| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/image/SkSurface_Gpu.h" |
| |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkDeferredDisplayList.h" |
| #include "include/core/SkSurfaceCharacterization.h" |
| #include "include/gpu/GrBackendSurface.h" |
| #include "include/gpu/GrDirectContext.h" |
| #include "include/gpu/GrRecordingContext.h" |
| #include "src/core/SkImagePriv.h" |
| #include "src/core/SkSurfacePriv.h" |
| #include "src/gpu/GrAHardwareBufferUtils.h" |
| #include "src/gpu/GrCaps.h" |
| #include "src/gpu/GrContextThreadSafeProxyPriv.h" |
| #include "src/gpu/GrDirectContextPriv.h" |
| #include "src/gpu/GrProxyProvider.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| #include "src/gpu/GrRenderTarget.h" |
| #include "src/gpu/GrTexture.h" |
| #include "src/gpu/SkBaseGpuDevice.h" |
| #include "src/image/SkImage_Base.h" |
| #include "src/image/SkImage_Gpu.h" |
| #include "src/image/SkSurface_Base.h" |
| |
| #if SK_SUPPORT_GPU |
| |
| SkSurface_Gpu::SkSurface_Gpu(sk_sp<SkBaseGpuDevice> device) |
| : INHERITED(device->width(), device->height(), &device->surfaceProps()) |
| , fDevice(std::move(device)) { |
| SkASSERT(fDevice->targetProxy()->priv().isExact()); |
| } |
| |
| SkSurface_Gpu::~SkSurface_Gpu() { |
| } |
| |
| GrRecordingContext* SkSurface_Gpu::onGetRecordingContext() { |
| return fDevice->recordingContext(); |
| } |
| |
| SkBaseGpuDevice* SkSurface_Gpu::getDevice() { |
| return fDevice.get(); |
| } |
| |
| static GrRenderTarget* prepare_rt_for_external_access(SkSurface_Gpu* surface, |
| SkSurface::BackendHandleAccess access) { |
| auto dContext = surface->recordingContext()->asDirectContext(); |
| if (!dContext) { |
| return nullptr; |
| } |
| if (dContext->abandoned()) { |
| return nullptr; |
| } |
| |
| switch (access) { |
| case SkSurface::kFlushRead_BackendHandleAccess: |
| break; |
| case SkSurface::kFlushWrite_BackendHandleAccess: |
| case SkSurface::kDiscardWrite_BackendHandleAccess: |
| // for now we don't special-case on Discard, but we may in the future. |
| surface->notifyContentWillChange(SkSurface::kRetain_ContentChangeMode); |
| break; |
| } |
| |
| dContext->priv().flushSurface(surface->getDevice()->targetProxy()); |
| |
| // Grab the render target *after* firing notifications, as it may get switched if CoW kicks in. |
| return surface->getDevice()->targetProxy()->peekRenderTarget(); |
| } |
| |
| GrBackendTexture SkSurface_Gpu::onGetBackendTexture(BackendHandleAccess access) { |
| GrRenderTarget* rt = prepare_rt_for_external_access(this, access); |
| if (!rt) { |
| return GrBackendTexture(); // invalid |
| } |
| GrTexture* texture = rt->asTexture(); |
| if (texture) { |
| return texture->getBackendTexture(); |
| } |
| return GrBackendTexture(); // invalid |
| } |
| |
| GrBackendRenderTarget SkSurface_Gpu::onGetBackendRenderTarget(BackendHandleAccess access) { |
| GrRenderTarget* rt = prepare_rt_for_external_access(this, access); |
| if (!rt) { |
| return GrBackendRenderTarget(); // invalid |
| } |
| |
| return rt->getBackendRenderTarget(); |
| } |
| |
| SkCanvas* SkSurface_Gpu::onNewCanvas() { return new SkCanvas(fDevice); } |
| |
| sk_sp<SkSurface> SkSurface_Gpu::onNewSurface(const SkImageInfo& info) { |
| GrSurfaceProxyView targetView = fDevice->readSurfaceView(); |
| int sampleCount = targetView.asRenderTargetProxy()->numSamples(); |
| GrSurfaceOrigin origin = targetView.origin(); |
| // TODO: Make caller specify this (change virtual signature of onNewSurface). |
| static const SkBudgeted kBudgeted = SkBudgeted::kNo; |
| return SkSurface::MakeRenderTarget(fDevice->recordingContext(), kBudgeted, info, sampleCount, |
| origin, &this->props()); |
| } |
| |
| sk_sp<SkImage> SkSurface_Gpu::onNewImageSnapshot(const SkIRect* subset) { |
| GrRenderTargetProxy* rtp = fDevice->targetProxy(); |
| if (!rtp) { |
| return nullptr; |
| } |
| |
| auto rContext = fDevice->recordingContext(); |
| |
| GrSurfaceProxyView srcView = fDevice->readSurfaceView(); |
| |
| SkBudgeted budgeted = rtp->isBudgeted(); |
| |
| if (subset || !srcView.asTextureProxy() || rtp->refsWrappedObjects()) { |
| // If the original render target is a buffer originally created by the client, then we don't |
| // want to ever retarget the SkSurface at another buffer we create. If the source is a |
| // texture (and the image is not subsetted) we make a dual-proxied SkImage that will |
| // attempt to share the backing store until the surface writes to the shared backing store |
| // at which point it uses a copy. |
| if (!subset && srcView.asTextureProxy()) { |
| return SkImage_Gpu::MakeWithVolatileSrc(sk_ref_sp(rContext), |
| srcView, |
| fDevice->imageInfo().colorInfo()); |
| } |
| auto rect = subset ? *subset : SkIRect::MakeSize(srcView.dimensions()); |
| GrMipmapped mipmapped = srcView.mipmapped(); |
| srcView = GrSurfaceProxyView::Copy(rContext, std::move(srcView), mipmapped, rect, |
| SkBackingFit::kExact, budgeted); |
| } |
| |
| const SkImageInfo info = fDevice->imageInfo(); |
| if (!srcView.asTextureProxy()) { |
| return nullptr; |
| } |
| // The surfaceDrawContext coming out of SkGpuDevice should always be exact and the |
| // above copy creates a kExact surfaceContext. |
| SkASSERT(srcView.proxy()->priv().isExact()); |
| return sk_make_sp<SkImage_Gpu>(sk_ref_sp(rContext), |
| kNeedNewImageUniqueID, |
| std::move(srcView), |
| info.colorInfo()); |
| } |
| |
| void SkSurface_Gpu::onWritePixels(const SkPixmap& src, int x, int y) { |
| fDevice->writePixels(src, x, y); |
| } |
| |
| void SkSurface_Gpu::onAsyncRescaleAndReadPixels(const SkImageInfo& info, |
| const SkIRect& srcRect, |
| RescaleGamma rescaleGamma, |
| RescaleMode rescaleMode, |
| ReadPixelsCallback callback, |
| ReadPixelsContext context) { |
| fDevice->asyncRescaleAndReadPixels(info, |
| srcRect, |
| rescaleGamma, |
| rescaleMode, |
| callback, |
| context); |
| } |
| |
| void SkSurface_Gpu::onAsyncRescaleAndReadPixelsYUV420(SkYUVColorSpace yuvColorSpace, |
| sk_sp<SkColorSpace> dstColorSpace, |
| const SkIRect& srcRect, |
| const SkISize& dstSize, |
| RescaleGamma rescaleGamma, |
| RescaleMode rescaleMode, |
| ReadPixelsCallback callback, |
| ReadPixelsContext context) { |
| fDevice->asyncRescaleAndReadPixelsYUV420(yuvColorSpace, |
| std::move(dstColorSpace), |
| srcRect, |
| dstSize, |
| rescaleGamma, |
| rescaleMode, |
| callback, |
| context); |
| } |
| |
| // Create a new render target and, if necessary, copy the contents of the old |
| // render target into it. Note that this flushes the SkGpuDevice but |
| // doesn't force an OpenGL flush. |
| void SkSurface_Gpu::onCopyOnWrite(ContentChangeMode mode) { |
| GrSurfaceProxyView readSurfaceView = fDevice->readSurfaceView(); |
| |
| // are we sharing our backing proxy with the image? Note this call should never create a new |
| // image because onCopyOnWrite is only called when there is a cached image. |
| sk_sp<SkImage> image = this->refCachedImage(); |
| SkASSERT(image); |
| |
| if (static_cast<SkImage_Gpu*>(image.get())->surfaceMustCopyOnWrite(readSurfaceView.proxy())) { |
| fDevice->replaceBackingProxy(mode); |
| } else if (kDiscard_ContentChangeMode == mode) { |
| this->SkSurface_Gpu::onDiscard(); |
| } |
| } |
| |
| void SkSurface_Gpu::onDiscard() { fDevice->discard(); } |
| |
| GrSemaphoresSubmitted SkSurface_Gpu::onFlush(BackendSurfaceAccess access, const GrFlushInfo& info, |
| const GrBackendSurfaceMutableState* newState) { |
| |
| auto dContext = fDevice->recordingContext()->asDirectContext(); |
| if (!dContext) { |
| return GrSemaphoresSubmitted::kNo; |
| } |
| |
| GrRenderTargetProxy* rtp = fDevice->targetProxy(); |
| |
| return dContext->priv().flushSurface(rtp, access, info, newState); |
| } |
| |
| bool SkSurface_Gpu::onWait(int numSemaphores, const GrBackendSemaphore* waitSemaphores, |
| bool deleteSemaphoresAfterWait) { |
| return fDevice->wait(numSemaphores, waitSemaphores, deleteSemaphoresAfterWait); |
| } |
| |
| bool SkSurface_Gpu::onCharacterize(SkSurfaceCharacterization* characterization) const { |
| auto direct = fDevice->recordingContext()->asDirectContext(); |
| if (!direct) { |
| return false; |
| } |
| |
| SkImageInfo ii = fDevice->imageInfo(); |
| if (ii.colorType() == kUnknown_SkColorType) { |
| return false; |
| } |
| |
| GrSurfaceProxyView readSurfaceView = fDevice->readSurfaceView(); |
| size_t maxResourceBytes = direct->getResourceCacheLimit(); |
| |
| bool mipmapped = readSurfaceView.asTextureProxy() |
| ? GrMipmapped::kYes == readSurfaceView.asTextureProxy()->mipmapped() |
| : false; |
| |
| bool usesGLFBO0 = readSurfaceView.asRenderTargetProxy()->glRTFBOIDIs0(); |
| // We should never get in the situation where we have a texture render target that is also |
| // backend by FBO 0. |
| SkASSERT(!usesGLFBO0 || !SkToBool(readSurfaceView.asTextureProxy())); |
| |
| bool vkRTSupportsInputAttachment = |
| readSurfaceView.asRenderTargetProxy()->supportsVkInputAttachment(); |
| |
| GrBackendFormat format = readSurfaceView.proxy()->backendFormat(); |
| int numSamples = readSurfaceView.asRenderTargetProxy()->numSamples(); |
| GrProtected isProtected = readSurfaceView.asRenderTargetProxy()->isProtected(); |
| |
| characterization->set( |
| direct->threadSafeProxy(), |
| maxResourceBytes, |
| ii, |
| format, |
| readSurfaceView.origin(), |
| numSamples, |
| SkSurfaceCharacterization::Textureable(SkToBool(readSurfaceView.asTextureProxy())), |
| SkSurfaceCharacterization::MipMapped(mipmapped), |
| SkSurfaceCharacterization::UsesGLFBO0(usesGLFBO0), |
| SkSurfaceCharacterization::VkRTSupportsInputAttachment(vkRTSupportsInputAttachment), |
| SkSurfaceCharacterization::VulkanSecondaryCBCompatible(false), |
| isProtected, |
| this->props()); |
| return true; |
| } |
| |
| void SkSurface_Gpu::onDraw(SkCanvas* canvas, SkScalar x, SkScalar y, |
| const SkSamplingOptions& sampling, const SkPaint* paint) { |
| // If the dst is also GPU we try to not force a new image snapshot (by calling the base class |
| // onDraw) since that may not always perform the copy-on-write optimization. |
| auto tryDraw = [&] { |
| auto surfaceContext = fDevice->recordingContext(); |
| auto canvasContext = canvas->recordingContext()->asDirectContext(); |
| if (!canvasContext) { |
| return false; |
| } |
| if (canvasContext->priv().contextID() != surfaceContext->priv().contextID()) { |
| return false; |
| } |
| GrSurfaceProxyView srcView = fDevice->readSurfaceView(); |
| if (!srcView.asTextureProxyRef()) { |
| return false; |
| } |
| // Possibly we could skip making an image here if SkGpuDevice exposed a lower level way |
| // of drawing a texture proxy. |
| const SkImageInfo info = fDevice->imageInfo(); |
| sk_sp<SkImage> image = sk_make_sp<SkImage_Gpu>(sk_ref_sp(canvasContext), |
| kNeedNewImageUniqueID, |
| std::move(srcView), |
| info.colorInfo()); |
| canvas->drawImage(image.get(), x, y, sampling, paint); |
| return true; |
| }; |
| if (!tryDraw()) { |
| INHERITED::onDraw(canvas, x, y, sampling, paint); |
| } |
| } |
| |
| bool SkSurface_Gpu::onIsCompatible(const SkSurfaceCharacterization& characterization) const { |
| auto direct = fDevice->recordingContext()->asDirectContext(); |
| if (!direct) { |
| return false; |
| } |
| |
| if (!characterization.isValid()) { |
| return false; |
| } |
| |
| if (characterization.vulkanSecondaryCBCompatible()) { |
| return false; |
| } |
| |
| SkImageInfo ii = fDevice->imageInfo(); |
| if (ii.colorType() == kUnknown_SkColorType) { |
| return false; |
| } |
| |
| GrSurfaceProxyView targetView = fDevice->readSurfaceView(); |
| // As long as the current state if the context allows for greater or equal resources, |
| // we allow the DDL to be replayed. |
| // DDL TODO: should we just remove the resource check and ignore the cache limits on playback? |
| size_t maxResourceBytes = direct->getResourceCacheLimit(); |
| |
| if (characterization.isTextureable()) { |
| if (!targetView.asTextureProxy()) { |
| // If the characterization was textureable we require the replay dest to also be |
| // textureable. If the characterized surface wasn't textureable we allow the replay |
| // dest to be textureable. |
| return false; |
| } |
| |
| if (characterization.isMipMapped() && |
| GrMipmapped::kNo == targetView.asTextureProxy()->mipmapped()) { |
| // Fail if the DDL's surface was mipmapped but the replay surface is not. |
| // Allow drawing to proceed if the DDL was not mipmapped but the replay surface is. |
| return false; |
| } |
| } |
| |
| if (characterization.usesGLFBO0() != targetView.asRenderTargetProxy()->glRTFBOIDIs0()) { |
| // FBO0-ness effects how MSAA and window rectangles work. If the characterization was |
| // tagged as FBO0 it would never have been allowed to use window rectangles. If MSAA |
| // was also never used then a DDL recorded with this characterization should be replayable |
| // on a non-FBO0 surface. |
| if (!characterization.usesGLFBO0() || characterization.sampleCount() > 1) { |
| return false; |
| } |
| } |
| |
| GrBackendFormat format = targetView.asRenderTargetProxy()->backendFormat(); |
| int numSamples = targetView.asRenderTargetProxy()->numSamples(); |
| GrProtected isProtected = targetView.proxy()->isProtected(); |
| |
| return characterization.contextInfo() && |
| characterization.contextInfo()->priv().matches(direct) && |
| characterization.cacheMaxResourceBytes() <= maxResourceBytes && |
| characterization.origin() == targetView.origin() && |
| characterization.backendFormat() == format && |
| characterization.width() == ii.width() && |
| characterization.height() == ii.height() && |
| characterization.colorType() == ii.colorType() && |
| characterization.sampleCount() == numSamples && |
| SkColorSpace::Equals(characterization.colorSpace(), ii.colorInfo().colorSpace()) && |
| characterization.isProtected() == isProtected && |
| characterization.surfaceProps() == fDevice->surfaceProps(); |
| } |
| |
| bool SkSurface_Gpu::onDraw(sk_sp<const SkDeferredDisplayList> ddl, SkIPoint offset) { |
| if (!ddl || !this->isCompatible(ddl->characterization())) { |
| return false; |
| } |
| |
| auto direct = fDevice->recordingContext()->asDirectContext(); |
| if (!direct) { |
| return false; |
| } |
| |
| GrSurfaceProxyView view = fDevice->readSurfaceView(); |
| |
| direct->priv().createDDLTask(std::move(ddl), view.asRenderTargetProxyRef(), offset); |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| sk_sp<SkSurface> SkSurface::MakeRenderTarget(GrRecordingContext* rContext, |
| const SkSurfaceCharacterization& c, |
| SkBudgeted budgeted) { |
| if (!rContext || !c.isValid()) { |
| return nullptr; |
| } |
| |
| if (c.usesGLFBO0()) { |
| // If we are making the surface we will never use FBO0. |
| return nullptr; |
| } |
| |
| if (c.vulkanSecondaryCBCompatible()) { |
| return nullptr; |
| } |
| |
| auto device = rContext->priv().createDevice(budgeted, c.imageInfo(), SkBackingFit::kExact, |
| c.sampleCount(), GrMipmapped(c.isMipMapped()), |
| c.isProtected(), c.origin(), c.surfaceProps(), |
| SkBaseGpuDevice::kClear_InitContents); |
| if (!device) { |
| return nullptr; |
| } |
| |
| sk_sp<SkSurface> result = sk_make_sp<SkSurface_Gpu>(std::move(device)); |
| #ifdef SK_DEBUG |
| if (result) { |
| SkASSERT(result->isCompatible(c)); |
| } |
| #endif |
| |
| return result; |
| } |
| |
| static bool validate_backend_texture(const GrCaps* caps, const GrBackendTexture& tex, |
| int sampleCnt, GrColorType grCT, |
| bool texturable) { |
| if (!tex.isValid()) { |
| return false; |
| } |
| |
| GrBackendFormat backendFormat = tex.getBackendFormat(); |
| if (!backendFormat.isValid()) { |
| return false; |
| } |
| |
| if (!caps->areColorTypeAndFormatCompatible(grCT, backendFormat)) { |
| return false; |
| } |
| |
| if (!caps->isFormatAsColorTypeRenderable(grCT, backendFormat, sampleCnt)) { |
| return false; |
| } |
| |
| if (texturable && !caps->isFormatTexturable(backendFormat)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| sk_sp<SkSurface> SkSurface::MakeRenderTarget(GrRecordingContext* rContext, SkBudgeted budgeted, |
| const SkImageInfo& info, int sampleCount, |
| GrSurfaceOrigin origin, const SkSurfaceProps* props, |
| bool shouldCreateWithMips) { |
| if (!rContext) { |
| return nullptr; |
| } |
| sampleCount = std::max(1, sampleCount); |
| GrMipmapped mipMapped = shouldCreateWithMips ? GrMipmapped::kYes : GrMipmapped::kNo; |
| |
| if (!rContext->priv().caps()->mipmapSupport()) { |
| mipMapped = GrMipmapped::kNo; |
| } |
| |
| auto device = rContext->priv().createDevice(budgeted, info, SkBackingFit::kExact, |
| sampleCount, mipMapped, GrProtected::kNo, origin, |
| SkSurfacePropsCopyOrDefault(props), |
| SkBaseGpuDevice::kClear_InitContents); |
| if (!device) { |
| return nullptr; |
| } |
| return sk_make_sp<SkSurface_Gpu>(std::move(device)); |
| } |
| |
| sk_sp<SkSurface> SkSurface::MakeFromBackendTexture(GrRecordingContext* rContext, |
| const GrBackendTexture& tex, |
| GrSurfaceOrigin origin, |
| int sampleCnt, |
| SkColorType colorType, |
| sk_sp<SkColorSpace> colorSpace, |
| const SkSurfaceProps* props, |
| SkSurface::TextureReleaseProc textureReleaseProc, |
| SkSurface::ReleaseContext releaseContext) { |
| auto releaseHelper = GrRefCntedCallback::Make(textureReleaseProc, releaseContext); |
| |
| if (!rContext) { |
| return nullptr; |
| } |
| sampleCnt = std::max(1, sampleCnt); |
| |
| GrColorType grColorType = SkColorTypeAndFormatToGrColorType(rContext->priv().caps(), colorType, |
| tex.getBackendFormat()); |
| if (grColorType == GrColorType::kUnknown) { |
| return nullptr; |
| } |
| |
| if (!validate_backend_texture(rContext->priv().caps(), tex, sampleCnt, grColorType, true)) { |
| return nullptr; |
| } |
| |
| sk_sp<GrTextureProxy> proxy(rContext->priv().proxyProvider()->wrapRenderableBackendTexture( |
| tex, sampleCnt, kBorrow_GrWrapOwnership, GrWrapCacheable::kNo, |
| std::move(releaseHelper))); |
| if (!proxy) { |
| return nullptr; |
| } |
| |
| auto device = rContext->priv().createDevice(grColorType, std::move(proxy), |
| std::move(colorSpace), origin, |
| SkSurfacePropsCopyOrDefault(props), |
| SkBaseGpuDevice::kUninit_InitContents); |
| if (!device) { |
| return nullptr; |
| } |
| |
| return sk_make_sp<SkSurface_Gpu>(std::move(device)); |
| } |
| |
| bool SkSurface_Gpu::onReplaceBackendTexture(const GrBackendTexture& backendTexture, |
| GrSurfaceOrigin origin, |
| ContentChangeMode mode, |
| TextureReleaseProc releaseProc, |
| ReleaseContext releaseContext) { |
| auto releaseHelper = GrRefCntedCallback::Make(releaseProc, releaseContext); |
| |
| auto rContext = fDevice->recordingContext(); |
| if (rContext->abandoned()) { |
| return false; |
| } |
| if (!backendTexture.isValid()) { |
| return false; |
| } |
| if (backendTexture.width() != this->width() || backendTexture.height() != this->height()) { |
| return false; |
| } |
| auto* oldRTP = fDevice->targetProxy(); |
| auto oldProxy = sk_ref_sp(oldRTP->asTextureProxy()); |
| if (!oldProxy) { |
| return false; |
| } |
| auto* oldTexture = oldProxy->peekTexture(); |
| if (!oldTexture) { |
| return false; |
| } |
| if (!oldTexture->resourcePriv().refsWrappedObjects()) { |
| return false; |
| } |
| if (oldTexture->backendFormat() != backendTexture.getBackendFormat()) { |
| return false; |
| } |
| if (oldTexture->getBackendTexture().isSameTexture(backendTexture)) { |
| return false; |
| } |
| SkASSERT(oldTexture->asRenderTarget()); |
| int sampleCnt = oldTexture->asRenderTarget()->numSamples(); |
| GrColorType grColorType = SkColorTypeToGrColorType(this->getCanvas()->imageInfo().colorType()); |
| if (!validate_backend_texture(rContext->priv().caps(), backendTexture, |
| sampleCnt, grColorType, true)) { |
| return false; |
| } |
| |
| sk_sp<SkColorSpace> colorSpace = fDevice->imageInfo().refColorSpace(); |
| |
| SkASSERT(sampleCnt > 0); |
| sk_sp<GrTextureProxy> proxy(rContext->priv().proxyProvider()->wrapRenderableBackendTexture( |
| backendTexture, sampleCnt, kBorrow_GrWrapOwnership, GrWrapCacheable::kNo, |
| std::move(releaseHelper))); |
| if (!proxy) { |
| return false; |
| } |
| |
| return fDevice->replaceBackingProxy(mode, sk_ref_sp(proxy->asRenderTargetProxy()), grColorType, |
| std::move(colorSpace), origin, this->props()); |
| } |
| |
| bool validate_backend_render_target(const GrCaps* caps, const GrBackendRenderTarget& rt, |
| GrColorType grCT) { |
| if (!caps->areColorTypeAndFormatCompatible(grCT, rt.getBackendFormat())) { |
| return false; |
| } |
| |
| if (!caps->isFormatAsColorTypeRenderable(grCT, rt.getBackendFormat(), rt.sampleCnt())) { |
| return false; |
| } |
| |
| // We require the stencil bits to be either 0, 8, or 16. |
| int stencilBits = rt.stencilBits(); |
| if (stencilBits != 0 && stencilBits != 8 && stencilBits != 16) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| sk_sp<SkSurface> SkSurface::MakeFromBackendRenderTarget(GrRecordingContext* rContext, |
| const GrBackendRenderTarget& rt, |
| GrSurfaceOrigin origin, |
| SkColorType colorType, |
| sk_sp<SkColorSpace> colorSpace, |
| const SkSurfaceProps* props, |
| SkSurface::RenderTargetReleaseProc relProc, |
| SkSurface::ReleaseContext releaseContext) { |
| auto releaseHelper = GrRefCntedCallback::Make(relProc, releaseContext); |
| |
| if (!rContext) { |
| return nullptr; |
| } |
| |
| GrColorType grColorType = SkColorTypeAndFormatToGrColorType(rContext->priv().caps(), colorType, |
| rt.getBackendFormat()); |
| if (grColorType == GrColorType::kUnknown) { |
| return nullptr; |
| } |
| |
| if (!validate_backend_render_target(rContext->priv().caps(), rt, grColorType)) { |
| return nullptr; |
| } |
| |
| auto proxyProvider = rContext->priv().proxyProvider(); |
| auto proxy = proxyProvider->wrapBackendRenderTarget(rt, std::move(releaseHelper)); |
| if (!proxy) { |
| return nullptr; |
| } |
| |
| auto device = rContext->priv().createDevice(grColorType, std::move(proxy), |
| std::move(colorSpace), origin, |
| SkSurfacePropsCopyOrDefault(props), |
| SkBaseGpuDevice::kUninit_InitContents); |
| if (!device) { |
| return nullptr; |
| } |
| |
| return sk_make_sp<SkSurface_Gpu>(std::move(device)); |
| } |
| |
| #if defined(SK_BUILD_FOR_ANDROID) && __ANDROID_API__ >= 26 |
| sk_sp<SkSurface> SkSurface::MakeFromAHardwareBuffer(GrDirectContext* dContext, |
| AHardwareBuffer* hardwareBuffer, |
| GrSurfaceOrigin origin, |
| sk_sp<SkColorSpace> colorSpace, |
| const SkSurfaceProps* surfaceProps) { |
| AHardwareBuffer_Desc bufferDesc; |
| AHardwareBuffer_describe(hardwareBuffer, &bufferDesc); |
| |
| if (!SkToBool(bufferDesc.usage & AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT)) { |
| return nullptr; |
| } |
| |
| bool isTextureable = SkToBool(bufferDesc.usage & AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE); |
| |
| GrBackendFormat backendFormat = GrAHardwareBufferUtils::GetBackendFormat(dContext, |
| hardwareBuffer, |
| bufferDesc.format, |
| true); |
| if (!backendFormat.isValid()) { |
| return nullptr; |
| } |
| |
| if (isTextureable) { |
| GrAHardwareBufferUtils::DeleteImageProc deleteImageProc = nullptr; |
| GrAHardwareBufferUtils::UpdateImageProc updateImageProc = nullptr; |
| GrAHardwareBufferUtils::TexImageCtx deleteImageCtx = nullptr; |
| |
| bool isProtectedContent = |
| SkToBool(bufferDesc.usage & AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT); |
| |
| GrBackendTexture backendTexture = |
| GrAHardwareBufferUtils::MakeBackendTexture(dContext, hardwareBuffer, |
| bufferDesc.width, bufferDesc.height, |
| &deleteImageProc, &updateImageProc, |
| &deleteImageCtx, isProtectedContent, |
| backendFormat, true); |
| if (!backendTexture.isValid()) { |
| return nullptr; |
| } |
| |
| SkColorType colorType = |
| GrAHardwareBufferUtils::GetSkColorTypeFromBufferFormat(bufferDesc.format); |
| |
| sk_sp<SkSurface> surface = SkSurface::MakeFromBackendTexture(dContext, backendTexture, |
| origin, 0, colorType, std::move(colorSpace), surfaceProps, deleteImageProc, |
| deleteImageCtx); |
| |
| if (!surface) { |
| SkASSERT(deleteImageProc); |
| deleteImageProc(deleteImageCtx); |
| } |
| |
| return surface; |
| } else { |
| return nullptr; |
| } |
| } |
| #endif |
| |
| void SkSurface::flushAndSubmit(bool syncCpu) { |
| this->flush(BackendSurfaceAccess::kNoAccess, GrFlushInfo()); |
| |
| auto direct = GrAsDirectContext(this->recordingContext()); |
| if (direct) { |
| direct->submit(syncCpu); |
| } |
| } |
| |
| #endif |