break;
case Kind::kString:
fContents.fString.~String();
break;
case Kind::kType:
break;
case Kind::kTypeToken:
fContents.fTypeToken.~TypeTokenData();
break;
}
}
};
IRNode(int offset, int kind, const BlockData& data,
std::vector<std::unique_ptr<Statement>> stmts);
IRNode(int offset, int kind, const BoolLiteralData& data);
IRNode(int offset, int kind, const EnumData& data);
IRNode(int offset, int kind, const ExternalValueData& data);
IRNode(int offset, int kind, const IntLiteralData& data);
IRNode(int offset, int kind, const String& data);
IRNode(int offset, int kind, const Type* data = nullptr);
IRNode(int offset, int kind, const TypeTokenData& data);
IRNode(const IRNode& other);
Expression& expressionChild(int index) const {
SkASSERT(index >= 0 && index < (int) fExpressionChildren.size());
return *fExpressionChildren[index];
}
std::unique_ptr<Expression>& expressionPointer(int index) {
SkASSERT(index >= 0 && index < (int) fExpressionChildren.size());
return fExpressionChildren[index];
}
const std::unique_ptr<Expression>& expressionPointer(int index) const {
SkASSERT(index >= 0 && index < (int) fExpressionChildren.size());
return fExpressionChildren[index];
}
int expressionChildCount() const {
return fExpressionChildren.size();
}
Statement& statementChild(int index) const {
SkASSERT(index >= 0 && index < (int) fStatementChildren.size());
return *fStatementChildren[index];
}
std::unique_ptr<Statement>& statementPointer(int index) {
SkASSERT(index >= 0 && index < (int) fStatementChildren.size());
return fStatementChildren[index];
}
const std::unique_ptr<Statement>& statementPointer(int index) const {
SkASSERT(index >= 0 && index < (int) fStatementChildren.size());
return fStatementChildren[index];
}
int statementChildCount() const {
return fStatementChildren.size();
}
BlockData& blockData() {
SkASSERT(fData.fKind == NodeData::Kind::kBlock);
return fData.fContents.fBlock;
}
const BlockData& blockData() const {
SkASSERT(fData.fKind == NodeData::Kind::kBlock);
return fData.fContents.fBlock;
}
const BoolLiteralData& boolLiteralData() const {
SkASSERT(fData.fKind == NodeData::Kind::kBoolLiteral);
return fData.fContents.fBoolLiteral;
}
const EnumData& enumData() const {
SkASSERT(fData.fKind == NodeData::Kind::kEnum);
return fData.fContents.fEnum;
}
const ExternalValueData& externalValueData() const {
SkASSERT(fData.fKind == NodeData::Kind::kExternalValue);
return fData.fContents.fExternalValue;
}
const IntLiteralData& intLiteralData() const {
SkASSERT(fData.fKind == NodeData::Kind::kIntLiteral);
return fData.fContents.fIntLiteral;
}
const String& stringData() const {
SkASSERT(fData.fKind == NodeData::Kind::kString);
return fData.fContents.fString;
}
const Type* typeData() const {
SkASSERT(fData.fKind == NodeData::Kind::kType);
return fData.fContents.fType;
}
const TypeTokenData& typeTokenData() const {
SkASSERT(fData.fKind == NodeData::Kind::kTypeToken);
return fData.fContents.fTypeToken;
}
int fKind;
NodeData fData;
// Needing two separate vectors is a temporary issue. Ideally, we'd just be able to use a single
// vector of nodes, but there are various spots where we take pointers to std::unique_ptr<>,
// and it isn't safe to pun std::unique_ptr<IRNode> to std::unique_ptr<Statement / Expression>.
// And we can't update the call sites to expect std::unique_ptr<IRNode> while there are still
// old-style nodes around.
// When the transition is finished, we'll be able to drop the unique_ptrs and just handle
// <IRNode> directly.
std::vector<std::unique_ptr<Expression>> fExpressionChildren;
// it's important to keep fStatements defined after (and thus destroyed before) fData,
// because destroying statements can modify reference counts in a SymbolTable contained in fData
std::vector<std::unique_ptr<Statement>> fStatementChildren;
};
} // namespace SkSL
#endif