blob: e1c640cf5e095b2f365f3691ecb9fa8518f0635b [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLIRGenerator.h"
#include "limits.h"
#include <iterator>
#include <memory>
#include <unordered_set>
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/SkSLParser.h"
#include "src/sksl/SkSLUtil.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBoolLiteral.h"
#include "src/sksl/ir/SkSLBreakStatement.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLContinueStatement.h"
#include "src/sksl/ir/SkSLDiscardStatement.h"
#include "src/sksl/ir/SkSLDoStatement.h"
#include "src/sksl/ir/SkSLEnum.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLExternalFunctionCall.h"
#include "src/sksl/ir/SkSLExternalValueReference.h"
#include "src/sksl/ir/SkSLField.h"
#include "src/sksl/ir/SkSLFieldAccess.h"
#include "src/sksl/ir/SkSLFloatLiteral.h"
#include "src/sksl/ir/SkSLForStatement.h"
#include "src/sksl/ir/SkSLFunctionCall.h"
#include "src/sksl/ir/SkSLFunctionDeclaration.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLFunctionReference.h"
#include "src/sksl/ir/SkSLIfStatement.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLIntLiteral.h"
#include "src/sksl/ir/SkSLInterfaceBlock.h"
#include "src/sksl/ir/SkSLLayout.h"
#include "src/sksl/ir/SkSLNop.h"
#include "src/sksl/ir/SkSLNullLiteral.h"
#include "src/sksl/ir/SkSLPostfixExpression.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLReturnStatement.h"
#include "src/sksl/ir/SkSLSetting.h"
#include "src/sksl/ir/SkSLSwitchCase.h"
#include "src/sksl/ir/SkSLSwitchStatement.h"
#include "src/sksl/ir/SkSLSwizzle.h"
#include "src/sksl/ir/SkSLTernaryExpression.h"
#include "src/sksl/ir/SkSLUnresolvedFunction.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#include "src/sksl/ir/SkSLVarDeclarationsStatement.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
#include "src/sksl/ir/SkSLWhileStatement.h"
namespace SkSL {
class AutoSymbolTable {
public:
AutoSymbolTable(IRGenerator* ir)
: fIR(ir)
, fPrevious(fIR->fSymbolTable) {
fIR->pushSymbolTable();
}
~AutoSymbolTable() {
fIR->popSymbolTable();
SkASSERT(fPrevious == fIR->fSymbolTable);
}
IRGenerator* fIR;
std::shared_ptr<SymbolTable> fPrevious;
};
class AutoLoopLevel {
public:
AutoLoopLevel(IRGenerator* ir)
: fIR(ir) {
fIR->fLoopLevel++;
}
~AutoLoopLevel() {
fIR->fLoopLevel--;
}
IRGenerator* fIR;
};
class AutoSwitchLevel {
public:
AutoSwitchLevel(IRGenerator* ir)
: fIR(ir) {
fIR->fSwitchLevel++;
}
~AutoSwitchLevel() {
fIR->fSwitchLevel--;
}
IRGenerator* fIR;
};
class AutoDisableInline {
public:
AutoDisableInline(IRGenerator* ir, bool canInline = false)
: fIR(ir) {
fOldCanInline = ir->fCanInline;
fIR->fCanInline &= canInline;
}
~AutoDisableInline() {
fIR->fCanInline = fOldCanInline;
}
IRGenerator* fIR;
bool fOldCanInline;
};
IRGenerator::IRGenerator(const Context* context, Inliner* inliner,
std::shared_ptr<SymbolTable> symbolTable, ErrorReporter& errorReporter)
: fContext(*context)
, fInliner(inliner)
, fCurrentFunction(nullptr)
, fSymbolTable(symbolTable)
, fLoopLevel(0)
, fSwitchLevel(0)
, fErrors(errorReporter) {
SkASSERT(fInliner);
}
void IRGenerator::pushSymbolTable() {
fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable)));
}
void IRGenerator::popSymbolTable() {
fSymbolTable = fSymbolTable->fParent;
}
static void fill_caps(const SkSL::ShaderCapsClass& caps,
std::unordered_map<String, Program::Settings::Value>* capsMap) {
#define CAP(name) \
capsMap->insert(std::make_pair(String(#name), Program::Settings::Value(caps.name())))
CAP(fbFetchSupport);
CAP(fbFetchNeedsCustomOutput);
CAP(flatInterpolationSupport);
CAP(noperspectiveInterpolationSupport);
CAP(externalTextureSupport);
CAP(mustEnableAdvBlendEqs);
CAP(mustEnableSpecificAdvBlendEqs);
CAP(mustDeclareFragmentShaderOutput);
CAP(mustDoOpBetweenFloorAndAbs);
CAP(mustGuardDivisionEvenAfterExplicitZeroCheck);
CAP(inBlendModesFailRandomlyForAllZeroVec);
CAP(atan2ImplementedAsAtanYOverX);
CAP(canUseAnyFunctionInShader);
CAP(floatIs32Bits);
CAP(integerSupport);
#undef CAP
}
void IRGenerator::start(const Program::Settings* settings,
std::shared_ptr<SymbolTable> baseSymbolTable,
std::vector<std::unique_ptr<ProgramElement>>* inherited,
bool isBuiltinCode) {
fSettings = settings;
fSymbolTable = std::move(baseSymbolTable);
fIsBuiltinCode = isBuiltinCode;
fCapsMap.clear();
if (settings->fCaps) {
fill_caps(*settings->fCaps, &fCapsMap);
} else {
fCapsMap.insert(std::make_pair(String("integerSupport"),
Program::Settings::Value(true)));
}
this->pushSymbolTable();
fInvocations = -1;
fInputs.reset();
fSkPerVertex = nullptr;
fRTAdjust = nullptr;
fRTAdjustInterfaceBlock = nullptr;
fTmpSwizzleCounter = 0;
if (inherited) {
for (const auto& e : *inherited) {
if (e->kind() == ProgramElement::Kind::kInterfaceBlock) {
InterfaceBlock& intf = e->as<InterfaceBlock>();
if (intf.fVariable.fName == Compiler::PERVERTEX_NAME) {
SkASSERT(!fSkPerVertex);
fSkPerVertex = &intf.fVariable;
}
}
}
}
SkASSERT(fIntrinsics);
fIntrinsics->resetAlreadyIncluded();
}
std::unique_ptr<Extension> IRGenerator::convertExtension(int offset, StringFragment name) {
if (fKind != Program::kFragment_Kind &&
fKind != Program::kVertex_Kind &&
fKind != Program::kGeometry_Kind) {
fErrors.error(offset, "extensions are not allowed here");
return nullptr;
}
return std::make_unique<Extension>(offset, name);
}
void IRGenerator::finish() {
this->popSymbolTable();
fSettings = nullptr;
}
std::unique_ptr<Statement> IRGenerator::convertSingleStatement(const ASTNode& statement) {
switch (statement.fKind) {
case ASTNode::Kind::kBlock:
return this->convertBlock(statement);
case ASTNode::Kind::kVarDeclarations:
return this->convertVarDeclarationStatement(statement);
case ASTNode::Kind::kIf:
return this->convertIf(statement);
case ASTNode::Kind::kFor:
return this->convertFor(statement);
case ASTNode::Kind::kWhile:
return this->convertWhile(statement);
case ASTNode::Kind::kDo:
return this->convertDo(statement);
case ASTNode::Kind::kSwitch:
return this->convertSwitch(statement);
case ASTNode::Kind::kReturn:
return this->convertReturn(statement);
case ASTNode::Kind::kBreak:
return this->convertBreak(statement);
case ASTNode::Kind::kContinue:
return this->convertContinue(statement);
case ASTNode::Kind::kDiscard:
return this->convertDiscard(statement);
default:
// it's an expression
std::unique_ptr<Statement> result = this->convertExpressionStatement(statement);
if (fRTAdjust && fKind == Program::kGeometry_Kind) {
SkASSERT(result->kind() == Statement::Kind::kExpression);
Expression& expr = *result->as<ExpressionStatement>().expression();
if (expr.kind() == Expression::Kind::kFunctionCall) {
FunctionCall& fc = expr.as<FunctionCall>();
if (fc.fFunction.fBuiltin && fc.fFunction.fName == "EmitVertex") {
std::vector<std::unique_ptr<Statement>> statements;
statements.push_back(getNormalizeSkPositionCode());
statements.push_back(std::move(result));
return std::make_unique<Block>(statement.fOffset, std::move(statements),
fSymbolTable);
}
}
}
return result;
}
}
std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTNode& statement) {
std::vector<std::unique_ptr<Statement>> oldExtraStatements = std::move(fExtraStatements);
std::unique_ptr<Statement> result = this->convertSingleStatement(statement);
if (!result) {
fExtraStatements = std::move(oldExtraStatements);
return nullptr;
}
if (fExtraStatements.size()) {
fExtraStatements.push_back(std::move(result));
std::unique_ptr<Statement> block(new Block(-1, std::move(fExtraStatements), nullptr,
false));
fExtraStatements = std::move(oldExtraStatements);
return block;
}
fExtraStatements = std::move(oldExtraStatements);
return result;
}
std::unique_ptr<Block> IRGenerator::convertBlock(const ASTNode& block) {
SkASSERT(block.fKind == ASTNode::Kind::kBlock);
AutoSymbolTable table(this);
std::vector<std::unique_ptr<Statement>> statements;
for (const auto& child : block) {
std::unique_ptr<Statement> statement = this->convertStatement(child);
if (!statement) {
return nullptr;
}
statements.push_back(std::move(statement));
}
return std::make_unique<Block>(block.fOffset, std::move(statements), fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(const ASTNode& s) {
SkASSERT(s.fKind == ASTNode::Kind::kVarDeclarations);
auto decl = this->convertVarDeclarations(s, Variable::kLocal_Storage);
if (!decl) {
return nullptr;
}
return std::unique_ptr<Statement>(new VarDeclarationsStatement(std::move(decl)));
}
std::unique_ptr<VarDeclarations> IRGenerator::convertVarDeclarations(const ASTNode& decls,
Variable::Storage storage) {
SkASSERT(decls.fKind == ASTNode::Kind::kVarDeclarations);
auto declarationsIter = decls.begin();
const Modifiers& modifiers = declarationsIter++->getModifiers();
const ASTNode& rawType = *(declarationsIter++);
std::vector<std::unique_ptr<VarDeclaration>> variables;
const Type* baseType = this->convertType(rawType);
if (!baseType) {
return nullptr;
}
if (baseType->nonnullable() == *fContext.fFragmentProcessor_Type &&
storage != Variable::kGlobal_Storage) {
fErrors.error(decls.fOffset,
"variables of type '" + baseType->displayName() + "' must be global");
}
if (fKind != Program::kFragmentProcessor_Kind) {
if ((modifiers.fFlags & Modifiers::kIn_Flag) &&
baseType->typeKind() == Type::TypeKind::kMatrix) {
fErrors.error(decls.fOffset, "'in' variables may not have matrix type");
}
if ((modifiers.fFlags & Modifiers::kIn_Flag) &&
(modifiers.fFlags & Modifiers::kUniform_Flag)) {
fErrors.error(decls.fOffset,
"'in uniform' variables only permitted within fragment processors");
}
if (modifiers.fLayout.fWhen.fLength) {
fErrors.error(decls.fOffset, "'when' is only permitted within fragment processors");
}
if (modifiers.fLayout.fFlags & Layout::kTracked_Flag) {
fErrors.error(decls.fOffset, "'tracked' is only permitted within fragment processors");
}
if (modifiers.fLayout.fCType != Layout::CType::kDefault) {
fErrors.error(decls.fOffset, "'ctype' is only permitted within fragment processors");
}
if (modifiers.fLayout.fKey) {
fErrors.error(decls.fOffset, "'key' is only permitted within fragment processors");
}
}
if (fKind == Program::kPipelineStage_Kind) {
if ((modifiers.fFlags & Modifiers::kIn_Flag) &&
baseType->nonnullable() != *fContext.fFragmentProcessor_Type) {
fErrors.error(decls.fOffset, "'in' variables not permitted in runtime effects");
}
}
if (modifiers.fLayout.fKey && (modifiers.fFlags & Modifiers::kUniform_Flag)) {
fErrors.error(decls.fOffset, "'key' is not permitted on 'uniform' variables");
}
if (modifiers.fLayout.fMarker.fLength) {
if (fKind != Program::kPipelineStage_Kind) {
fErrors.error(decls.fOffset, "'marker' is only permitted in runtime effects");
}
if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) {
fErrors.error(decls.fOffset, "'marker' is only permitted on 'uniform' variables");
}
if (*baseType != *fContext.fFloat4x4_Type) {
fErrors.error(decls.fOffset, "'marker' is only permitted on float4x4 variables");
}
}
if (modifiers.fLayout.fFlags & Layout::kSRGBUnpremul_Flag) {
if (fKind != Program::kPipelineStage_Kind) {
fErrors.error(decls.fOffset, "'srgb_unpremul' is only permitted in runtime effects");
}
if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) {
fErrors.error(decls.fOffset,
"'srgb_unpremul' is only permitted on 'uniform' variables");
}
auto validColorXformType = [](const Type& t) {
return t.typeKind() == Type::TypeKind::kVector && t.componentType().isFloat() &&
(t.columns() == 3 || t.columns() == 4);
};
if (!validColorXformType(*baseType) && !(baseType->typeKind() == Type::TypeKind::kArray &&
validColorXformType(baseType->componentType()))) {
fErrors.error(decls.fOffset,
"'srgb_unpremul' is only permitted on half3, half4, float3, or float4 "
"variables");
}
}
if (modifiers.fFlags & Modifiers::kVarying_Flag) {
if (fKind != Program::kPipelineStage_Kind) {
fErrors.error(decls.fOffset, "'varying' is only permitted in runtime effects");
}
if (!baseType->isFloat() &&
!(baseType->typeKind() == Type::TypeKind::kVector &&
baseType->componentType().isFloat())) {
fErrors.error(decls.fOffset, "'varying' must be float scalar or vector");
}
}
int permitted = Modifiers::kConst_Flag;
if (storage == Variable::kGlobal_Storage) {
permitted |= Modifiers::kIn_Flag | Modifiers::kOut_Flag | Modifiers::kUniform_Flag |
Modifiers::kFlat_Flag | Modifiers::kVarying_Flag |
Modifiers::kNoPerspective_Flag | Modifiers::kPLS_Flag |
Modifiers::kPLSIn_Flag | Modifiers::kPLSOut_Flag |
Modifiers::kRestrict_Flag | Modifiers::kVolatile_Flag |
Modifiers::kReadOnly_Flag | Modifiers::kWriteOnly_Flag |
Modifiers::kCoherent_Flag | Modifiers::kBuffer_Flag;
}
this->checkModifiers(decls.fOffset, modifiers, permitted);
for (; declarationsIter != decls.end(); ++declarationsIter) {
const ASTNode& varDecl = *declarationsIter;
if (modifiers.fLayout.fLocation == 0 && modifiers.fLayout.fIndex == 0 &&
(modifiers.fFlags & Modifiers::kOut_Flag) && fKind == Program::kFragment_Kind &&
varDecl.getVarData().fName != "sk_FragColor") {
fErrors.error(varDecl.fOffset,
"out location=0, index=0 is reserved for sk_FragColor");
}
const ASTNode::VarData& varData = varDecl.getVarData();
const Type* type = baseType;
std::vector<std::unique_ptr<Expression>> sizes;
auto iter = varDecl.begin();
for (size_t i = 0; i < varData.fSizeCount; ++i, ++iter) {
const ASTNode& rawSize = *iter;
if (rawSize) {
auto size = this->coerce(this->convertExpression(rawSize), *fContext.fInt_Type);
if (!size) {
return nullptr;
}
String name(type->fName);
int64_t count;
if (size->kind() == Expression::Kind::kIntLiteral) {
count = size->as<IntLiteral>().value();
if (count <= 0) {
fErrors.error(size->fOffset, "array size must be positive");
return nullptr;
}
name += "[" + to_string(count) + "]";
} else {
fErrors.error(size->fOffset, "array size must be specified");
return nullptr;
}
type = fSymbolTable->takeOwnershipOfSymbol(
std::make_unique<Type>(name, Type::TypeKind::kArray, *type, (int)count));
sizes.push_back(std::move(size));
} else {
type = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Type>(
type->name() + "[]", Type::TypeKind::kArray, *type, /*columns=*/-1));
sizes.push_back(nullptr);
}
}
auto var = std::make_unique<Variable>(varDecl.fOffset, modifiers, varData.fName, type,
fIsBuiltinCode, storage);
if (var->fName == Compiler::RTADJUST_NAME) {
SkASSERT(!fRTAdjust);
SkASSERT(var->type() == *fContext.fFloat4_Type);
fRTAdjust = var.get();
}
std::unique_ptr<Expression> value;
if (iter != varDecl.end()) {
value = this->convertExpression(*iter);
if (!value) {
return nullptr;
}
value = this->coerce(std::move(value), *type);
if (!value) {
return nullptr;
}
var->fWriteCount = 1;
var->fInitialValue = value.get();
}
const Symbol* symbol = (*fSymbolTable)[var->fName];
if (symbol && storage == Variable::kGlobal_Storage && var->fName == "sk_FragColor") {
// Already defined, ignore.
} else if (symbol && storage == Variable::kGlobal_Storage &&
symbol->kind() == Symbol::Kind::kVariable &&
symbol->as<Variable>().fModifiers.fLayout.fBuiltin >= 0) {
// Already defined, just update the modifiers.
symbol->as<Variable>().fModifiers = var->fModifiers;
} else {
variables.emplace_back(std::make_unique<VarDeclaration>(var.get(), std::move(sizes),
std::move(value)));
StringFragment name = var->fName;
fSymbolTable->add(name, std::move(var));
}
}
return std::make_unique<VarDeclarations>(decls.fOffset, baseType, std::move(variables));
}
std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration(const ASTNode& m) {
if (fKind != Program::kFragment_Kind &&
fKind != Program::kVertex_Kind &&
fKind != Program::kGeometry_Kind) {
fErrors.error(m.fOffset, "layout qualifiers are not allowed here");
return nullptr;
}
SkASSERT(m.fKind == ASTNode::Kind::kModifiers);
Modifiers modifiers = m.getModifiers();
if (modifiers.fLayout.fInvocations != -1) {
if (fKind != Program::kGeometry_Kind) {
fErrors.error(m.fOffset, "'invocations' is only legal in geometry shaders");
return nullptr;
}
fInvocations = modifiers.fLayout.fInvocations;
if (fSettings->fCaps && !fSettings->fCaps->gsInvocationsSupport()) {
modifiers.fLayout.fInvocations = -1;
const Variable& invocationId = (*fSymbolTable)["sk_InvocationID"]->as<Variable>();
invocationId.fModifiers.fFlags = 0;
invocationId.fModifiers.fLayout.fBuiltin = -1;
if (modifiers.fLayout.description() == "") {
return nullptr;
}
}
}
if (modifiers.fLayout.fMaxVertices != -1 && fInvocations > 0 && fSettings->fCaps &&
!fSettings->fCaps->gsInvocationsSupport()) {
modifiers.fLayout.fMaxVertices *= fInvocations;
}
return std::make_unique<ModifiersDeclaration>(modifiers);
}
std::unique_ptr<Statement> IRGenerator::convertIf(const ASTNode& n) {
SkASSERT(n.fKind == ASTNode::Kind::kIf);
auto iter = n.begin();
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*(iter++)),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> ifTrue = this->convertStatement(*(iter++));
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Statement> ifFalse;
if (iter != n.end()) {
ifFalse = this->convertStatement(*(iter++));
if (!ifFalse) {
return nullptr;
}
}
if (test->kind() == Expression::Kind::kBoolLiteral) {
// static boolean value, fold down to a single branch
if (test->as<BoolLiteral>().value()) {
return ifTrue;
} else if (ifFalse) {
return ifFalse;
} else {
// False & no else clause. Not an error, so don't return null!
return std::make_unique<Nop>();
}
}
auto ifStmt = std::make_unique<IfStatement>(n.fOffset, n.getBool(), std::move(test),
std::move(ifTrue), std::move(ifFalse));
fInliner->ensureScopedBlocks(ifStmt->fIfTrue.get(), ifStmt.get());
fInliner->ensureScopedBlocks(ifStmt->fIfFalse.get(), ifStmt.get());
return std::move(ifStmt);
}
std::unique_ptr<Statement> IRGenerator::convertFor(const ASTNode& f) {
SkASSERT(f.fKind == ASTNode::Kind::kFor);
AutoLoopLevel level(this);
AutoSymbolTable table(this);
std::unique_ptr<Statement> initializer;
auto iter = f.begin();
if (*iter) {
initializer = this->convertStatement(*iter);
if (!initializer) {
return nullptr;
}
}
++iter;
std::unique_ptr<Expression> test;
if (*iter) {
AutoDisableInline disableInline(this);
test = this->coerce(this->convertExpression(*iter), *fContext.fBool_Type);
if (!test) {
return nullptr;
}
}
++iter;
std::unique_ptr<Expression> next;
if (*iter) {
AutoDisableInline disableInline(this);
next = this->convertExpression(*iter);
if (!next) {
return nullptr;
}
}
++iter;
std::unique_ptr<Statement> statement = this->convertStatement(*iter);
if (!statement) {
return nullptr;
}
auto forStmt = std::make_unique<ForStatement>(f.fOffset, std::move(initializer),
std::move(test), std::move(next),
std::move(statement), fSymbolTable);
fInliner->ensureScopedBlocks(forStmt->fStatement.get(), forStmt.get());
return std::move(forStmt);
}
std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTNode& w) {
SkASSERT(w.fKind == ASTNode::Kind::kWhile);
AutoLoopLevel level(this);
std::unique_ptr<Expression> test;
auto iter = w.begin();
{
AutoDisableInline disableInline(this);
test = this->coerce(this->convertExpression(*(iter++)), *fContext.fBool_Type);
}
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> statement = this->convertStatement(*(iter++));
if (!statement) {
return nullptr;
}
auto whileStmt = std::make_unique<WhileStatement>(w.fOffset, std::move(test),
std::move(statement));
fInliner->ensureScopedBlocks(whileStmt->fStatement.get(), whileStmt.get());
return std::move(whileStmt);
}
std::unique_ptr<Statement> IRGenerator::convertDo(const ASTNode& d) {
SkASSERT(d.fKind == ASTNode::Kind::kDo);
AutoLoopLevel level(this);
auto iter = d.begin();
std::unique_ptr<Statement> statement = this->convertStatement(*(iter++));
if (!statement) {
return nullptr;
}
std::unique_ptr<Expression> test;
{
AutoDisableInline disableInline(this);
test = this->coerce(this->convertExpression(*(iter++)), *fContext.fBool_Type);
}
if (!test) {
return nullptr;
}
auto doStmt = std::make_unique<DoStatement>(d.fOffset, std::move(statement), std::move(test));
fInliner->ensureScopedBlocks(doStmt->statement().get(), doStmt.get());
return std::move(doStmt);
}
std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTNode& s) {
SkASSERT(s.fKind == ASTNode::Kind::kSwitch);
AutoSwitchLevel level(this);
auto iter = s.begin();
std::unique_ptr<Expression> value = this->convertExpression(*(iter++));
if (!value) {
return nullptr;
}
if (value->type() != *fContext.fUInt_Type &&
value->type().typeKind() != Type::TypeKind::kEnum) {
value = this->coerce(std::move(value), *fContext.fInt_Type);
if (!value) {
return nullptr;
}
}
AutoSymbolTable table(this);
std::unordered_set<int> caseValues;
std::vector<std::unique_ptr<SwitchCase>> cases;
for (; iter != s.end(); ++iter) {
const ASTNode& c = *iter;
SkASSERT(c.fKind == ASTNode::Kind::kSwitchCase);
std::unique_ptr<Expression> caseValue;
auto childIter = c.begin();
if (*childIter) {
caseValue = this->convertExpression(*childIter);
if (!caseValue) {
return nullptr;
}
caseValue = this->coerce(std::move(caseValue), value->type());
if (!caseValue) {
return nullptr;
}
int64_t v = 0;
if (!this->getConstantInt(*caseValue, &v)) {
fErrors.error(caseValue->fOffset, "case value must be a constant integer");
return nullptr;
}
if (caseValues.find(v) != caseValues.end()) {
fErrors.error(caseValue->fOffset, "duplicate case value");
}
caseValues.insert(v);
}
++childIter;
std::vector<std::unique_ptr<Statement>> statements;
for (; childIter != c.end(); ++childIter) {
std::unique_ptr<Statement> converted = this->convertStatement(*childIter);
if (!converted) {
return nullptr;
}
statements.push_back(std::move(converted));
}
cases.emplace_back(new SwitchCase(c.fOffset, std::move(caseValue),
std::move(statements)));
}
return std::unique_ptr<Statement>(new SwitchStatement(s.fOffset, s.getBool(),
std::move(value), std::move(cases),
fSymbolTable));
}
std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(const ASTNode& s) {
std::unique_ptr<Expression> e = this->convertExpression(s);
if (!e) {
return nullptr;
}
return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e)));
}
std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTNode& r) {
SkASSERT(r.fKind == ASTNode::Kind::kReturn);
SkASSERT(fCurrentFunction);
// early returns from a vertex main function will bypass the sk_Position normalization, so
// SkASSERT that we aren't doing that. It is of course possible to fix this by adding a
// normalization before each return, but it will probably never actually be necessary.
SkASSERT(Program::kVertex_Kind != fKind || !fRTAdjust || "main" != fCurrentFunction->fName);
if (r.begin() != r.end()) {
std::unique_ptr<Expression> result = this->convertExpression(*r.begin());
if (!result) {
return nullptr;
}
if (fCurrentFunction->fReturnType == *fContext.fVoid_Type) {
fErrors.error(result->fOffset, "may not return a value from a void function");
return nullptr;
} else {
result = this->coerce(std::move(result), fCurrentFunction->fReturnType);
if (!result) {
return nullptr;
}
}
return std::unique_ptr<Statement>(new ReturnStatement(std::move(result)));
} else {
if (fCurrentFunction->fReturnType != *fContext.fVoid_Type) {
fErrors.error(r.fOffset, "expected function to return '" +
fCurrentFunction->fReturnType.displayName() + "'");
}
return std::unique_ptr<Statement>(new ReturnStatement(r.fOffset));
}
}
std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTNode& b) {
SkASSERT(b.fKind == ASTNode::Kind::kBreak);
if (fLoopLevel > 0 || fSwitchLevel > 0) {
return std::make_unique<BreakStatement>(b.fOffset);
} else {
fErrors.error(b.fOffset, "break statement must be inside a loop or switch");
return nullptr;
}
}
std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTNode& c) {
SkASSERT(c.fKind == ASTNode::Kind::kContinue);
if (fLoopLevel > 0) {
return std::make_unique<ContinueStatement>(c.fOffset);
} else {
fErrors.error(c.fOffset, "continue statement must be inside a loop");
return nullptr;
}
}
std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTNode& d) {
SkASSERT(d.fKind == ASTNode::Kind::kDiscard);
return std::make_unique<DiscardStatement>(d.fOffset);
}
std::unique_ptr<Block> IRGenerator::applyInvocationIDWorkaround(std::unique_ptr<Block> main) {
Layout invokeLayout;
Modifiers invokeModifiers(invokeLayout, Modifiers::kHasSideEffects_Flag);
const FunctionDeclaration* invokeDecl = fSymbolTable->add(
"_invoke", std::make_unique<FunctionDeclaration>(/*offset=*/-1,
invokeModifiers,
"_invoke",
std::vector<const Variable*>(),
*fContext.fVoid_Type,
/*builtin=*/false));
fProgramElements->push_back(std::make_unique<FunctionDefinition>(/*offset=*/-1,
*invokeDecl,
std::move(main)));
std::vector<std::unique_ptr<VarDeclaration>> variables;
const Variable* loopIdx = &(*fSymbolTable)["sk_InvocationID"]->as<Variable>();
std::unique_ptr<Expression> test(new BinaryExpression(-1,
std::unique_ptr<Expression>(new VariableReference(-1, loopIdx)),
Token::Kind::TK_LT,
std::make_unique<IntLiteral>(fContext, -1, fInvocations),
fContext.fBool_Type.get()));
std::unique_ptr<Expression> next(new PostfixExpression(
std::unique_ptr<Expression>(
new VariableReference(-1,
loopIdx,
VariableReference::kReadWrite_RefKind)),
Token::Kind::TK_PLUSPLUS));
ASTNode endPrimitiveID(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier, "EndPrimitive");
std::unique_ptr<Expression> endPrimitive = this->convertExpression(endPrimitiveID);
SkASSERT(endPrimitive);
std::vector<std::unique_ptr<Statement>> loopBody;
std::vector<std::unique_ptr<Expression>> invokeArgs;
loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement(
this->call(-1,
*invokeDecl,
std::vector<std::unique_ptr<Expression>>()))));
loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement(
this->call(-1,
std::move(endPrimitive),
std::vector<std::unique_ptr<Expression>>()))));
std::unique_ptr<Expression> assignment(new BinaryExpression(-1,
std::unique_ptr<Expression>(new VariableReference(-1, loopIdx,
VariableReference::kWrite_RefKind)),
Token::Kind::TK_EQ,
std::make_unique<IntLiteral>(fContext, -1, 0),
fContext.fInt_Type.get()));
std::unique_ptr<Statement> initializer(new ExpressionStatement(std::move(assignment)));
std::unique_ptr<Statement> loop = std::unique_ptr<Statement>(
new ForStatement(-1,
std::move(initializer),
std::move(test),
std::move(next),
std::make_unique<Block>(-1, std::move(loopBody)),
fSymbolTable));
std::vector<std::unique_ptr<Statement>> children;
children.push_back(std::move(loop));
return std::make_unique<Block>(-1, std::move(children));
}
std::unique_ptr<Statement> IRGenerator::getNormalizeSkPositionCode() {
// sk_Position = float4(sk_Position.xy * rtAdjust.xz + sk_Position.ww * rtAdjust.yw,
// 0,
// sk_Position.w);
SkASSERT(fSkPerVertex && fRTAdjust);
#define REF(var) std::unique_ptr<Expression>(\
new VariableReference(-1, var, VariableReference::kRead_RefKind))
#define WREF(var) std::unique_ptr<Expression>(\
new VariableReference(-1, var, VariableReference::kWrite_RefKind))
#define FIELD(var, idx) std::unique_ptr<Expression>(\
new FieldAccess(REF(var), idx, FieldAccess::kAnonymousInterfaceBlock_OwnerKind))
#define POS std::unique_ptr<Expression>(new FieldAccess(WREF(fSkPerVertex), 0, \
FieldAccess::kAnonymousInterfaceBlock_OwnerKind))
#define ADJUST (fRTAdjustInterfaceBlock ? \
FIELD(fRTAdjustInterfaceBlock, fRTAdjustFieldIndex) : \
REF(fRTAdjust))
#define SWIZZLE(expr, ...) std::unique_ptr<Expression>(new Swizzle(fContext, expr, \
{ __VA_ARGS__ }))
#define OP(left, op, right) std::unique_ptr<Expression>( \
new BinaryExpression(-1, left, op, right, \
fContext.fFloat2_Type.get()))
std::vector<std::unique_ptr<Expression>> children;
children.push_back(OP(OP(SWIZZLE(POS, 0, 1), Token::Kind::TK_STAR, SWIZZLE(ADJUST, 0, 2)),
Token::Kind::TK_PLUS,
OP(SWIZZLE(POS, 3, 3), Token::Kind::TK_STAR, SWIZZLE(ADJUST, 1, 3))));
children.push_back(std::unique_ptr<Expression>(new FloatLiteral(fContext, -1, 0.0)));
children.push_back(SWIZZLE(POS, 3));
std::unique_ptr<Expression> result = OP(POS, Token::Kind::TK_EQ,
std::unique_ptr<Expression>(new Constructor(
-1,
fContext.fFloat4_Type.get(),
std::move(children))));
return std::unique_ptr<Statement>(new ExpressionStatement(std::move(result)));
}
template<typename T>
class AutoClear {
public:
AutoClear(T* container)
: fContainer(container) {
SkASSERT(container->empty());
}
~AutoClear() {
fContainer->clear();
}
private:
T* fContainer;
};
template <typename T> AutoClear(T* c) -> AutoClear<T>;
void IRGenerator::checkModifiers(int offset, const Modifiers& modifiers, int permitted) {
int flags = modifiers.fFlags;
#define CHECK(flag, name) \
if (!flags) return; \
if (flags & flag) { \
if (!(permitted & flag)) { \
fErrors.error(offset, "'" name "' is not permitted here"); \
} \
flags &= ~flag; \
}
CHECK(Modifiers::kConst_Flag, "const")
CHECK(Modifiers::kIn_Flag, "in")
CHECK(Modifiers::kOut_Flag, "out")
CHECK(Modifiers::kUniform_Flag, "uniform")
CHECK(Modifiers::kFlat_Flag, "flat")
CHECK(Modifiers::kNoPerspective_Flag, "noperspective")
CHECK(Modifiers::kReadOnly_Flag, "readonly")
CHECK(Modifiers::kWriteOnly_Flag, "writeonly")
CHECK(Modifiers::kCoherent_Flag, "coherent")
CHECK(Modifiers::kVolatile_Flag, "volatile")
CHECK(Modifiers::kRestrict_Flag, "restrict")
CHECK(Modifiers::kBuffer_Flag, "buffer")
CHECK(Modifiers::kHasSideEffects_Flag, "sk_has_side_effects")
CHECK(Modifiers::kPLS_Flag, "__pixel_localEXT")
CHECK(Modifiers::kPLSIn_Flag, "__pixel_local_inEXT")
CHECK(Modifiers::kPLSOut_Flag, "__pixel_local_outEXT")
CHECK(Modifiers::kVarying_Flag, "varying")
CHECK(Modifiers::kInline_Flag, "inline")
SkASSERT(flags == 0);
}
void IRGenerator::convertFunction(const ASTNode& f) {
AutoClear clear(&fReferencedIntrinsics);
auto iter = f.begin();
const Type* returnType = this->convertType(*(iter++), /*allowVoid=*/true);
if (returnType == nullptr) {
return;
}
auto type_is_allowed = [&](const Type* t) {
#if defined(SKSL_STANDALONE)
return true;
#else
GrSLType unusedSLType;
return fKind != Program::kPipelineStage_Kind ||
type_to_grsltype(fContext, *t, &unusedSLType);
#endif
};
if (returnType->nonnullable() == *fContext.fFragmentProcessor_Type ||
!type_is_allowed(returnType)) {
fErrors.error(f.fOffset,
"functions may not return type '" + returnType->displayName() + "'");
return;
}
const ASTNode::FunctionData& funcData = f.getFunctionData();
this->checkModifiers(f.fOffset, funcData.fModifiers, Modifiers::kHasSideEffects_Flag |
Modifiers::kInline_Flag);
std::vector<const Variable*> parameters;
for (size_t i = 0; i < funcData.fParameterCount; ++i) {
const ASTNode& param = *(iter++);
SkASSERT(param.fKind == ASTNode::Kind::kParameter);
ASTNode::ParameterData pd = param.getParameterData();
this->checkModifiers(param.fOffset, pd.fModifiers, Modifiers::kIn_Flag |
Modifiers::kOut_Flag);
auto paramIter = param.begin();
const Type* type = this->convertType(*(paramIter++));
if (!type) {
return;
}
for (int j = (int) pd.fSizeCount; j >= 1; j--) {
int size = (param.begin() + j)->getInt();
String name = type->name() + "[" + to_string(size) + "]";
type = fSymbolTable->takeOwnershipOfSymbol(
std::make_unique<Type>(std::move(name), Type::TypeKind::kArray, *type, size));
}
// Only the (builtin) declarations of 'sample' are allowed to have FP parameters
if ((type->nonnullable() == *fContext.fFragmentProcessor_Type && !fIsBuiltinCode) ||
!type_is_allowed(type)) {
fErrors.error(param.fOffset,
"parameters of type '" + type->displayName() + "' not allowed");
return;
}
StringFragment name = pd.fName;
const Variable* var = fSymbolTable->takeOwnershipOfSymbol(
std::make_unique<Variable>(param.fOffset, pd.fModifiers, name, type,
fIsBuiltinCode, Variable::kParameter_Storage));
parameters.push_back(var);
}
auto paramIsCoords = [&](int idx) {
return parameters[idx]->type() == *fContext.fFloat2_Type &&
parameters[idx]->fModifiers.fFlags == 0;
};
if (funcData.fName == "main") {
switch (fKind) {
case Program::kPipelineStage_Kind: {
// half4 main() -or- half4 main(float2)
bool valid = (*returnType == *fContext.fHalf4_Type) &&
((parameters.size() == 0) ||
(parameters.size() == 1 && paramIsCoords(0)));
if (!valid) {
fErrors.error(f.fOffset, "pipeline stage 'main' must be declared "
"half4 main() or half4 main(float2)");
return;
}
break;
}
case Program::kFragmentProcessor_Kind: {
bool valid = (parameters.size() == 0) ||
(parameters.size() == 1 && paramIsCoords(0));
if (!valid) {
fErrors.error(f.fOffset, ".fp 'main' must be declared main() or main(float2)");
return;
}
break;
}
case Program::kGeneric_Kind:
break;
default:
if (parameters.size()) {
fErrors.error(f.fOffset, "shader 'main' must have zero parameters");
}
}
}
// find existing declaration
const FunctionDeclaration* decl = nullptr;
const Symbol* entry = (*fSymbolTable)[funcData.fName];
if (entry) {
std::vector<const FunctionDeclaration*> functions;
switch (entry->kind()) {
case Symbol::Kind::kUnresolvedFunction:
functions = entry->as<UnresolvedFunction>().fFunctions;
break;
case Symbol::Kind::kFunctionDeclaration:
functions.push_back(&entry->as<FunctionDeclaration>());
break;
default:
fErrors.error(f.fOffset, "symbol '" + funcData.fName + "' was already defined");
return;
}
for (const FunctionDeclaration* other : functions) {
SkASSERT(other->fName == funcData.fName);
if (parameters.size() == other->fParameters.size()) {
bool match = true;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->type() != other->fParameters[i]->type()) {
match = false;
break;
}
}
if (match) {
if (*returnType != other->fReturnType) {
FunctionDeclaration newDecl(f.fOffset, funcData.fModifiers, funcData.fName,
parameters, *returnType, fIsBuiltinCode);
fErrors.error(f.fOffset, "functions '" + newDecl.description() +
"' and '" + other->description() +
"' differ only in return type");
return;
}
decl = other;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->fModifiers != other->fParameters[i]->fModifiers) {
fErrors.error(f.fOffset, "modifiers on parameter " +
to_string((uint64_t) i + 1) +
" differ between declaration and definition");
return;
}
}
if (other->fDefinition && !other->fBuiltin) {
fErrors.error(f.fOffset, "duplicate definition of " + other->description());
}
break;
}
}
}
}
if (!decl) {
// Conservatively assume all user-defined functions have side effects.
Modifiers declModifiers = funcData.fModifiers;
if (!fIsBuiltinCode) {
declModifiers.fFlags |= Modifiers::kHasSideEffects_Flag;
}
// Create a new declaration.
decl = fSymbolTable->add(funcData.fName,
std::make_unique<FunctionDeclaration>(f.fOffset,
declModifiers,
funcData.fName,
parameters,
*returnType,
fIsBuiltinCode));
}
if (iter != f.end()) {
// compile body
SkASSERT(!fCurrentFunction);
fCurrentFunction = decl;
std::shared_ptr<SymbolTable> old = fSymbolTable;
AutoSymbolTable table(this);
if (funcData.fName == "main" && (fKind == Program::kPipelineStage_Kind ||
fKind == Program::kFragmentProcessor_Kind)) {
if (parameters.size() == 1) {
SkASSERT(paramIsCoords(0));
parameters[0]->fModifiers.fLayout.fBuiltin = SK_MAIN_COORDS_BUILTIN;
}
}
for (size_t i = 0; i < parameters.size(); i++) {
fSymbolTable->addWithoutOwnership(parameters[i]->fName, decl->fParameters[i]);
}
bool needInvocationIDWorkaround = fInvocations != -1 && funcData.fName == "main" &&
fSettings->fCaps &&
!fSettings->fCaps->gsInvocationsSupport();
std::unique_ptr<Block> body = this->convertBlock(*iter);
fCurrentFunction = nullptr;
if (!body) {
return;
}
if (needInvocationIDWorkaround) {
body = this->applyInvocationIDWorkaround(std::move(body));
}
if (Program::kVertex_Kind == fKind && funcData.fName == "main" && fRTAdjust) {
body->children().push_back(this->getNormalizeSkPositionCode());
}
auto result = std::make_unique<FunctionDefinition>(f.fOffset, *decl, std::move(body),
std::move(fReferencedIntrinsics));
decl->fDefinition = result.get();
result->fSource = &f;
fProgramElements->push_back(std::move(result));
}
}
std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTNode& intf) {
if (fKind != Program::kFragment_Kind &&
fKind != Program::kVertex_Kind &&
fKind != Program::kGeometry_Kind) {
fErrors.error(intf.fOffset, "interface block is not allowed here");
return nullptr;
}
SkASSERT(intf.fKind == ASTNode::Kind::kInterfaceBlock);
ASTNode::InterfaceBlockData id = intf.getInterfaceBlockData();
std::shared_ptr<SymbolTable> old = fSymbolTable;
this->pushSymbolTable();
std::shared_ptr<SymbolTable> symbols = fSymbolTable;
std::vector<Type::Field> fields;
bool haveRuntimeArray = false;
bool foundRTAdjust = false;
auto iter = intf.begin();
for (size_t i = 0; i < id.fDeclarationCount; ++i) {
std::unique_ptr<VarDeclarations> decl = this->convertVarDeclarations(
*(iter++),
Variable::kInterfaceBlock_Storage);
if (!decl) {
return nullptr;
}
for (const auto& stmt : decl->fVars) {
VarDeclaration& vd = stmt->as<VarDeclaration>();
if (haveRuntimeArray) {
fErrors.error(decl->fOffset,
"only the last entry in an interface block may be a runtime-sized "
"array");
}
if (vd.fVar == fRTAdjust) {
foundRTAdjust = true;
SkASSERT(vd.fVar->type() == *fContext.fFloat4_Type);
fRTAdjustFieldIndex = fields.size();
}
fields.push_back(Type::Field(vd.fVar->fModifiers, vd.fVar->fName,
&vd.fVar->type()));
if (vd.fValue) {
fErrors.error(decl->fOffset,
"initializers are not permitted on interface block fields");
}
if (vd.fVar->type().typeKind() == Type::TypeKind::kArray &&
vd.fVar->type().columns() == -1) {
haveRuntimeArray = true;
}
}
}
this->popSymbolTable();
const Type* type =
old->takeOwnershipOfSymbol(std::make_unique<Type>(intf.fOffset, id.fTypeName, fields));
std::vector<std::unique_ptr<Expression>> sizes;
for (size_t i = 0; i < id.fSizeCount; ++i) {
const ASTNode& size = *(iter++);
if (size) {
std::unique_ptr<Expression> converted = this->convertExpression(size);
if (!converted) {
return nullptr;
}
String name = type->fName;
int64_t count;
if (converted->kind() == Expression::Kind::kIntLiteral) {
count = converted->as<IntLiteral>().value();
if (count <= 0) {
fErrors.error(converted->fOffset, "array size must be positive");
return nullptr;
}
name += "[" + to_string(count) + "]";
} else {
fErrors.error(intf.fOffset, "array size must be specified");
return nullptr;
}
type = symbols->takeOwnershipOfSymbol(
std::make_unique<Type>(name, Type::TypeKind::kArray, *type, (int)count));
sizes.push_back(std::move(converted));
} else {
fErrors.error(intf.fOffset, "array size must be specified");
return nullptr;
}
}
const Variable* var = old->takeOwnershipOfSymbol(
std::make_unique<Variable>(intf.fOffset,
id.fModifiers,
id.fInstanceName.fLength ? id.fInstanceName : id.fTypeName,
type,
fIsBuiltinCode,
Variable::kGlobal_Storage));
if (foundRTAdjust) {
fRTAdjustInterfaceBlock = var;
}
if (id.fInstanceName.fLength) {
old->addWithoutOwnership(id.fInstanceName, var);
} else {
for (size_t i = 0; i < fields.size(); i++) {
old->add(fields[i].fName, std::make_unique<Field>(intf.fOffset, *var, (int)i));
}
}
return std::make_unique<InterfaceBlock>(intf.fOffset,
var,
id.fTypeName,
id.fInstanceName,
std::move(sizes),
symbols);
}
bool IRGenerator::getConstantInt(const Expression& value, int64_t* out) {
switch (value.kind()) {
case Expression::Kind::kIntLiteral:
*out = value.as<IntLiteral>().value();
return true;
case Expression::Kind::kVariableReference: {
const Variable& var = *value.as<VariableReference>().fVariable;
return (var.fModifiers.fFlags & Modifiers::kConst_Flag) &&
var.fInitialValue &&
this->getConstantInt(*var.fInitialValue, out);
}
default:
return false;
}
}
void IRGenerator::convertEnum(const ASTNode& e) {
if (fKind == Program::kPipelineStage_Kind) {
fErrors.error(e.fOffset, "enum is not allowed here");
return;
}
SkASSERT(e.fKind == ASTNode::Kind::kEnum);
int64_t currentValue = 0;
Layout layout;
ASTNode enumType(e.fNodes, e.fOffset, ASTNode::Kind::kType,
ASTNode::TypeData(e.getString(), false, false));
const Type* type = this->convertType(enumType);
Modifiers modifiers(layout, Modifiers::kConst_Flag);
std::shared_ptr<SymbolTable> oldTable = fSymbolTable;
fSymbolTable = std::make_shared<SymbolTable>(fSymbolTable);
for (auto iter = e.begin(); iter != e.end(); ++iter) {
const ASTNode& child = *iter;
SkASSERT(child.fKind == ASTNode::Kind::kEnumCase);
std::unique_ptr<Expression> value;
if (child.begin() != child.end()) {
value = this->convertExpression(*child.begin());
if (!value) {
fSymbolTable = oldTable;
return;
}
if (!this->getConstantInt(*value, &currentValue)) {
fErrors.error(value->fOffset, "enum value must be a constant integer");
fSymbolTable = oldTable;
return;
}
}
value = std::unique_ptr<Expression>(new IntLiteral(fContext, e.fOffset, currentValue));
++currentValue;
fSymbolTable->add(
child.getString(),
std::make_unique<Variable>(e.fOffset, modifiers, child.getString(), type,
fIsBuiltinCode, Variable::kGlobal_Storage, value.get()));
fSymbolTable->takeOwnershipOfIRNode(std::move(value));
}
// Now we orphanize the Enum's symbol table, so that future lookups in it are strict
fSymbolTable->fParent = nullptr;
fProgramElements->push_back(std::unique_ptr<ProgramElement>(
new Enum(e.fOffset, e.getString(), fSymbolTable, fIsBuiltinCode)));
fSymbolTable = oldTable;
}
const Type* IRGenerator::convertType(const ASTNode& type, bool allowVoid) {
ASTNode::TypeData td = type.getTypeData();
const Symbol* result = (*fSymbolTable)[td.fName];
if (result && result->is<Type>()) {
if (td.fIsNullable) {
if (result->as<Type>() == *fContext.fFragmentProcessor_Type) {
if (type.begin() != type.end()) {
fErrors.error(type.fOffset, "type '" + td.fName + "' may not be used in "
"an array");
}
result = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Type>(
String(result->fName) + "?", Type::TypeKind::kNullable, result->as<Type>()));
} else {
fErrors.error(type.fOffset, "type '" + td.fName + "' may not be nullable");
}
}
if (result->as<Type>() == *fContext.fVoid_Type) {
if (!allowVoid) {
fErrors.error(type.fOffset, "type '" + td.fName + "' not allowed in this context");
return nullptr;
}
if (type.begin() != type.end()) {
fErrors.error(type.fOffset, "type '" + td.fName + "' may not be used in an array");
return nullptr;
}
}
for (const auto& size : type) {
String name(result->fName);
name += "[";
if (size) {
name += to_string(size.getInt());
}
name += "]";
result = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Type>(
name, Type::TypeKind::kArray, result->as<Type>(), size ? size.getInt() : 0));
}
return &result->as<Type>();
}
fErrors.error(type.fOffset, "unknown type '" + td.fName + "'");
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTNode& expr) {
switch (expr.fKind) {
case ASTNode::Kind::kBinary:
return this->convertBinaryExpression(expr);
case ASTNode::Kind::kBool:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, expr.fOffset,
expr.getBool()));
case ASTNode::Kind::kCall:
return this->convertCallExpression(expr);
case ASTNode::Kind::kField:
return this->convertFieldExpression(expr);
case ASTNode::Kind::kFloat:
return std::unique_ptr<Expression>(new FloatLiteral(fContext, expr.fOffset,
expr.getFloat()));
case ASTNode::Kind::kIdentifier:
return this->convertIdentifier(expr);
case ASTNode::Kind::kIndex:
return this->convertIndexExpression(expr);
case ASTNode::Kind::kInt:
return std::unique_ptr<Expression>(new IntLiteral(fContext, expr.fOffset,
expr.getInt()));
case ASTNode::Kind::kNull:
return std::unique_ptr<Expression>(new NullLiteral(fContext, expr.fOffset));
case ASTNode::Kind::kPostfix:
return this->convertPostfixExpression(expr);
case ASTNode::Kind::kPrefix:
return this->convertPrefixExpression(expr);
case ASTNode::Kind::kScope:
return this->convertScopeExpression(expr);
case ASTNode::Kind::kTernary:
return this->convertTernaryExpression(expr);
default:
#ifdef SK_DEBUG
ABORT("unsupported expression: %s\n", expr.description().c_str());
#endif
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTNode& identifier) {
SkASSERT(identifier.fKind == ASTNode::Kind::kIdentifier);
const Symbol* result = (*fSymbolTable)[identifier.getString()];
if (!result) {
fErrors.error(identifier.fOffset, "unknown identifier '" + identifier.getString() + "'");
return nullptr;
}
switch (result->kind()) {
case Symbol::Kind::kFunctionDeclaration: {
std::vector<const FunctionDeclaration*> f = {
&result->as<FunctionDeclaration>()
};
return std::make_unique<FunctionReference>(fContext, identifier.fOffset, f);
}
case Symbol::Kind::kUnresolvedFunction: {
const UnresolvedFunction* f = &result->as<UnresolvedFunction>();
return std::make_unique<FunctionReference>(fContext, identifier.fOffset, f->fFunctions);
}
case Symbol::Kind::kVariable: {
const Variable* var = &result->as<Variable>();
switch (var->fModifiers.fLayout.fBuiltin) {
case SK_WIDTH_BUILTIN:
fInputs.fRTWidth = true;
break;
case SK_HEIGHT_BUILTIN:
fInputs.fRTHeight = true;
break;
#ifndef SKSL_STANDALONE
case SK_FRAGCOORD_BUILTIN:
fInputs.fFlipY = true;
if (fSettings->fFlipY &&
(!fSettings->fCaps ||
!fSettings->fCaps->fragCoordConventionsExtensionString())) {
fInputs.fRTHeight = true;
}
#endif
}
if (fKind == Program::kFragmentProcessor_Kind &&
(var->fModifiers.fFlags & Modifiers::kIn_Flag) &&
!(var->fModifiers.fFlags & Modifiers::kUniform_Flag) &&
!var->fModifiers.fLayout.fKey &&
var->fModifiers.fLayout.fBuiltin == -1 &&
var->type().nonnullable() != *fContext.fFragmentProcessor_Type &&
var->type().typeKind() != Type::TypeKind::kSampler) {
bool valid = false;
for (const auto& decl : fFile->root()) {
if (decl.fKind == ASTNode::Kind::kSection) {
ASTNode::SectionData section = decl.getSectionData();
if (section.fName == "setData") {
valid = true;
break;
}
}
}
if (!valid) {
fErrors.error(identifier.fOffset, "'in' variable must be either 'uniform' or "
"'layout(key)', or there must be a custom "
"@setData function");
}
}
// default to kRead_RefKind; this will be corrected later if the variable is written to
return std::make_unique<VariableReference>(identifier.fOffset,
var,
VariableReference::kRead_RefKind);
}
case Symbol::Kind::kField: {
const Field* field = &result->as<Field>();
VariableReference* base = new VariableReference(identifier.fOffset, &field->fOwner,
VariableReference::kRead_RefKind);
return std::unique_ptr<Expression>(new FieldAccess(
std::unique_ptr<Expression>(base),
field->fFieldIndex,
FieldAccess::kAnonymousInterfaceBlock_OwnerKind));
}
case Symbol::Kind::kType: {
const Type* t = &result->as<Type>();
return std::make_unique<TypeReference>(fContext, identifier.fOffset, t);
}
case Symbol::Kind::kExternal: {
const ExternalValue* r = &result->as<ExternalValue>();
return std::make_unique<ExternalValueReference>(identifier.fOffset, r);
}
default:
ABORT("unsupported symbol type %d\n", (int) result->kind());
}
}
std::unique_ptr<Section> IRGenerator::convertSection(const ASTNode& s) {
if (fKind != Program::kFragmentProcessor_Kind) {
fErrors.error(s.fOffset, "syntax error");
return nullptr;
}
ASTNode::SectionData section = s.getSectionData();
return std::make_unique<Section>(s.fOffset, section.fName, section.fArgument,
section.fText);
}
std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr,
const Type& type) {
if (!expr) {
return nullptr;
}
if (expr->type() == type) {
return expr;
}
this->checkValid(*expr);
if (expr->type() == *fContext.fInvalid_Type) {
return nullptr;
}
if (!expr->coercionCost(type).isPossible(fSettings->fAllowNarrowingConversions)) {
fErrors.error(expr->fOffset, "expected '" + type.displayName() + "', but found '" +
expr->type().displayName() + "'");
return nullptr;
}
if (type.typeKind() == Type::TypeKind::kScalar) {
std::vector<std::unique_ptr<Expression>> args;
args.push_back(std::move(expr));
std::unique_ptr<Expression> ctor;
if (type == *fContext.fFloatLiteral_Type) {
ctor = this->convertIdentifier(ASTNode(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier,
"float"));
} else if (type == *fContext.fIntLiteral_Type) {
ctor = this->convertIdentifier(ASTNode(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier,
"int"));
} else {
ctor = this->convertIdentifier(ASTNode(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier,
type.fName));
}
if (!ctor) {
printf("error, null identifier: %s\n", String(type.fName).c_str());
}
SkASSERT(ctor);
return this->call(-1, std::move(ctor), std::move(args));
}
if (expr->kind() == Expression::Kind::kNullLiteral) {
SkASSERT(type.typeKind() == Type::TypeKind::kNullable);
return std::unique_ptr<Expression>(new NullLiteral(expr->fOffset, &type));
}
std::vector<std::unique_ptr<Expression>> args;
args.push_back(std::move(expr));
return std::unique_ptr<Expression>(new Constructor(-1, &type, std::move(args)));
}
static bool is_matrix_multiply(const Type& left, const Type& right) {
if (left.typeKind() == Type::TypeKind::kMatrix) {
return right.typeKind() == Type::TypeKind::kMatrix ||
right.typeKind() == Type::TypeKind::kVector;
}
return left.typeKind() == Type::TypeKind::kVector &&
right.typeKind() == Type::TypeKind::kMatrix;
}
/**
* Determines the operand and result types of a binary expression. Returns true if the expression is
* legal, false otherwise. If false, the values of the out parameters are undefined.
*/
static bool determine_binary_type(const Context& context,
bool allowNarrowing,
Token::Kind op,
const Type& left,
const Type& right,
const Type** outLeftType,
const Type** outRightType,
const Type** outResultType) {
bool isLogical = false;
bool isBitwise = false;
bool validMatrixOrVectorOp = false;
bool isAssignment = Compiler::IsAssignment(op);
switch (op) {
case Token::Kind::TK_EQ:
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
return right.canCoerceTo(left, allowNarrowing);
case Token::Kind::TK_EQEQ: // fall through
case Token::Kind::TK_NEQ: {
CoercionCost rightToLeft = right.coercionCost(left),
leftToRight = left.coercionCost(right);
if (rightToLeft < leftToRight) {
if (rightToLeft.isPossible(allowNarrowing)) {
*outLeftType = &left;
*outRightType = &left;
*outResultType = context.fBool_Type.get();
return true;
}
} else {
if (leftToRight.isPossible(allowNarrowing)) {
*outLeftType = &right;
*outRightType = &right;
*outResultType = context.fBool_Type.get();
return true;
}
}
return false;
}
case Token::Kind::TK_LT: // fall through
case Token::Kind::TK_GT: // fall through
case Token::Kind::TK_LTEQ: // fall through
case Token::Kind::TK_GTEQ:
isLogical = true;
break;
case Token::Kind::TK_LOGICALOR: // fall through
case Token::Kind::TK_LOGICALAND: // fall through
case Token::Kind::TK_LOGICALXOR: // fall through
case Token::Kind::TK_LOGICALOREQ: // fall through
case Token::Kind::TK_LOGICALANDEQ: // fall through
case Token::Kind::TK_LOGICALXOREQ:
*outLeftType = context.fBool_Type.get();
*outRightType = context.fBool_Type.get();
*outResultType = context.fBool_Type.get();
return left.canCoerceTo(*context.fBool_Type, allowNarrowing) &&
right.canCoerceTo(*context.fBool_Type, allowNarrowing);
case Token::Kind::TK_STAREQ: // fall through
case Token::Kind::TK_STAR:
if (is_matrix_multiply(left, right)) {
// determine final component type
if (determine_binary_type(context, allowNarrowing, op,
left.componentType(), right.componentType(),
outLeftType, outRightType, outResultType)) {
*outLeftType = &(*outResultType)->toCompound(context, left.columns(),
left.rows());
*outRightType = &(*outResultType)->toCompound(context, right.columns(),
right.rows());
int leftColumns = left.columns();
int leftRows = left.rows();
int rightColumns;
int rightRows;
if (right.typeKind() == Type::TypeKind::kVector) {
// matrix * vector treats the vector as a column vector, so we need to
// transpose it
rightColumns = right.rows();
rightRows = right.columns();
SkASSERT(rightColumns == 1);
} else {
rightColumns = right.columns();
rightRows = right.rows();
}
if (rightColumns > 1) {
*outResultType = &(*outResultType)->toCompound(context, rightColumns,
leftRows);
} else {
// result was a column vector, transpose it back to a row
*outResultType = &(*outResultType)->toCompound(context, leftRows,
rightColumns);
}
if (isAssignment && ((*outResultType)->columns() != leftColumns ||
(*outResultType)->rows() != leftRows)) {
return false;
}
return leftColumns == rightRows;
} else {
return false;
}
}
validMatrixOrVectorOp = true;
break;
case Token::Kind::TK_SHLEQ:
case Token::Kind::TK_SHREQ:
case Token::Kind::TK_BITWISEANDEQ:
case Token::Kind::TK_BITWISEOREQ:
case Token::Kind::TK_BITWISEXOREQ:
case Token::Kind::TK_SHL:
case Token::Kind::TK_SHR:
case Token::Kind::TK_BITWISEAND:
case Token::Kind::TK_BITWISEOR:
case Token::Kind::TK_BITWISEXOR:
isBitwise = true;
validMatrixOrVectorOp = true;
break;
case Token::Kind::TK_PLUSEQ:
case Token::Kind::TK_MINUSEQ:
case Token::Kind::TK_SLASHEQ:
case Token::Kind::TK_PERCENTEQ:
case Token::Kind::TK_PLUS:
case Token::Kind::TK_MINUS:
case Token::Kind::TK_SLASH:
case Token::Kind::TK_PERCENT:
validMatrixOrVectorOp = true;
break;
case Token::Kind::TK_COMMA:
*outLeftType = &left;
*outRightType = &right;
*outResultType = &right;
return true;
default:
break;
}
bool leftIsVectorOrMatrix = left.typeKind() == Type::TypeKind::kVector ||
left.typeKind() == Type::TypeKind::kMatrix,
rightIsVectorOrMatrix = right.typeKind() == Type::TypeKind::kVector ||
right.typeKind() == Type::TypeKind::kMatrix;
if (leftIsVectorOrMatrix && validMatrixOrVectorOp &&
right.typeKind() == Type::TypeKind::kScalar) {
if (determine_binary_type(context, allowNarrowing, op, left.componentType(), right,
outLeftType, outRightType, outResultType)) {
*outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows());
if (!isLogical) {
*outResultType =
&(*outResultType)->toCompound(context, left.columns(), left.rows());
}
return true;
}
return false;
}
if (!isAssignment && rightIsVectorOrMatrix && validMatrixOrVectorOp &&
left.typeKind() == Type::TypeKind::kScalar) {
if (determine_binary_type(context, allowNarrowing, op, left, right.componentType(),
outLeftType, outRightType, outResultType)) {
*outRightType = &(*outRightType)->toCompound(context, right.columns(), right.rows());
if (!isLogical) {
*outResultType =
&(*outResultType)->toCompound(context, right.columns(), right.rows());
}
return true;
}
return false;
}
CoercionCost rightToLeftCost = right.coercionCost(left);
CoercionCost leftToRightCost = isAssignment ? CoercionCost::Impossible()
: left.coercionCost(right);
if ((left.typeKind() == Type::TypeKind::kScalar &&
right.typeKind() == Type::TypeKind::kScalar) ||
(leftIsVectorOrMatrix && validMatrixOrVectorOp)) {
if (isBitwise) {
const Type& leftNumberType(leftIsVectorOrMatrix ? left.componentType() : left);
const Type& rightNumberType(rightIsVectorOrMatrix ? right.componentType() : right);
if (!leftNumberType.isInteger() || !rightNumberType.isInteger()) {
return false;
}
}
if (rightToLeftCost.isPossible(allowNarrowing) && rightToLeftCost < leftToRightCost) {
// Right-to-Left conversion is possible and cheaper
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
} else if (leftToRightCost.isPossible(allowNarrowing)) {
// Left-to-Right conversion is possible (and at least as cheap as Right-to-Left)
*outLeftType = &right;
*outRightType = &right;
*outResultType = &right;
} else {
return false;
}
if (isLogical) {
*outResultType = context.fBool_Type.get();
}
return true;
}
return false;
}
static std::unique_ptr<Expression> short_circuit_boolean(const Context& context,
const Expression& left,
Token::Kind op,
const Expression& right) {
SkASSERT(left.kind() == Expression::Kind::kBoolLiteral);
bool leftVal = left.as<BoolLiteral>().value();
if (op == Token::Kind::TK_LOGICALAND) {
// (true && expr) -> (expr) and (false && expr) -> (false)
return leftVal ? right.clone()
: std::unique_ptr<Expression>(new BoolLiteral(context, left.fOffset, false));
} else if (op == Token::Kind::TK_LOGICALOR) {
// (true || expr) -> (true) and (false || expr) -> (expr)
return leftVal ? std::unique_ptr<Expression>(new BoolLiteral(context, left.fOffset, true))
: right.clone();
} else if (op == Token::Kind::TK_LOGICALXOR) {
// (true ^^ expr) -> !(expr) and (false ^^ expr) -> (expr)
return leftVal ? std::unique_ptr<Expression>(new PrefixExpression(
Token::Kind::TK_LOGICALNOT,
right.clone()))
: right.clone();
} else {
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::constantFold(const Expression& left,
Token::Kind op,
const Expression& right) const {
// If the left side is a constant boolean literal, the right side does not need to be constant
// for short circuit optimizations to allow the constant to be folded.
if (left.kind() == Expression::Kind::kBoolLiteral && !right.isCompileTimeConstant()) {
return short_circuit_boolean(fContext, left, op, right);
} else if (right.kind() == Expression::Kind::kBoolLiteral && !left.isCompileTimeConstant()) {
// There aren't side effects in SKSL within expressions, so (left OP right) is equivalent to
// (right OP left) for short-circuit optimizations
return short_circuit_boolean(fContext, right, op, left);
}
// Other than the short-circuit cases above, constant folding requires both sides to be constant
if (!left.isCompileTimeConstant() || !right.isCompileTimeConstant()) {
return nullptr;
}
// Note that we expressly do not worry about precision and overflow here -- we use the maximum
// precision to calculate the results and hope the result makes sense. The plan is to move the
// Skia caps into SkSL, so we have access to all of them including the precisions of the various
// types, which will let us be more intelligent about this.
if (left.kind() == Expression::Kind::kBoolLiteral &&
right.kind() == Expression::Kind::kBoolLiteral) {
bool leftVal = left.as<BoolLiteral>().value();
bool rightVal = right.as<BoolLiteral>().value();
bool result;
switch (op) {
case Token::Kind::TK_LOGICALAND: result = leftVal && rightVal; break;
case Token::Kind::TK_LOGICALOR: result = leftVal || rightVal; break;
case Token::Kind::TK_LOGICALXOR: result = leftVal ^ rightVal; break;
default: return nullptr;
}
return std::unique_ptr<Expression>(new BoolLiteral(fContext, left.fOffset, result));
}
#define RESULT(t, op) std::make_unique<t ## Literal>(fContext, left.fOffset, \
leftVal op rightVal)
#define URESULT(t, op) std::make_unique<t ## Literal>(fContext, left.fOffset, \
(uint32_t) leftVal op \
(uint32_t) rightVal)
if (left.kind() == Expression::Kind::kIntLiteral &&
right.kind() == Expression::Kind::kIntLiteral) {
int64_t leftVal = left.as<IntLiteral>().value();
int64_t rightVal = right.as<IntLiteral>().value();
switch (op) {
case Token::Kind::TK_PLUS: return URESULT(Int, +);
case Token::Kind::TK_MINUS: return URESULT(Int, -);
case Token::Kind::TK_STAR: return URESULT(Int, *);
case Token::Kind::TK_SLASH:
if (leftVal == std::numeric_limits<int64_t>::min() && rightVal == -1) {
fErrors.error(right.fOffset, "arithmetic overflow");
return nullptr;
}
if (!rightVal) {
fErrors.error(right.fOffset, "division by zero");
return nullptr;
}
return RESULT(Int, /);
case Token::Kind::TK_PERCENT:
if (leftVal == std::numeric_limits<int64_t>::min() && rightVal == -1) {
fErrors.error(right.fOffset, "arithmetic overflow");
return nullptr;
}
if (!rightVal) {
fErrors.error(right.fOffset, "division by zero");
return nullptr;
}
return RESULT(Int, %);
case Token::Kind::TK_BITWISEAND: return RESULT(Int, &);
case Token::Kind::TK_BITWISEOR: return RESULT(Int, |);
case Token::Kind::TK_BITWISEXOR: return RESULT(Int, ^);
case Token::Kind::TK_EQEQ: return RESULT(Bool, ==);
case Token::Kind::TK_NEQ: return RESULT(Bool, !=);
case Token::Kind::TK_GT: return RESULT(Bool, >);
case Token::Kind::TK_GTEQ: return RESULT(Bool, >=);
case Token::Kind::TK_LT: return RESULT(Bool, <);
case Token::Kind::TK_LTEQ: return RESULT(Bool, <=);
case Token::Kind::TK_SHL:
if (rightVal >= 0 && rightVal <= 31) {
return URESULT(Int, <<);
}
fErrors.error(right.fOffset, "shift value out of range");
return nullptr;
case Token::Kind::TK_SHR:
if (rightVal >= 0 && rightVal <= 31) {
return URESULT(Int, >>);
}
fErrors.error(right.fOffset, "shift value out of range");
return nullptr;
default:
return nullptr;
}
}
if (left.kind() == Expression::Kind::kFloatLiteral &&
right.kind() == Expression::Kind::kFloatLiteral) {
double leftVal = left.as<FloatLiteral>().fValue;
double rightVal = right.as<FloatLiteral>().fValue;
switch (op) {
case Token::Kind::TK_PLUS: return RESULT(Float, +);
case Token::Kind::TK_MINUS: return RESULT(Float, -);
case Token::Kind::TK_STAR: return RESULT(Float, *);
case Token::Kind::TK_SLASH:
if (rightVal) {
return RESULT(Float, /);
}
fErrors.error(right.fOffset, "division by zero");
return nullptr;
case Token::Kind::TK_EQEQ: return RESULT(Bool, ==);
case Token::Kind::TK_NEQ: return RESULT(Bool, !=);
case Token::Kind::TK_GT: return RESULT(Bool, >);
case Token::Kind::TK_GTEQ: return RESULT(Bool, >=);
case Token::Kind::TK_LT: return RESULT(Bool, <);
case Token::Kind::TK_LTEQ: return RESULT(Bool, <=);
default: return nullptr;
}
}
const Type& leftType = left.type();
const Type& rightType = right.type();
if (leftType.typeKind() == Type::TypeKind::kVector && leftType.componentType().isFloat() &&
leftType == rightType) {
std::vector<std::unique_ptr<Expression>> args;
#define RETURN_VEC_COMPONENTWISE_RESULT(op) \
for (int i = 0; i < leftType.columns(); i++) { \
float value = left.getFVecComponent(i) op \
right.getFVecComponent(i); \
args.emplace_back(new FloatLiteral(fContext, -1, value)); \
} \
return std::unique_ptr<Expression>(new Constructor(-1, &leftType, \
std::move(args)))
switch (op) {
case Token::Kind::TK_EQEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
left.compareConstant(fContext, right)));
case Token::Kind::TK_NEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
!left.compareConstant(fContext, right)));
case Token::Kind::TK_PLUS: RETURN_VEC_COMPONENTWISE_RESULT(+);
case Token::Kind::TK_MINUS: RETURN_VEC_COMPONENTWISE_RESULT(-);
case Token::Kind::TK_STAR: RETURN_VEC_COMPONENTWISE_RESULT(*);
case Token::Kind::TK_SLASH:
for (int i = 0; i < leftType.columns(); i++) {
SKSL_FLOAT rvalue = right.getFVecComponent(i);
if (rvalue == 0.0) {
fErrors.error(right.fOffset, "division by zero");
return nullptr;
}
float value = left.getFVecComponent(i) / rvalue;
args.emplace_back(new FloatLiteral(fContext, -1, value));
}
return std::unique_ptr<Expression>(new Constructor(-1, &leftType,
std::move(args)));
default:
return nullptr;
}
}
if (leftType.typeKind() == Type::TypeKind::kMatrix &&
rightType.typeKind() == Type::TypeKind::kMatrix &&
left.kind() == right.kind()) {
switch (op) {
case Token::Kind::TK_EQEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
left.compareConstant(fContext, right)));
case Token::Kind::TK_NEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
!left.compareConstant(fContext, right)));
default:
return nullptr;
}
}
#undef RESULT
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kBinary);
auto iter = expression.begin();
std::unique_ptr<Expression> left = this->convertExpression(*(iter++));
if (!left) {
return nullptr;
}
Token::Kind op = expression.getToken().fKind;
std::unique_ptr<Expression> right;
{
// Can't inline the right side of a short-circuiting boolean, because our inlining
// approach runs things out of order.
AutoDisableInline disableInline(this, /*canInline=*/(op != Token::Kind::TK_LOGICALAND &&
op != Token::Kind::TK_LOGICALOR));
right = this->convertExpression(*(iter++));
}
if (!right) {
return nullptr;
}
const Type* leftType;
const Type* rightType;
const Type* resultType;
const Type* rawLeftType;
if (left->is<IntLiteral>() && right->type().isInteger()) {
rawLeftType = &right->type();
} else {
rawLeftType = &left->type();
}
const Type* rawRightType;
if (right->is<IntLiteral>() && left->type().isInteger()) {
rawRightType = &left->type();
} else {
rawRightType = &right->type();
}
if (!determine_binary_type(fContext, fSettings->fAllowNarrowingConversions, op,
*rawLeftType, *rawRightType, &leftType, &rightType, &resultType)) {
fErrors.error(expression.fOffset, String("type mismatch: '") +
Compiler::OperatorName(expression.getToken().fKind) +
"' cannot operate on '" + left->type().displayName() +
"', '" + right->type().displayName() + "'");
return nullptr;
}
if (Compiler::IsAssignment(op)) {
if (!this->setRefKind(*left, op != Token::Kind::TK_EQ
? VariableReference::kReadWrite_RefKind
: VariableReference::kWrite_RefKind)) {
return nullptr;
}
}
left = this->coerce(std::move(left), *leftType);
right = this->coerce(std::move(right), *rightType);
if (!left || !right) {
return nullptr;
}
std::unique_ptr<Expression> result = this->constantFold(*left, op, *right);
if (!result) {
result = std::make_unique<BinaryExpression>(expression.fOffset, std::move(left), op,
std::move(right), resultType);
}
return result;
}
std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(const ASTNode& node) {
SkASSERT(node.fKind == ASTNode::Kind::kTernary);
auto iter = node.begin();
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*(iter++)),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Expression> ifTrue;
std::unique_ptr<Expression> ifFalse;
{
AutoDisableInline disableInline(this);
ifTrue = this->convertExpression(*(iter++));
if (!ifTrue) {
return nullptr;
}
ifFalse = this->convertExpression(*(iter++));
if (!ifFalse) {
return nullptr;
}
}
const Type* trueType;
const Type* falseType;
const Type* resultType;
if (!determine_binary_type(fContext, fSettings->fAllowNarrowingConversions,
Token::Kind::TK_EQEQ, ifTrue->type(), ifFalse->type(),
&trueType, &falseType, &resultType) ||
trueType != falseType) {
fErrors.error(node.fOffset, "ternary operator result mismatch: '" +
ifTrue->type().displayName() + "', '" +
ifFalse->type().displayName() + "'");
return nullptr;
}
if (trueType->nonnullable() == *fContext.fFragmentProcessor_Type) {
fErrors.error(node.fOffset,
"ternary expression of type '" + trueType->displayName() + "' not allowed");
return nullptr;
}
ifTrue = this->coerce(std::move(ifTrue), *trueType);
if (!ifTrue) {
return nullptr;
}
ifFalse = this->coerce(std::move(ifFalse), *falseType);
if (!ifFalse) {
return nullptr;
}
if (test->kind() == Expression::Kind::kBoolLiteral) {
// static boolean test, just return one of the branches
if (test->as<BoolLiteral>().value()) {
return ifTrue;
} else {
return ifFalse;
}
}
return std::make_unique<TernaryExpression>(node.fOffset,
std::move(test),
std::move(ifTrue),
std::move(ifFalse));
}
void IRGenerator::copyIntrinsicIfNeeded(const FunctionDeclaration& function) {
if (auto found = fIntrinsics->findAndInclude(function.description())) {
const FunctionDefinition& original = found->as<FunctionDefinition>();
// Sort the referenced intrinsics into a consistent order; otherwise our output will become
// non-deterministic.
std::vector<const FunctionDeclaration*> intrinsics(original.fReferencedIntrinsics.begin(),
original.fReferencedIntrinsics.end());
std::sort(intrinsics.begin(), intrinsics.end(),
[](const FunctionDeclaration* a, const FunctionDeclaration* b) {
if (a->fBuiltin != b->fBuiltin) {
return a->fBuiltin < b->fBuiltin;
}
if (a->fOffset != b->fOffset) {
return a->fOffset < b->fOffset;
}
if (a->fName != b->fName) {
return a->fName < b->fName;
}
return a->description() < b->description();
});
for (const FunctionDeclaration* f : intrinsics) {
this->copyIntrinsicIfNeeded(*f);
}
fProgramElements->push_back(original.clone());
}
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
const FunctionDeclaration& function,
std::vector<std::unique_ptr<Expression>> arguments) {
if (function.fBuiltin) {
if (function.fDefinition) {
fReferencedIntrinsics.insert(&function);
}
if (!fIsBuiltinCode) {
this->copyIntrinsicIfNeeded(function);
}
}
if (function.fParameters.size() != arguments.size()) {
String msg = "call to '" + function.fName + "' expected " +
to_string((uint64_t) function.fParameters.size()) +
" argument";
if (function.fParameters.size() != 1) {
msg += "s";
}
msg += ", but found " + to_string((uint64_t) arguments.size());
fErrors.error(offset, msg);
return nullptr;
}
if (fKind == Program::kPipelineStage_Kind && !function.fDefinition && !function.fBuiltin) {
String msg = "call to undefined function '" + function.fName + "'";
fErrors.error(offset, msg);
return nullptr;
}
std::vector<const Type*> types;
const Type* returnType;
if (!function.determineFinalTypes(arguments, &types, &returnType)) {
String msg = "no match for " + function.fName + "(";
String separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->type().displayName();
}
msg += ")";
fErrors.error(offset, msg);
return nullptr;
}
for (size_t i = 0; i < arguments.size(); i++) {
arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
if (!arguments[i]) {
return nullptr;
}
const Modifiers& paramModifiers = function.fParameters[i]->fModifiers;
if (paramModifiers.fFlags & Modifiers::kOut_Flag) {
if (!this->setRefKind(*arguments[i], paramModifiers.fFlags & Modifiers::kIn_Flag
? VariableReference::kReadWrite_RefKind
: VariableReference::kPointer_RefKind)) {
return nullptr;
}
}
}
auto funcCall = std::make_unique<FunctionCall>(offset, returnType, function,
std::move(arguments));
if (fCanInline && fInliner->isSafeToInline(*funcCall, fSettings->fInlineThreshold)) {
Inliner::InlinedCall inlinedCall =
fInliner->inlineCall(funcCall.get(), fSymbolTable.get(), fCurrentFunction);
if (inlinedCall.fInlinedBody) {
fExtraStatements.push_back(std::move(inlinedCall.fInlinedBody));
}
return std::move(inlinedCall.fReplacementExpr);
}
return std::move(funcCall);
}
/**
* Determines the cost of coercing the arguments of a function to the required types. Cost has no
* particular meaning other than "lower costs are preferred". Returns CoercionCost::Impossible() if
* the call is not valid.
*/
CoercionCost IRGenerator::callCost(const FunctionDeclaration& function,
const std::vector<std::unique_ptr<Expression>>& arguments) {
if (function.fParameters.size() != arguments.size()) {
return CoercionCost::Impossible();
}
std::vector<const Type*> types;
const Type* ignored;
if (!function.determineFinalTypes(arguments, &types, &ignored)) {
return CoercionCost::Impossible();
}
CoercionCost total = CoercionCost::Free();
for (size_t i = 0; i < arguments.size(); i++) {
total = total + arguments[i]->coercionCost(*types[i]);
}
return total;
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
std::unique_ptr<Expression> functionValue,
std::vector<std::unique_ptr<Expression>> arguments) {
switch (functionValue->kind()) {
case Expression::Kind::kTypeReference:
return this->convertConstructor(offset,
functionValue->as<TypeReference>().fValue,
std::move(arguments));
case Expression::Kind::kExternalValue: {
const ExternalValue* v = functionValue->as<ExternalValueReference>().fValue;
if (!v->canCall()) {
fErrors.error(offset, "this external value is not a function");
return nullptr;
}
int count = v->callParameterCount();
if (count != (int) arguments.size()) {
fErrors.error(offset, "external function expected " + to_string(count) +
" arguments, but found " + to_string((int) arguments.size()));
return nullptr;
}
static constexpr int PARAMETER_MAX = 16;
SkASSERT(count < PARAMETER_MAX);
const Type* types[PARAMETER_MAX];
v->getCallParameterTypes(types);
for (int i = 0; i < count; ++i) {
arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
if (!arguments[i]) {
return nullptr;
}
}
return std::make_unique<ExternalFunctionCall>(offset, &v->callReturnType(), v,
std::move(arguments));
}
case Expression::Kind::kFunctionReference: {
const FunctionReference& ref = functionValue->as<FunctionReference>();
CoercionCost bestCost = CoercionCost::Impossible();
const FunctionDeclaration* best = nullptr;
if (ref.fFunctions.size() > 1) {
for (const auto& f : ref.fFunctions) {
CoercionCost cost = this->callCost(*f, arguments);
if (cost < bestCost) {
bestCost = cost;
best = f;
}
}
if (best) {
return this->call(offset, *best, std::move(arguments));
}
String msg = "no match for " + ref.fFunctions[0]->fName + "(";
String separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->type().displayName();
}
msg += ")";
fErrors.error(offset, msg);
return nullptr;
}
return this->call(offset, *ref.fFunctions[0], std::move(arguments));
}
default:
fErrors.error(offset, "not a function");
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertNumberConstructor(
int offset,
const Type& type,
std::vector<std::unique_ptr<Expression>> args) {
SkASSERT(type.isNumber());
if (args.size() != 1) {
fErrors.error(offset, "invalid arguments to '" + type.displayName() +
"' constructor, (expected exactly 1 argument, but found " +
to_string((uint64_t) args.size()) + ")");
return nullptr;
}
const Type& argType = args[0]->type();
if (type == argType) {
return std::move(args[0]);
}
if (type.isFloat() && args.size() == 1 && args[0]->is<FloatLiteral>()) {
double value = args[0]->as<FloatLiteral>().fValue;
return std::make_unique<FloatLiteral>(offset, value, &type);
}
if (type.isFloat() && args.size() == 1 && args[0]->is<IntLiteral>()) {
int64_t value = args[0]->as<IntLiteral>().value();
return std::make_unique<FloatLiteral>(offset, (double)value, &type);
}
if (args[0]->is<IntLiteral>() && (type == *fContext.fInt_Type ||
type == *fContext.fUInt_Type)) {
return std::make_unique<IntLiteral>(offset, args[0]->as<IntLiteral>().value(), &type);
}
if (argType == *fContext.fBool_Type) {
std::unique_ptr<IntLiteral> zero(new IntLiteral(fContext, offset, 0));
std::unique_ptr<IntLiteral> one(new IntLiteral(fContext, offset, 1));
return std::make_unique<TernaryExpression>(offset, std::move(args[0]),
this->coerce(std::move(one), type),
this->coerce(std::move(zero), type));
}
if (!argType.isNumber()) {
fErrors.error(offset, "invalid argument to '" + type.displayName() +
"' constructor (expected a number or bool, but found '" +
argType.displayName() + "')");
return nullptr;
}
return std::make_unique<Constructor>(offset, &type, std::move(args));
}
static int component_count(const Type& type) {
switch (type.typeKind()) {
case Type::TypeKind::kVector:
return type.columns();
case Type::TypeKind::kMatrix:
return type.columns() * type.rows();
default:
return 1;
}
}
std::unique_ptr<Expression> IRGenerator::convertCompoundConstructor(
int offset,
const Type& type,
std::vector<std::unique_ptr<Expression>> args) {
SkASSERT(type.typeKind() == Type::TypeKind::kVector ||
type.typeKind() == Type::TypeKind::kMatrix);
if (type.typeKind() == Type::TypeKind::kMatrix && args.size() == 1 &&
args[0]->type().typeKind() == Type::TypeKind::kMatrix) {
// matrix from matrix is always legal
return std::unique_ptr<Expression>(new Constructor(offset, &type, std::move(args)));
}
int actual = 0;
int expected = type.rows() * type.columns();
if (args.size() != 1 || expected != component_count(args[0]->type()) ||
type.componentType().isNumber() != args[0]->type().componentType().isNumber()) {
for (size_t i = 0; i < args.size(); i++) {
const Type& argType = args[i]->type();
if (argType.typeKind() == Type::TypeKind::kVector) {
if (type.componentType().isNumber() !=
argType.componentType().isNumber()) {
fErrors.error(offset, "'" + argType.displayName() + "' is not a valid "
"parameter to '" + type.displayName() +
"' constructor");
return nullptr;
}
actual += argType.columns();
} else if (argType.typeKind() == Type::TypeKind::kScalar) {
actual += 1;
if (type.typeKind() != Type::TypeKind::kScalar) {
args[i] = this->coerce(std::move(args[i]), type.componentType());
if (!args[i]) {
return nullptr;
}
}
} else {
fErrors.error(offset, "'" + argType.displayName() + "' is not a valid "
"parameter to '" + type.displayName() + "' constructor");
return nullptr;
}
}
if (actual != 1 && actual != expected) {
fErrors.error(offset, "invalid arguments to '" + type.displayName() +
"' constructor (expected " + to_string(expected) +
" scalars, but found " + to_string(actual) + ")");
return nullptr;
}
}
return std::unique_ptr<Expression>(new Constructor(offset, &type, std::move(args)));
}
std::unique_ptr<Expression> IRGenerator::convertConstructor(
int offset,
const Type& type,
std::vector<std::unique_ptr<Expression>> args) {
// FIXME: add support for structs
if (args.size() == 1 && args[0]->type() == type &&
type.nonnullable() != *fContext.fFragmentProcessor_Type) {
// argument is already the right type, just return it
return std::move(args[0]);
}
Type::TypeKind kind = type.typeKind();
if (type.isNumber()) {
return this->convertNumberConstructor(offset, type, std::move(args));
} else if (kind == Type::TypeKind::kArray) {
const Type& base = type.componentType();
for (size_t i = 0; i < args.size(); i++) {
args[i] = this->coerce(std::move(args[i]), base);
if (!args[i]) {
return nullptr;
}
}
return std::make_unique<Constructor>(offset, &type, std::move(args));
} else if (kind == Type::TypeKind::kVector || kind == Type::TypeKind::kMatrix) {
return this->convertCompoundConstructor(offset, type, std::move(args));
} else {
fErrors.error(offset, "cannot construct '" + type.displayName() + "'");
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kPrefix);
std::unique_ptr<Expression> base = this->convertExpression(*expression.begin());
if (!base) {
return nullptr;
}
const Type& baseType = base->type();
switch (expression.getToken().fKind) {
case Token::Kind::TK_PLUS:
if (!baseType.isNumber() && baseType.typeKind() != Type::TypeKind::kVector &&
baseType != *fContext.fFloatLiteral_Type) {
fErrors.error(expression.fOffset,
"'+' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
return base;
case Token::Kind::TK_MINUS:
if (base->is<IntLiteral>()) {
return std::make_unique<IntLiteral>(fContext, base->fOffset,
-base->as<IntLiteral>().value());
}
if (base->is<FloatLiteral>()) {
return std::make_unique<FloatLiteral>(fContext, base->fOffset,
-base->as<FloatLiteral>().fValue);
}
if (!baseType.isNumber() && baseType.typeKind() != Type::TypeKind::kVector) {
fErrors.error(expression.fOffset,
"'-' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
return std::make_unique<PrefixExpression>(Token::Kind::TK_MINUS, std::move(base));
case Token::Kind::TK_PLUSPLUS:
if (!baseType.isNumber()) {
fErrors.error(expression.fOffset,
String("'") + Compiler::OperatorName(expression.getToken().fKind) +
"' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
if (!this->setRefKind(*base, VariableReference::kReadWrite_RefKind)) {
return nullptr;
}
break;
case Token::Kind::TK_MINUSMINUS:
if (!baseType.isNumber()) {
fErrors.error(expression.fOffset,
String("'") + Compiler::OperatorName(expression.getToken().fKind) +
"' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
if (!this->setRefKind(*base, VariableReference::kReadWrite_RefKind)) {
return nullptr;
}
break;
case Token::Kind::TK_LOGICALNOT:
if (baseType != *fContext.fBool_Type) {
fErrors.error(expression.fOffset,
String("'") + Compiler::OperatorName(expression.getToken().fKind) +
"' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
if (base->kind() == Expression::Kind::kBoolLiteral) {
return std::make_unique<BoolLiteral>(fContext, base->fOffset,
!base->as<BoolLiteral>().value());
}
break;
case Token::Kind::TK_BITWISENOT:
if (baseType != *fContext.fInt_Type && baseType != *fContext.fUInt_Type) {
fErrors.error(expression.fOffset,
String("'") + Compiler::OperatorName(expression.getToken().fKind) +
"' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
break;
default:
ABORT("unsupported prefix operator\n");
}
return std::make_unique<PrefixExpression>(expression.getToken().fKind, std::move(base));
}
std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression> base,
const ASTNode& index) {
if (base->kind() == Expression::Kind::kTypeReference) {
if (index.fKind == ASTNode::Kind::kInt) {
const Type& oldType = base->as<TypeReference>().fValue;
SKSL_INT size = index.getInt();
const Type* newType = fSymbolTable->takeOwnershipOfSymbol(
std::make_unique<Type>(oldType.name() + "[" + to_string(size) + "]",
Type::TypeKind::kArray, oldType, size));
return std::make_unique<TypeReference>(fContext, base->fOffset, newType);
} else {
fErrors.error(base->fOffset, "array size must be a constant");
return nullptr;
}
}
const Type& baseType = base->type();
if (baseType.typeKind() != Type::TypeKind::kArray &&
baseType.typeKind() != Type::TypeKind::kMatrix &&
baseType.typeKind() != Type::TypeKind::kVector) {
fErrors.error(base->fOffset, "expected array, but found '" + baseType.displayName() +
"'");
return nullptr;
}
std::unique_ptr<Expression> converted = this->convertExpression(index);
if (!converted) {
return nullptr;
}
if (converted->type() != *fContext.fUInt_Type) {
converted = this->coerce(std::move(converted), *fContext.fInt_Type);
if (!converted) {
return nullptr;
}
}
return std::make_unique<IndexExpression>(fContext, std::move(base), std::move(converted));
}
std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression> base,
StringFragment field) {
if (base->kind() == Expression::Kind::kExternalValue) {
const ExternalValue& ev = *base->as<ExternalValueReference>().fValue;
ExternalValue* result = ev.getChild(String(field).c_str());
if (!result) {
fErrors.error(base->fOffset, "external value does not have a child named '" + field +
"'");
return nullptr;
}
return std::unique_ptr<Expression>(new ExternalValueReference(base->fOffset, result));
}
const Type& baseType = base->type();
auto fields = baseType.fields();
for (size_t i = 0; i < fields.size(); i++) {
if (fields[i].fName == field) {
return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i));
}
}
fErrors.error(base->fOffset, "type '" + baseType.displayName() + "' does not have a field "
"named '" + field + "'");
return nullptr;
}
// Swizzles are complicated due to constant components. The most difficult case is a mask like
// '.x1w0'. A naive approach might turn that into 'float4(base.x, 1, base.w, 0)', but that evaluates
// 'base' twice. We instead group the swizzle mask ('xw') and constants ('1, 0') together and use a
// secondary swizzle to put them back into the right order, so in this case we end up with
// 'float4(base.xw, 1, 0).xzyw'.
std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base,
StringFragment fields) {
const int offset = base->fOffset;
const Type& baseType = base->type();
if (baseType.typeKind() != Type::TypeKind::kVector && !baseType.isNumber()) {
fErrors.error(offset, "cannot swizzle value of type '" + baseType.displayName() + "'");
return nullptr;
}
if (fields.fLength > 4) {
fErrors.error(offset, "too many components in swizzle mask '" + fields + "'");
return nullptr;
}
std::vector<int> maskComponents;
maskComponents.reserve(fields.fLength);
for (size_t i = 0; i < fields.fLength; i++) {
switch (fields[i]) {
case '0':
case '1':
// Skip over constant fields for now.
break;
case 'x':
case 'r':
case 's':
case 'L':
maskComponents.push_back(0);
break;
case 'y':
case 'g':
case 't':
case 'T':
if (baseType.columns() >= 2) {
maskComponents.push_back(1);
break;
}
[[fallthrough]];
case 'z':
case 'b':
case 'p':
case 'R':
if (baseType.columns() >= 3) {
maskComponents.push_back(2);
break;
}
[[fallthrough]];
case 'w':
case 'a':
case 'q':
case 'B':
if (baseType.columns() >= 4) {
maskComponents.push_back(3);
break;
}
[[fallthrough]];
default:
fErrors.error(offset, String::printf("invalid swizzle component '%c'", fields[i]));
return nullptr;
}
}
if (maskComponents.empty()) {
fErrors.error(offset, "swizzle must refer to base expression");
return nullptr;
}
// First, we need a vector expression that is the non-constant portion of the swizzle, packed:
// scalar.xxx -> type3(scalar)
// scalar.x0x0 -> type2(scalar)
// vector.zyx -> vector.zyx
// vector.x0y0 -> vector.xy
std::unique_ptr<Expression> expr;
if (baseType.isNumber()) {
std::vector<std::unique_ptr<Expression>> scalarConstructorArgs;
scalarConstructorArgs.push_back(std::move(base));
expr = std::make_unique<Constructor>(
offset, &baseType.toCompound(fContext, maskComponents.size(), 1),
std::move(scalarConstructorArgs));
} else {
expr = std::make_unique<Swizzle>(fContext, std::move(base), maskComponents);
}
// If we have processed the entire swizzle, we're done.
if (maskComponents.size() == fields.fLength) {
return expr;
}
// Now we create a constructor that has the correct number of elements for the final swizzle,
// with all fields at the start. It's not finished yet; constants we need will be added below.
// scalar.x0x0 -> type4(type2(x), ...)
// vector.y111 -> type4(vector.y, ...)
// vector.z10x -> type4(vector.zx, ...)
//
// We could create simpler IR in some cases by reordering here, if all fields are packed
// contiguously. The benefits are minor, so skip the optimization to keep the algorithm simple.
// The constructor will have at most three arguments: { base value, constant 0, constant 1 }
std::vector<std::unique_ptr<Expression>> constructorArgs;
constructorArgs.reserve(3);
constructorArgs.push_back(std::move(expr));
// Apply another swizzle to shuffle the constants into the correct place. Any constant values we
// need are also tacked on to the end of the constructor.
// scalar.x0x0 -> type4(type2(x), 0).xyxy
// vector.y111 -> type4(vector.y, 1).xyyy
// vector.z10x -> type4(vector.zx, 1, 0).xzwy
const Type* numberType = baseType.isNumber() ? &baseType : &baseType.componentType();
std::vector<int> swizzleComponents;
swizzleComponents.reserve(fields.fLength);
int maskFieldIdx = 0;
int constantFieldIdx = maskComponents.size();
int constantZeroIdx = -1, constantOneIdx = -1;
for (size_t i = 0; i < fields.fLength; i++) {
switch (fields[i]) {
case '0':
if (constantZeroIdx == -1) {
// Synthesize a 'type(0)' argument at the end of the constructor.
auto zero = std::make_unique<Constructor>(
offset, numberType, std::vector<std::unique_ptr<Expression>>{});
zero->arguments().push_back(std::make_unique<IntLiteral>(fContext, offset,
/*fValue=*/0));
constructorArgs.push_back(std::move(zero));
constantZeroIdx = constantFieldIdx++;
}
swizzleComponents.push_back(constantZeroIdx);
break;
case '1':
if (constantOneIdx == -1) {
// Synthesize a 'type(1)' argument at the end of the constructor.
auto one = std::make_unique<Constructor>(
offset, numberType, std::vector<std::unique_ptr<Expression>>{});
one->arguments().push_back(std::make_unique<IntLiteral>(fContext, offset,
/*fValue=*/1));
constructorArgs.push_back(std::move(one));
constantOneIdx = constantFieldIdx++;
}
swizzleComponents.push_back(constantOneIdx);
break;
default:
// The non-constant fields are already in the expected order.
swizzleComponents.push_back(maskFieldIdx++);
break;
}
}
expr = std::make_unique<Constructor>(offset,
&numberType->toCompound(fContext, constantFieldIdx, 1),
std::move(constructorArgs));
// For some of our most common use cases ('.xyz0', '.xyz1'), we will now have an identity
// swizzle; in those cases we can just return the constructor without the swizzle attached.
for (size_t i = 0; i < swizzleComponents.size(); ++i) {
if (swizzleComponents[i] != int(i)) {
// The swizzle has an effect, so apply it.
return std::make_unique<Swizzle>(fContext, std::move(expr),
std::move(swizzleComponents));
}
}
// The swizzle was a no-op; return the constructor expression directly.
return expr;
}
std::unique_ptr<Expression> IRGenerator::getCap(int offset, String name) {
auto found = fCapsMap.find(name);
if (found == fCapsMap.end()) {
fErrors.error(offset, "unknown capability flag '" + name + "'");
return nullptr;
}
String fullName = "sk_Caps." + name;
return std::unique_ptr<Expression>(new Setting(offset, fullName,
found->second.literal(fContext, offset)));
}
std::unique_ptr<Expression> IRGenerator::convertTypeField(int offset, const Type& type,
StringFragment field) {
// Find the Enum element that this type refers to (if any)
const ProgramElement* enumElement = nullptr;
for (const auto& e : *fProgramElements) {
if (e->is<Enum>() && type.name() == e->as<Enum>().typeName()) {
enumElement = e.get();
break;
}
}
if (enumElement) {
// We found the Enum element. Look for 'field' as a member.
std::shared_ptr<SymbolTable> old = fSymbolTable;
fSymbolTable = enumElement->as<Enum>().symbols();
std::unique_ptr<Expression> result = convertIdentifier(
ASTNode(&fFile->fNodes, offset, ASTNode::Kind::kIdentifier, field));
if (result) {
const Variable& v = *result->as<VariableReference>().fVariable;
SkASSERT(v.fInitialValue);
result = std::make_unique<IntLiteral>(
offset, v.fInitialValue->as<IntLiteral>().value(), &type);
} else {
fErrors.error(offset,
"type '" + type.fName + "' does not have a member named '" + field + "'");
}
fSymbolTable = old;
return result;
} else {
// No Enum element? Check the intrinsics, clone it into the program, try again.
if (auto found = fIntrinsics->findAndInclude(type.fName)) {
fProgramElements->push_back(found->clone());
return this->convertTypeField(offset, type, field);
}
fErrors.error(offset,
"type '" + type.fName + "' does not have a member named '" + field + "'");
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertIndexExpression(const ASTNode& index) {
SkASSERT(index.fKind == ASTNode::Kind::kIndex);
auto iter = index.begin();
std::unique_ptr<Expression> base = this->convertExpression(*(iter++));
if (!base) {
return nullptr;
}
if (iter != index.end()) {
return this->convertIndex(std::move(base), *(iter++));
} else if (base->kind() == Expression::Kind::kTypeReference) {
const Type& oldType = base->as<TypeReference>().fValue;
const Type* newType = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Type>(
oldType.name() + "[]", Type::TypeKind::kArray, oldType, /*columns=*/-1));
return std::make_unique<TypeReference>(fContext, base->fOffset, newType);
}
fErrors.error(index.fOffset, "'[]' must follow a type name");
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertCallExpression(const ASTNode& callNode) {
SkASSERT(callNode.fKind == ASTNode::Kind::kCall);
auto iter = callNode.begin();
std::unique_ptr<Expression> base = this->convertExpression(*(iter++));
if (!base) {
return nullptr;
}
std::vector<std::unique_ptr<Expression>> arguments;
for (; iter != callNode.end(); ++iter) {
std::unique_ptr<Expression> converted = this->convertExpression(*iter);
if (!converted) {
return nullptr;
}
arguments.push_back(std::move(converted));
}
return this->call(callNode.fOffset, std::move(base), std::move(arguments));
}
std::unique_ptr<Expression> IRGenerator::convertFieldExpression(const ASTNode& fieldNode) {
std::unique_ptr<Expression> base = this->convertExpression(*fieldNode.begin());
if (!base) {
return nullptr;
}
StringFragment field = fieldNode.getString();
const Type& baseType = base->type();
if (baseType == *fContext.fSkCaps_Type) {
return this->getCap(fieldNode.fOffset, field);
}
if (base->kind() == Expression::Kind::kExternalValue) {
return this->convertField(std::move(base), field);
}
switch (baseType.typeKind()) {
case Type::TypeKind::kOther:
case Type::TypeKind::kStruct:
return this->convertField(std::move(base), field);
default:
return this->convertSwizzle(std::move(base), field);
}
}
std::unique_ptr<Expression> IRGenerator::convertScopeExpression(const ASTNode& scopeNode) {
std::unique_ptr<Expression> base = this->convertExpression(*scopeNode.begin());
if (!base) {
return nullptr;
}
if (!base->is<TypeReference>()) {
fErrors.error(scopeNode.fOffset, "'::' must follow a type name");
return nullptr;
}
StringFragment member = scopeNode.getString();
return this->convertTypeField(base->fOffset, base->as<TypeReference>().fValue, member);
}
std::unique_ptr<Expression> IRGenerator::convertPostfixExpression(const ASTNode& expression) {
std::unique_ptr<Expression> base = this->convertExpression(*expression.begin());
if (!base) {
return nullptr;
}
const Type& baseType = base->type();
if (!baseType.isNumber()) {
fErrors.error(expression.fOffset,
"'" + String(Compiler::OperatorName(expression.getToken().fKind)) +
"' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
if (!this->setRefKind(*base, VariableReference::kReadWrite_RefKind)) {
return nullptr;
}
return std::make_unique<PostfixExpression>(std::move(base), expression.getToken().fKind);
}
void IRGenerator::checkValid(const Expression& expr) {
switch (expr.kind()) {
case Expression::Kind::kFunctionReference:
fErrors.error(expr.fOffset, "expected '(' to begin function call");
break;
case Expression::Kind::kTypeReference:
fErrors.error(expr.fOffset, "expected '(' to begin constructor invocation");
break;
default:
if (expr.type() == *fContext.fInvalid_Type) {
fErrors.error(expr.fOffset, "invalid expression");
}
}
}
bool IRGenerator::setRefKind(Expression& expr, VariableReference::RefKind kind) {
VariableReference* assignableVar = nullptr;
if (!Analysis::IsAssignable(expr, &assignableVar, &fErrors)) {
return false;
}
if (assignableVar) {
assignableVar->setRefKind(kind);
}
return true;
}
void IRGenerator::convertProgram(Program::Kind kind,
const char* text,
size_t length,
std::vector<std::unique_ptr<ProgramElement>>* out) {
fKind = kind;
fProgramElements = out;
Parser parser(text, length, *fSymbolTable, fErrors);
fFile = parser.file();
if (fErrors.errorCount()) {
return;
}
SkASSERT(fFile);
for (const auto& decl : fFile->root()) {
switch (decl.fKind) {
case ASTNode::Kind::kVarDeclarations: {
std::unique_ptr<VarDeclarations> s = this->convertVarDeclarations(
decl,
Variable::kGlobal_Storage);
if (s) {
fProgramElements->push_back(std::move(s));
}
break;
}
case ASTNode::Kind::kEnum: {
this->convertEnum(decl);
break;
}
case ASTNode::Kind::kFunction: {
this->convertFunction(decl);
break;
}
case ASTNode::Kind::kModifiers: {
std::unique_ptr<ModifiersDeclaration> f = this->convertModifiersDeclaration(decl);
if (f) {
fProgramElements->push_back(std::move(f));
}
break;
}
case ASTNode::Kind::kInterfaceBlock: {
std::unique_ptr<InterfaceBlock> i = this->convertInterfaceBlock(decl);
if (i) {
fProgramElements->push_back(std::move(i));
}
break;
}
case ASTNode::Kind::kExtension: {
std::unique_ptr<Extension> e = this->convertExtension(decl.fOffset,
decl.getString());
if (e) {
fProgramElements->push_back(std::move(e));
}
break;
}
case ASTNode::Kind::kSection: {
std::unique_ptr<Section> s = this->convertSection(decl);
if (s) {
fProgramElements->push_back(std::move(s));
}
break;
}
default:
#ifdef SK_DEBUG
ABORT("unsupported declaration: %s\n", decl.description().c_str());
#endif
break;
}
}
// Do a final pass looking for dangling FunctionReference or TypeReference expressions
class FindIllegalExpressions : public ProgramVisitor {
public:
FindIllegalExpressions(IRGenerator* generator) : fGenerator(generator) {}
bool visitExpression(const Expression& e) override {
fGenerator->checkValid(e);
return INHERITED::visitExpression(e);
}
IRGenerator* fGenerator;
using INHERITED = ProgramVisitor;
using INHERITED::visitProgramElement;
};
for (const auto& pe : *fProgramElements) {
FindIllegalExpressions{this}.visitProgramElement(*pe);
}
}
} // namespace SkSL